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Towards artificial intelligence in mental health by improving
schizophrenia prediction with multiple brain parcellation

ensemble-learning

Sunil Vasu Kalmady @®'?, Russell Greiner’, Rimjhim Agrawal®, Venkataram Shivakumar®*, Janardhanan C. Narayanaswamy>*, Matthew
R. G. Brown'?, Andrew J Greenshaw?, Serdar M Dursun? and Ganesan Venkatasubramanian®*

In the literature, there are substantial machine learning attempts to classify schizophrenia based on alterations in resting-state (RS)
brain patterns using functional magnetic resonance imaging (fMRI). Most earlier studies modelled patients undergoing treatment,
entailing confounding with drug effects on brain activity, and making them less applicable to real-world diagnosis at the point of
first medical contact. Further, most studies with classification accuracies >80% are based on small sample datasets, which may be
insufficient to capture the heterogeneity of schizophrenia, limiting generalization to unseen cases. In this study, we used RS fMRI
data collected from a cohort of antipsychotic drug treatment-naive patients meeting DSM IV criteria for schizophrenia (N = 81) as
well as age- and sex-matched healthy controls (N = 93). We present an ensemble model -- EMPaSchiz (read as ‘Emphasis’; standing
for ‘Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction’) that stacks predictions from several ‘single-
source’ models, each based on features of regional activity and functional connectivity, over a range of different a priori parcellation
schemes. EMPaSchiz yielded a classification accuracy of 87% (vs. chance accuracy of 53%), which out-performs earlier machine
learning models built for diagnosing schizophrenia using RS fMRI measures modelled on large samples (N> 100). To our
knowledge, EMPaSchiz is first to be reported that has been trained and validated exclusively on data from drug-naive patients
diagnosed with schizophrenia. The method relies on a single modality of MRI acquisition and can be readily scaled-up without
needing to rebuild parcellation maps from incoming training images.
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INTRODUCTION

Despite decades of research, there are no precise and reliable
etiopathophysiological markers for major psychiatric conditions.’
Impeding factors range from inherent challenges in studying
complex genetic disorders® to weakly established neural bases for
cognition, experience and behaviour.>* However, a part of the
problem is a mismatch between current diagnostic standards for
psychiatric illnesses and observations emerging from basic
systems and behavioural neuroscience research.’ Recognized
biological heterogeneity, also adds to the difficulty of identifying
reliable biological markers associated with these conditions.®
Treatments for psychiatric disorders have emerged largely as a
result of serendipitous observations” with an unfortunate range of
side-effects® and this may be why mortality and prevalence rates
associated with psychiatric illnesses have not decreased in past
years,® as compared to other medical conditions such as certain
types of cancer'® or heart diseases."’

In particular, the underlying pathophysiology of schizophrenia,
a severe and debilitating psychotic illness, still remains elusive,
with few established consistent findings.'? Currently objectively
measurable diagnostic tests for schizophrenia'® are lacking, and
the reliability of diagnoses based on observable signs and
symptoms leaves room for improvement.’ Further, there is

marked heterogeneity within clinical manifestations of ‘schizo-
phrenia’ as well as considerable overlap with other psychiatric
diagnoses, leading many to question the validity of a singular
disease entity.'*

In this context, applying machine learning techniques to MRI
data has the potential to provide an objective and evidence-based
approach for identification and management of schizophre-
nia.">'® Machine-learned MRl models have the potential to
identify biological markers and delineate symptom clusters.
Recently, an increasing number of studies have attempted to
classify schizophrenia (vs. healthy controls) based on functional
alterations in resting-state brain patterns (Table 1, see supple-
mentary materials for more description of these studies).

Most earlier studies assessed patients already undergoing
treatment, which means their fMRI scans were confounded with
antipsychotic drug effects'”” - hence, those scans did not
correspond to the point of first medical contact, and so may not
lead to optimal diagnostic models. Further, diagnostic models
obtained from larger datasets (more than 100 subjects) have
classification accuracies well below 80% (Fig. 1). Many have
observed this phenomenon: “smaller-N studies reach higher
prediction accuracy of schizophrenia with neuroimaging data”."®
Even with higher cross-validated accuracy, the smaller samples
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Table 1. List of single-site studies that provided machine learning
model for predicting schizophrenia using resting-state brain patterns
Study Year Total: Size of classes Accuracy
Shen et al.® 2010 52: 32 SCZ, 20 HC 86.50%
Fan et al.® 2011 62: 31 SCZ, 31 HC 87.1%°
Yu et al.®® 2013 89:325CZ, 38 HC (+19MDD)  80.9%
Anderson and 2013 146: 74 SCZ, 72 HC (COBRE 65%
Cohen®® dataset)
Arbabshirani et al.¥” 2013 56: 28 SCZ, 28 HC 96%°
Yu et al®® 2013 71: 24 SCZ, 25 healthy 62%
siblings of SCZ, 22 HC
Guo et al.®® 2014 131: 69 SCZ, 62 HC 80%
Brodersen et al.’® 2014 83: 41 SCZ, 42 HC 78%°
Anticevic et al.®’ 2014 180: 90 SCZ, 90 HC 73.9%
Watanabe et al.®?> 2014 123: 54 SCZ, 67 HC 73.50%
Chyzhyk et al.”® 2015 54: 26 SCZ with history of 97.1%
AH, 14 SCZ without a history
of AH, 28 HC
Cheng et al.** 2015 48:19 SCZ, 29 HC 79%
Peters et al.>® 2016 36: 18 SCZ, 18 HC 91%?
Mikolas et al.”® 2016 126: 63 SCZ with FE SCZ, 63  73%
HC
Cabral et al.>* 2016 132: 66 SCZ, 66 HC (COBRE 70.5%
dataset)
Yang et al.”’ 2016 86: 40 SCZ, 46 HC 77.91%
Iwabuchi and 2017 133:62 SCZ, 71 HC 78.04%°
Palaniyappan®®
Lottman et al.” 2017 69: 34 unmedicated (17 83.8%°
drug-naive) SCZ + follow-up
post treatment, 35 HC
Guo et al.'® 2017 68: 28 FE drug-naive SCZ, 28  92.86%°
family-based controls, 40 HC
SCZ Schizophrenia, HC Healthy controls, AH Auditory hallucinations, FE First
episode, MDD Major depression
@Accuracy of best model among several reported models
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Fig. 1 Negative correlation between sample size and cross-

