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Abstract

The genetic architecture of psychiatric disorders is characterized by a large number of small-effect 

variants1 located primarily in non-coding regions, suggesting that the underlying causal effects 

may influence disease risk by modulating gene expression2–4. We provide comprehensive analyses 

using transcriptome data from an unprecedented collection of tissues to gain pathophysiological 

insights into the role of the brain, neuroendocrine factors (adrenal gland) and gastrointestinal 

systems (colon) in psychiatric disorders. In each tissue, we perform PrediXcan analysis and 

identify trait-associated genes for schizophrenia (n-associations = 499; n-unique genes = 275), 

bipolar disorder (n-associations = 17; n-unique genes = 13), attention deficit hyperactivity disorder 

(n-associations = 19; n-unique genes = 12), and broad depression (n-associations = 41; n-unique 

genes = 31). Importantly, both PrediXcan and Summary-data-based Mendelian Randomization/

HEIDI analyses propose potentially causal genes in non-brain tissues, showing the utility of these 

tissues for mapping psychiatric disease genetic predisposition. Our analyses further highlight the 

importance of joint-tissue approaches as 76% of the genes were detected only in difficult-to-

acquire tissues.
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Multi-tissue transcriptome analyses using PrediXcan identify numerous trait-associated genes for 

schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, and broad depression, and 

highlight potentially causal genes in non-brain tissues.

A primary challenge in the field of psychiatric genetics is to understand the neurobiological 

mechanisms5,6 underlying genetic predisposition to disease to facilitate detection of 

additional disease-associated loci as well as to elucidate the precise molecular mechanisms 

underlying known loci. Integrative transcriptome studies promise to address the functional 

gap, but to date, analyses of gene expression7 for psychiatric conditions have been hampered 

by the relative inaccessibility of the relevant tissues. Here, up to 393 individuals were 

assayed in 10 distinct brain regions and 3 additional non-brain tissues from the GTEx tissue 

panel, including a total of 889 brain samples and 633 non-brain samples. We further 

included 538 dorsolateral prefrontal cortex (DLPFC) samples from the CommonMind 

Consortium (Supplementary Table 1a). We included both accessible (whole blood) and 

difficult-to-acquire tissues (i.e., brain, colon selected for its potential involvement in 

psychiatric disorders based on observed comorbidity with gastrointestinal disorders8, and 

adrenal gland known to interact with the central nervous system through the hypothalamic-

pituitary-adrenal axis9).

Using the largest available genome-wide association study (GWAS) meta-analysis results of 

five psychiatric traits3,10–17 (Supplementary Table 1b), we investigated gene-level 

psychiatric disease associations from a comprehensive PrediXcan analysis18 using 

imputation models derived from brain and non-brain transcriptomes. PrediXcan estimates 

the Genetically Regulated eXpression (GReX) for a gene in a given tissue for the GWAS 

samples and uses GReX to find genes associated with disease risk. We estimated the true 

positive rate (π1) (see Methods) for association with disease among the gene-level PrediXcan 

associations in each tissue and identified genes that are genome-wide significant when 

Bonferroni correcting for the number of genes tested across tissues (see