validated (CV) accuracy for predicting schizophrenia using resting-
state brain patterns (studies cited in Table 1)

likely do not capture the heterogeneity of the disease, which
suggests that these models will not generalize well to unseen
cases.

Many of these studies first parcellate the whole brain resting-
state information into spatial regions that are considered
homogeneous. However, with the increasing number of
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parcellation methods and atlases now available, the choice of
which parcellation to use seems rather arbitrary. These methods
can vary widely in principle and can be based on (a) pre-defined
ontology of brain structures such as post-mortem cytoarchitec-
ture,"®%° sulco-gyral anatomy,??? anatomical connectivity using
diffusion imaging®™?* or (b) data-driven modelling of the
functional features in the BOLD signal from resting-state®® or
task-based fMRI**?” or even meta-analyses?®*?° using analytical
techniques such as hierarchical clustering® or independent
components analysis.>' The quality of the brain network obtained
and the downstream predictive model may be largely influenced
by the selection of the atlas or parcellation used.>>** Brain
segmentations based on these parcellation schemes not only
provide a way to reduce the dimensionality of fMRI data but can
also provide an elegant way to incorporate prior neurobiological
knowledge to ‘refine’ the features. However, to date, there has
been no investigation on whether combined learning from
multiple predefined parcellation schemes can provide better
performance for diagnostic prediction of schizophrenia.

In this study, we eliminated the potential confound of
antipsychotic treatment by using resting state fMRI data collected
from a cohort of antipsychotic-naive schizophrenia patients (N =
81) as well as age- and gender-matched healthy controls (N = 93).
The aim of our study was to improve accuracy for diagnostic
prediction, compared to results reported in the literature, by
designing a feature creation and learning pipeline that incorpo-
rates prior knowledge of neuroanatomy and neurophysiology. Our
overall model involves stacking predictions from several single-
source models, each based on the specific set of features related
to regional fMRI activity and functional connectivity, and a specific
a priori parcellation scheme. We demonstrate that our ensemble
model yields a classification accuracy of 87% (vs. 53% chance),
which is better than any standard single-source model considered
in the study. To the best of our knowledge, (1) the performance of
our model, based on 174 subjects, outscores earlier machine
learning models built for diagnosing schizophrenia using resting-
state fMRI measures that have been learned from datasets of N >
100 subjects; and (2) this is the only such classification model that
has been built and validated exclusively on never-treated
schizophrenia cases.

Our method relies on a single modality of data acquisition for
neuroimaging and is easily scalable as it uses a set of pre-defined
atlases—i.e.,, it does not rely on data-driven brain parcellation
methods, such as group-independent component analysis.

RESULTS

We show below that (a) our EMPaSchiz ensemble learner, which
learns a combination of learned classifiers, each trained on its own
neuroimaging feature extractions and brain parcellation schemes,
produces a classifier that can predict schizophrenia more
accurately than any of the individual predictors (that used just a
single feature/parcellation combination). (b) Within this ensemble
prediction framework, even a very small fraction of features (as
low as top 0.5% selected via univariate tests) can still provide high
prediction accuracy (>80%). (c) This learning framework can also
produce models that can distinguish clinically symptomatic versus
non-symptomatic patients, with moderate accuracy.

Table 2 presents the 5Xx 10-fold cross-validation prediction
performance of the various learners in EMPaSchiz. Majority class
baseline accuracy for schizophrenia prediction (declaring every
subject to be control) was 53.4% (93 controls of 174 total subjects).
These accuracy values are plotted in Fig. 2. Stacked models with
neuroimaging features that are regional—viz.,, ALFF, fALFF and
ReHO—had accuracies in the range of 74 to 76%, while the ones
based on functional connectivity—viz., FC-Correlation, FC-partial
correlation, FC-precision—showed better performance with 79 to
84% accuracy. The final ensemble model EMPaSchiz (stacked-
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Table 2. Model performance (in percentage) and elements of confusion matrix of the various stacked learners in EMPaSchiz model: average
(standard errors) — 5 x 10-fold CV

Accuracy Precision  Sensitivity Specificity True positive  True negative False positive False negative
Stacked-multi 86.9 (1.1) 919 (1.4) 79.8 (1.8) 93.1 (1.2) 65.0 (1.4) 86.8 (1.2) 6.2 (1.1) 16.0 (1.4)
Stacked-ALFF 764 (14) 763 (1.8) 739 (2.2) 78.7 (1.9) 59.8 (1.7) 73.0 (1.7) 20.0 (1.9) 21.2 (1.8)
Stacked-ReHo 741 (1.6) 734 (20) 74.6 (2.0) 73.6 (2.5) 60.4 (1.6) 68.2 (2.3) 24.8 (2.5) 20.6 (1.6)
Stacked-fALFF 745 (1.5) 73.8(1.7) 722 (1.8) 76.6 (1.9) 58.6 (1.6) 72.0 (1.7) 21.0 (1.7) 224 (1.7)
Stacked-FC-correlation 824 (1.3) 839(1.9) 79.7 (1.8) 84.7 (2.0) 64.6 (1.5) 78.8 (2.0) 14.2 (1.9) 16.4 (1.4)
Stacked-FC-partial correlation 785 (1.4) 93.7 (1.5) 58.2 (2.8) 96.2 (0.9) 46.8 (2.4) 89.8 (1.0) 3.2 (0.8) 34.2 (2.3)
Stacked-FC-precision 83.7(1.2) 90.2 (1.6) 73.8 (2.0) 92.3 (1.3) 60.0 (1.9) 86.8 (1.3) 6.2 (1.2) 21.0 (1.8)
Baseline® 51.2 (0.3) 47.0(0.5) 40.7 (0.6) 60.2 (0.5) 33.0 (0.4) 56.0 (0.5) 37.0 (0.5) 48.0 (0.5)
?Baseline results are based on permutation test over the randomly shuffled labels (based on 100 repetitions of entire ‘learning with subsequent 10-fold CV
evaluations’)
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Fig. 2 Comparison of 5x10-fold cross-validation prediction accura-
cies for stacked learners in EMPaSchiz model. The comprehensive
ensemble of EMPaSchiz “stacked-multi” is shown in red. Stacked-
multi shows the best performance and performs significantly better
than all other stacked models (all p <0.05). The dotted line is the
majority class baseline predictor. SEM standard error of mean

multi) showed the best performance with accuracy of 87%,
sensitivity of 80%, specificity of 93% and precision of 92%, each
with standard errors of 1-2%. This accuracy of stacked-multi was
significantly better than second best stacked model (stacked-FC-
precision at 84%, t-test, p = 0.03).

Figure 3 shows a comparative profile of accuracies for various
SSM predictors along with EMPaSchiz stacked models. (Supple-
mentary material provides results in tabular format as well as plots
of comparisons limited to specific feature types. It also provides
results for various ensemble learners that were stacked
parcellation-wise.) Prediction accuracies for SSM ranged from
52% (FC-precision with harvard_sub_25) to 83% (FC-precision with
basc_multiscale_444) and averaged overall at 73%. In general,
basc_multiscale atlases showed better performance than the
others. For instance, accuracies of EMPaSchiz stacked models were
comparable to basc_multiscale_197 models for FC-correlation at
82% and for FC-partial correlation at 79%.

We examined the effect of feature selection using top-r
percentage of total features based on a univariate test, of r
percentile of the highest F-value scores, for r=0.5%, 1%, 2%, 5%,
10%, 20%, 30%, as well as “all regional features +30% connectivity
features” (we chose this combination as, for any given parcella-
tion, the number of regional features was much less than that of
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connectivity features), and all features (no feature selection). Note
that each “setting” is applied to all 84 SSMs. Figure 4 shows the
comparative profile of model performances with varying levels of r
for top-r percentage of features, along with original EMPaSchiz
(stacked-multi) model where feature reduction was done using
PCA. (Supplementary materials provide results in tabular format as
well as additional plots of comparisons of feature selection
methods for SSM and MSM models.) Using all features (r = 100%,
i.e., no selection/reduction) showed accuracy of 85% (which was
slightly poorer than PCA reduced features at 87% but was not a
statistically significant difference) and accuracy declined only
slightly when r was reduced gradually to as low as 0.5. It is
noteworthy that with only 0.5% of top features, our ensemble
prediction framework still showed a high prediction accuracy of
82%.

Patients with schizophrenia in our sample showed a range of
psychopathological symptom severity, as measured using the
clinical scales SANS for negative symptoms (integer values from 0
to 110) and SAPS for positive symptoms (integer values from 8 to
55). We used the first and last quartile of these scales to categorize
the 20 least, and the 20 most, severely symptomatic patients. We
then used our ensemble prediction framework in leave-one-out
cross-validation setup to predict the high-symptomatic patients
against non/low-symptomatic ones (majority class baseline
accuracy of 50%). We used leave-one-out cross-validation (rather
than 10-fold) to deal with low number of subjects (N =40) that
were available for this analysis. Prediction accuracy for stacked-
multi model was 73.2% for SANS and 61.9% for SAPS of
schizophrenia psychopathology.

To identify some of the key pathological alterations in our
schizophrenia sample, we estimated the reliability of a feature’s
importance for diagnostic prediction, similar to the approach used
by an earlier neuroimaging study>* - sorting the features by their
respective mean logistic regression weight divided by its standard
error for each feature in a particular learned SSM generated during
50 folds of cross-validation. (This was performed with raw ROI
data, without any PCA transformations.) Fig. 5 (respectively Fig. 6)
highlight some of the top-most (>98 or 99th percentile) reliable
features using representative atlases for regional resting state
measures (respective connectivity).?> However, given the com-
plexity of our ensemble model (which recall is based on 84 SSM),
these depictions should be considered just representative in
nature, and cannot be claimed as the ‘only’ important features in
the model.

The pattern of functional connectivity changes (Fig. 6) indicates
robust hypo-connectivity between the frontoparietal network
(such as post parietal) and the sensorimotor network (such as
frontal, parietal, precentral gyrus) with widespread hypo-
connectivity in language (e.g.: Broca), attention (e.g.: frontal pole,

npj Schizophrenia (2019) 2
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Fig. 3 Comparison of 5x10-fold cross-validation prediction accuracies for single-source and multi-source models. The comprehensive
ensemble model of EMPaSchiz “stacked-multi” is shown in red. (Horizontal dotted line, at 0.53, is the majority class baseline predictor. SEM
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Fig. 4 Comparison of 5x10-fold cross-validation prediction accuracies for stacked-multi models with various levels of feature selection and

PCA

parietal) and default mode network (e.g.: angular, fusiform gyrus).
On other hand, the auditory network as well as the anterior insula,
which is implicated in high-level cognitive control, attentional
processes and saliency,*® show hyper-connectivity. Similarly, the
overall picture (Fig. 5) shows increased regional low frequency
activity in the superior temporal gyrus and basal ganglia structures
- caudate, putamen, and reduced regional activity in cingulum.

npj Schizophrenia (2019) 2

DISCUSSION

This study aimed to build a machine learned classifier for
diagnosing schizophrenia that depends on a single neuroimaging
modality of acquisition - resting state fMRI. Resting state fMRI is a
popular imaging method and possibly better than task-based
fMRI, since the latter depends on experimental parameters that

Published in partnership with the Schizophrenia International Research Society
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Fig. 5 Key pathological alterations in schizophrenia suggested by top-most reliable features—elevated (red) and suppressed (blue) changes
in regional activity. Panels show top 98th percentile of top regional features. a Higher ALFF in right caudate and right superior temporal pole
(aal). b Higher ALFF in lateral aspect of left superior temporal gyrus and horizontal ramus of the right lateral sulcus, and lower ALFF in left
posterior-dorsal cingulate gyrus (destrieux). ¢ Higher fALFF in left putamen, right caudate and lower fALFF in right anterior cingulum (aal). d
Higher ReHo in left superior temporal pole, right inferior temporal gyrus, and lower ReHo in left inferior parietal lobule and right superior

temporal gyrus (basc_multiscale_197)
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Fig. 6 Key pathological alterations in schizophrenia suggested by top-most reliable features—network edges show elevated (red) and
suppressed (blue) changes in functional connectivity. Panels show top 99th percentile of top functional connectivity features using
dosenbach and msdl atlases. a Decreased functional connectivity between regions—Ileft ventral frontal cortex and left lateral cerebellum, left
occipital and left angular gyrus, left middle insula and right fusiform gyrus, and lastly left post parietal cortex with three nodes namely right
frontal gyrus, left parietal, left precentral gyrus. Increased interhemispheric functional connectivity between left superior frontal gyrus and the
right anterior insula. b Decreased functional connectivity between regions—striatum and posterior occipital lobe, right intraparietal sulcus
and right frontal pole, ventral anterior cingulate cortex and medial default mode network, left temporo-parietal junction and right parietal
cortex, right superior temporal sulcus and Broca’s area. Increased functional connectivity between regions—right anterior insula and striatum,

right insula and left auditory cortex, and left anterior intraparietal sulcus and posterior occipital lobe

require standardization. Further, resting state fMRI is not limited
by participants’ attention or cognitive ability to perform a task and
hence is applicable to patients with more pronounced
disabilities.>”

Several recent studies have built diagnostic models using data
from patients receiving antipsychotic drug treatment (see Table 1).
However, antipsychotics are known to affect brain activity and
function,®**° and a recent study cautions against the practice of
interpreting brain changes in a medicated state, noting it might
not be related to the pure pathology of schizophrenia.'” We
developed the model presented in this study on a sample of
never-treated schizophrenia patients, to make our results directly
apply to realistic clinical scenarios of diagnosis at first clinical
presentation. Further work will be necessary to examine how this

Published in partnership with the Schizophrenia International Research Society

may generalize to medicated patients, as well as other confounds,
such as multi-site batch effects, remains to be examined.* It is
notable, however, that non-medicated patients are an important
group for analysis and represent, perhaps, the most difficult
sample for recruitment. In this way our study provides a very
important sample to demonstrate the value of our approach.
With respect to diagnostic accuracy of schizophrenia, Schnack
and others have observed that smaller sample studies may reach
high prediction accuracy at the cost of lower generalizability to
external samples - an effect attributed to clinical heterogeneity,
physiological variation, sampling noise and errors in diagnosis.'®
In our outline of recent literature on machine learning studies with
resting-state fMRI (see the Introduction section), we also observed
this relation (see Fig. 1). Nevertheless, our ensemble model

npj Schizophrenia (2019) 2
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outscores earlier models built for diagnosing schizophrenia using
resting state fMRI measures, even though it was learned from a
large sample. We believe this may be because our feature creation
process incorporates prior rich neurobiological knowledge with
simultaneous use of regional and connectivity measures that are
jointly extracted over various biologically-informed brain atlas
schemes. We demonstrate that if we employ standard machine
learning pipelines (called SSM here) on this dataset of untreated
patients, we obtain a level of performance (< 80% accuracy) that
is similar to the results reported widely in earlier studies with
comparable sample sizes. Hence, these drug-naive cases are
unlikely to be ‘easier’ to model than standard treated cases. Our
results provide encouraging progress toward deploying auto-
mated or semi-automated diagnostic systems based on neuroi-
maging and predictive models in psychiatric clinics. However, the
performance of our model is favoured by the fact that the entire
sample in this study comes from a single site, meaning it does not
need to deal with the challenges of cross-site generalizability and
site-specific effects. Future clinical studies with larger cohorts,
preferably from multiple clinical sites, would be necessary to
justify clinical deployment.

Our EMPaSchiz model used brain parcellations that were based
on prior knowledge of anatomy / cytoarchitecture or statistical
maps extracted from correlation structure in fMRI data collected
and analysed in earlier studies. Hence, these maps might not
perfectly adapt to signals in the individual subject images — which
might not be an issue for data-driven parcellation or clustering
techniques. Our study neither explored that option, nor compared
model performance empirically, with features obtained with these
two alternative methodologies. However, use of pre-existing
parcellations reduces chances of overfitting, and possibly
increases the robustness of the resulting model. Note also that
these a priori ROIs incorporate nicely biological knowledge of fMRI
data into the feature creation process, which can help interpreta-
tion of results, and provide an effective way to reduce
dimensionality. Our model may be readily scaled-up with relatively
little computation, as it does not need to build parcellation maps
from incoming training images.

It is often challenging to provide a biological interpretation of
complex machine learning models, as the goal of the learning
process is to find a model that maximizes prediction performance,
which may require (possibly non-linear) combinations of thou-
sands of features. In this study, we produced an effective classifier
by seeking the coefficients for the features that collectively
optimize the predictive accuracy. In general, such coefficients
need not correspond to the inherent correlation of each individual
feature with the outcome. This is especially true in our approach of
using multiple parcellations of the brain, as this means the
“features” will overlap to a large degree. This can be seen as
potential limitation for the interpretation of our model. We
provide only a snapshot of some representative changes in
patient’s brain, showing only the most reliable resting state
features; features that, alone, may be neither necessary nor
sufficient to obtain the prediction performance of the reported
ensemble model. However, several of these brain networks and
regiﬁn%were observed to be altered consistently in schizophre-
nia.

Functional connectivity aberrations observed in our study are
consistent with the dysconnectivity hypothesis of schizophrenia.**
This theoretical framework describes schizophrenia as a dyscon-
nection syndrome linking aberrations at the level of synapse with
the abnormalities in the long-range connectivity of several brain
networks.”> A vital component of the dysconnectivity hypothesis
is proposed aberrant connectivity between prefrontal cortex and
other brain regions, which is posited to give rise to key symptoms
such as delusions and hallucinations.*® A systematic review of fMRI
studies on functional connectivity supports reduction in brain
region connectivity in subjects with schizophrenia, especially
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reductions involving prefrontal cortex,*” in agreement with our

observations. Our findings of concurrent hyper-connectivity
among some regions is also consistent with earlier reports of
increased functional connectivity in schizophrenia.*® Another core
postulate of the dysconnectivity hypothesis is that modulation of
synaptic efficacy with resultant fronto-temporo-parietal aberra-
tions leads to hallucinations / delusions in schizophrenia.*® The
hypothesized synaptic efficacy aberrations may be linked to
NMDA receptor abnormalities.”” In this context it is of interest that
effects on temporoparietal-prefrontal circuitry through transcra-
nial Direct Current Stimulation (possibly via NMDA-dependent
mechanisms>°) has been shown to ameliorate severity of auditory
hallucinations,®'? possibly through “correction” of functional
dysconnectivity.> It is likely that further systematic application of
machine learning techniques to analysis of brain connectivity may
be useful for developing prognostic markers for schizophrenia
that might predict differential responses to clinical interventions.

A general conceptual limitation of machine learning studies in
psychiatry is that the diagnostic labels might themselves be ill
defined. Amidst an ever-expanding volume of research data,
inconsistencies in neurobiological findings fuel doubts about the
validity of the currently defined disease construct of schizophre-
nia. This might be an issue inherent in psychiatric practice, which
contributes to low reliability of diagnosis with nosology such as
the DSM criteria. The work reported here may indicate a useful
step towards more biological informed diagnoses, as it involves
developing algorithms to predict current psychiatric diagnoses
based on objective neurobiological features. This approach could
also provide us with a framework for evaluating the validity of
clinical diagnoses. Lastly, our empirical results show that multi-
parcellation ensemble learning models may effectively learn
models for early diagnosis of schizophrenia; we anticipate that
this approach may work for other psychoses, and for prediction of
treatment responses.

METHODS
Subjects

This study examined 92 patients attending the clinical services of the
National Institute of Mental Health & Neurosciences (NIMHANS, India), who
fulfilled DSM-IV criteria for schizophrenia and were never treated with any
psychotropic medications including antipsychotics. The diagnosis of
schizophrenia was established using the Mini International Neuropsychia-
tric Interview (MINI) Plus,>* which was confirmed by another psychiatrist
through an independent clinical interview. The details related to illness
onset and antipsychotic-naive status were carefully ascertained by reliable
information obtained from at least one additional adult relative. The Scale
for Assessment of Positive Symptoms (SAPS) and Scale for Assessment of
Negative Symptoms (SANS) were used to measure psychotic symptoms.>>
Clinical assessments and MRI were performed on the day before starting
antipsychotics.

Controls were recruited from among the consenting healthy volunteers
from the same locale to match for age and sex. We used 102 age- and sex-
matched healthy volunteers, who were screened to rule out any psychiatric
diagnosis using the MINI as well as a comprehensive mental status
examination. For both cases and controls, we recruited only right-handed
subjects to avoid the potential confounds of differential handedness. None
of the study subjects had contraindications to MRI or medical illness that
could significantly influence CNS function or structure, such as seizure
disorder, cerebral palsy, or history suggestive of delayed developmental
milestones. There was no history suggestive of DSM-IV psychoactive
substance dependence or of head injury associated with loss of
consciousness longer than 10 min. No subjects had abnormal movements
as assessed by the Abnormal Involuntary Movements Scale. Pregnant or
postpartum females were not included. The supplementary material
provides a table with details of demographic and clinical profile of
174 subjects who qualified to be included in the study. (See details on
excessive head movement in the ‘Image pre-processing’ section)

The catchment area for the subject recruitment involved the southern
states of India. We obtained informed written consent after providing a
complete description of the study to all the subjects. The NIMHANS ethics
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committee reviewed and approved the original research protocol. The
Research Ethics Board at University of Alberta, Edmonton approved the
secondary analysis of archived data.

Image acquisition

Magnetic Resonance Imaging (MRI) was done in a 3.0 Tesla scanner
(Magnetom Skyra, Siemens). Resting State Functional MRI: BOLD (Blood
Oxygen Level Dependent) sensitive echo-planar imaging was obtained
using a 32-channel coil for a duration of 5minutes 14s, yielding 153
dynamic scans. The scan parameters were: TR =2000ms; TE = 30ms; flip
angle = 78 Slice thickness = 3 mm; Slice order: Descending; Slice number
=37; Gap = 25%; Matrix = 64 X 64 x 64 mm3, FOV = 192 x 192, voxel size
= 3.0 mm isotropic. Subjects were asked to keep their eyes open during
the scan. For intra-subject co-registration, structural MRI: T1-weighted
three-dimensional high-resolution MRI was performed (TR = 8.1 msec, TE
=3.7ms, nutation angle=8°, FOV =256 mm, slice thickness=1mm
without inter-slice gap, NEX = 1, matrix = 256 x 256) yielding 165 sagittal
slices.

Image pre-processing

We performed pre-processing and feature extraction using MATLAB (The
MathWorks, Inc) toolboxes including Statistical parametric mapping (SPM8,
http://www filion.ucl.ac.uk/spm), Data Processing Assistant for Resting-
State fMRI (DPARSF)*® as well as Python toolboxes including the nilearn
package®” based on scikit-learn, a Python machine learning library.>® We
checked acquired images visually for artefacts such as incomplete brain
coverage or ghosting; then re-orientated the origin to the anterior
commissure in structural MRl and fMRI images. The first ten volumes of
each functional time-series were discarded as they were before the time
required for the scanner field to reach steady magnetization, and for the
participants to adapt to scanning noise. Images were then pre-processed
with slice-timing correction, image realignment to correct for motion, and
intensity normalization. Since head movement may lead to group-related
differences,**®" we excluded images for 11 patients and 9 controls from
the study based on excessive head movement (translational > 2.0 mm and/
or rotational > 2°).%% This yielded a total of 174 subjects: 93 controls and 81
patients. Functional images were co-registered with the structural image
and then normalized to MNI space resampled to 3x3x3 mm?>. Nuisance
regression was performed to remove noise in the signal induced by head
motion using 24 regressors derived from the parameters estimated during
motion realignment, scanner drift using a linear term, as well as global fMRI
signals from white matter and cerebrospinal fluid segments using SPM'’s
new segment method.®®> Normalized images were smoothed, detrended
and band-pass filtered as appropriate—depending on the feature to be
extracted, see details below.

Feature extraction

To obtain neurobiologically relevant features, we projected each resting
brain information into 14 different parcellations, each based on a specific a
priori defined atlas or set of regions of interest (ROIs). Our goal here was to
jointly learn from this entire set of neuroimaging features extracted
through several brain parcellation schemes to obtain an accurate model; n.
b., we are neither trying to compare nor evaluate the influence of any
single feature type or ROI definition on prediction accuracy. Our goal is to
produce a predictive model whose validation is only its predictive
accuracy.
We used the following 14 pre-defined brain parcellation schemes:

yeo: intrinsic functional connectivity of cerebral cortex®

smith20, smith70: functional networks during activation and rest (at
two different resolutions)?®

harvard_cort_25, harvard_sub_25: Harvard-Oxford cortical and sub-
cortical parcellation (http://www.cma.mgh.harvard.edu/fsl_atlas.html)
msdl: multi-subject dictionary learning for functional parcellation®
aal: macroscopic anatomical parcellation of single-subject brain®®
basc_multiscale_122, basc_multiscale_197, basc_multiscale 325
and basc_multiscale_444: multi-level bootstrap analysis of stable
clusters in resting-state fMRI, at four different resolutions®®

destrieux: sulcal depth-based anatomical parcellation of the cerebral
cortex®”

dosenbach: multivariate pattern analysis of functional connectivity*®
power: graph measures of functional brain organization®®
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For each of these 14 parcellation schemes, we extracted 3 regional-
based and 3 connectivity-based resting brain fMRI features. For regional
features, we used:

ALFF: amplitude of frequency fluctuations
fALFF: fractional ALFF
ReHo: regional homogeneity

We smoothed each functional image using a 4 mm FWHM gaussian
kernel (except for extraction of ReHo - to avoid overestimation of spatial
homogeneity) and band-pass-filtered fMRI time-courses at 0.01-0.08 Hz to
capture slow fluctuations that are believed to reflect spontaneous brain
activity.5%7° ALFF was calculated as total power within the frequency range
between 0.01 and 0.08Hz to estimate the strength of low frequency
oscillations.”" fALFF was calculated as power within the low-frequency
range (0.01-0.08 Hz) divided by the total power in the entire detectable
frequency range.®® Lastly, ReHo was calculated using Kendall's coefficient
of concordance,’? as a measure of the similarity between the time series of
a given voxel and its nearest neighbours.”

We calculated each of these features at the voxel level using the DPARSF
toolbox, standardized and then averaged over an ROI. For each ROI, we ran
a nuisance regression across the features to remove the effects of
confounding variables that are generally recommended and commonly
reported in neuroimaging research—age, sex, and total intracranial
volume.”* In addition, we also used average framewise displacement to
(at least partially) counter systematic yet spurious correlations in functional
connectivity that may arise from subject motion.>®

We also computed connectivity features with each of the 14
parcellations, by extracting average time series per ROl and then
estimating functional connectivity matrices between each pair of regions
using one of three statistical measures

Pearson correlation
partial correlation
precision

In each case, the feature vectors were the flattened lower triangular part
of these symmetric matrices.

We chose to study the above features as earlier literature established
their relevance to schizophrenia pathology. Abnormalities in low-
frequency oscillations’®”® and regional homogeneity of blood-oxygen-
level-dependent signals’®’” have been well documented in schizophrenia.
Further, patients diagnosed with schizophrenia have exhibited changes in
functional brain connectivity, as revealed through distant correlations.”””®
In addition to simple Pearson correlation, we described the connectivity
structure using partial correlation, which measures the interactions
between two ROIs. We use a sparse precision matrix—i.e., the sparse
inverse of the covariance matrix—which reveals the brain regions that
appear conditionally independent given all other brain regions.”®

So, in total, our approach ‘Ensemble algorithm with Multiple Parcella-
tions for Schizophrenia prediction’, abbreviated as: EMPaSchiz (read as
‘Emphasis’) - modelled 84 sources of data (14 parcellation schemesx(3 + 3)
feature types) per subject; these descriptions ranged in size from 17 to
98,346 values. We used appropriate masker classes® to summarize brain
signals from non-overlapping clusters (e.g.: basc_multiscale) or over-
lapping networks (e.g., smith) or spheres centred at seeds with fixed small
radius (e.g.: power). Table 3 presents the total number of features per data
source. (The supplementary material presents visualizations of a few
representative parcellations, overlaid over an MRI slice.)

Prediction and evaluation framework

EMPaSchiz produced a classifier from our multi-source data, in two levels.
For the first level, EMPaSchiz trained 84 different L2-regularized logistic
regression classifiers, using the ‘liblinear’ solver® - one for each individual
data source to predict the diagnosis; we consider each to be a single-
source model (SSM). For the second level, EMPaSchiz then trained a single
L2-regularized logistic regression model to take the prediction probabilities
computed by each SSM, to predict the schizophrenia-vs-normal label;
hence, this is a multi-source model (MSM). Figures 7 and 8 show schematic
representations of our prediction and evaluation framework. These
computations were performed using the scikit-learn package®® and
mixtend extensions.®'

Figure 7a shows performance of learned EMPaSchiz-Performance model.
Given a resting state fMRI time series for a subject, the EMPaSchiz-
Performance first extracts 6 different feature types (F; to Fe; coded here
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with different fill colours) over each of 14 brain parcellation schemes (P, to
P14 coded here with border colour) to obtain 84 feature sets (FS;; to

FSe 14). Each is given to a “single-source model” (SSM), which is a learned
logistic regression (LR) classifier of the PCA-projection of that data with
learned parameter 6;; (i.e, 6, ; to 66,14 each correspond to a specific feature
set) trained to predict schizophrenia. This produces a vector of the

smith20

Single Subject fMRI

FSi> —»( LR 612 [SSMLz P12 -

FSaz |—»(LR 8,2 [ SSM:2 #{Paz

- . resulting 84 prediction probability values (P; ; to Pg 14)—one from each LR
Table 3. Number of features extracted for regional and connectivity —uwhich is given to a final trained LR classifier with learned parameter 6. -.
feature-types from each parcellation scheme The final prediction probability P.« is used to predict whether the given
I ] . subject is “schizophrenia” or “normal”. We also considered 6 other multi-
Parcellation Regional Connectivity source models, with learned parameters 6, - to 8~—one for each feature
type.
yeo 7 136 ’ Figure 7b, c shows the process for learning the EMPaSchiz-Performance
smith20 20 190 model. The EMPaSchiz-Learner first learns 84 different single-source
harvard_sub_25 22 231 models SSM;;: For the ith feature type (i=1.6) and the jth parcellation (j
msdl 39 741 = 1..14), EMPaSchiz-Learner computes the (ij)-feature set for the resting
state fMRI time series for each of the K labelled subjects in training set, to
smith70 70 2415 obtain the feature sets FS"; ={ FS¥ ;; } over k=1.K. It then trains a
harvard_cort_25 926 4560 regularized logistic re*gression (LR) model 6;; to predict schizophrenia, from
| 116 6670 each feature set FS ~ ;; where the regularization strength C is obtained
aa N ; - *

. using internal CV. For example, 65 is learned by fitting LR on FS 3,
basc_multiscale_122 122 7381 (which corresponds to the 3rd feature type: ReHo with the 12th
destrieux 148 10,878 parcellation: destrieux). After learning all the 84 SSM parameters {6;} in
dosenbach 160 12,720 this manner, EMPaSchiz-Learner as shown in Fig. 7c, then runs each of

. these 84 resulting SSMs on each of the K training instances; this produces a
basc_multiscale_197 197 19,306 new training set P={P K ij b where P “,~J is the probability produced by
power 264 34,716 running the (i)-th SSM predictor, with learned parameter 6;; on the k-th
basc_multiscale_325 325 52,650 instance. It then learns the multi-source model (MSM) by training the

. regularized logistic regression (LR) on the set P to predict schizophrenia.
basc_multiscale_444 a4 98,346 This produces the parameter 8x . Similarly, six other MSMs 6, » to B¢+ are

learned by training LR with each set P *U:{P k 1jloverk=1.K j=1.14to
P ej=1{P* s} overk=1.k j=1.14.
A Performance
4D Data Feature Sets Single Source  Single Source Multi-Source Final
[64 x 64 x 37 x 163] Feature Extractor [17 ~ 98346] del Predictions [84] del Prediction [1]
i Feature Types ., _Parcellauonsl
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<
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Fig. 7 Schematic representation for performance of learned EMPaSchiz
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Fig. 8 Schematic representation for evaluation of the model with cross-validation. We use 5x10-fold cross-validation to evaluate each learner
(the original EMPaSchiz-Learner, and its six variants). Here, we first divide the entire dataset of 174 subjects into 10 sets; we then use 9/10 of
them to train the EMPaSchiz model (see Fig. 7b, c); we then run that model on the remaining 1/10 of the data (see Fig. 7a). We then compute
accuracy as the number of correctly labelled instances, over all 10 folds, and use this as an estimate of the score of the learned EMPaSchiz
-Performance system. We run this entire process five times—over five different partitionings and compute the overall accuracy of predictions
over these 50 train-test splits. Trained models are depicted in green lines and predictions are depicted in red lines

In more detail: EMPaSchiz first used singular value decomposition of
each data source to project it to a lower dimensional space. We extracted
principal components from the training instances, then projected each
instance onto the eigenvectors (PCA). We used all the components—i.e.,
set the number of principal components to the smaller of the number of
original features or the number of instances. Note these components
captured all the variance, but reduced the dimensionality by a huge factor,
for most datasets, as the final number of features for each data source was
at most the number of instances in training set (~157 subjects in our 10-
fold cross-validation). For the few data sources that had fewer features
than training instances (e.g., yeo-regional has 17 features), this transforma-
tion would not change the number of features, but changed the data to a
new basis. The motivation for this procedure was to have a uniform
pipeline of PCA transformations for all data sources, irrespective of the
varying number of features.

For SSM, EMPaSchiz set the C parameter (inverse of regularization
strength) by internal 10-fold cross-validation on the training split (5 shuffled
iterations). We call the MSM that combined predictions from all 14x 6 = 84
SSMs, ‘stacked-multi’. We also considered six other versions of MSM, each
combining SSMs for a specific feature type (14 each): stacked-ALFF,
stacked-fALFF, stacked-ReHo, stacked-FC-correlation, stacked-FC-partial
correlation, stacked-FC-precision.

The EMPaSchiz model was evaluated in five shuffled iterations of a 10-
fold balanced cross-validation approach (90% training set, 10% test set; for
a total of 50 train-test splits). We evaluated the model’s generalization
performance on the test set (in outer cross-validation), computing:

accuracy (Overall, how often is the classifier correct?)

sensitivity (When the actual label is ‘patient’, how often is the prediction
correct?)

specificity (When the actual label is ‘control’, how often is the prediction
correct?)

precision (When the predicted label is ‘patient’, how often is the
prediction correct?)

For each variant, we report the mean and standard errors for these
metrics over all 50 train-test splits. To compare MSM models, we used
parametric statistical tests (two sided t-test) on the accuracy, using the
SciPy package.??

We also performed two additional analyses. First, we explored the effect
of feature selection with respect to SSM, using the top-r percentage of the
total set of features, based on univariate testing (F-value score) on the
model performance. For example, when r=20%, the EMPaSchiz-Learner
would use only 20% of the original features, in each of its 84 SSMs. Note
this is instead of using PCA. (So, for the regional features of the ‘aal’
parcellation, instead of using all 116 features, it only considered the top
0.2 x 116 = 23 features, etc.) While computing the cross-validation scores,
we ran the feature selection process ‘in fold’ using the ‘pipeline’ class of
scikit-learn®® to avoid obtaining optimistically biased estimates. Second,
we examined our ensemble prediction framework to distinguish the least
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symptomatic schizophrenia patients vs. the most symptomatic patients
(based on SAPS and SANS); evaluated using leave-one out cross-validation.
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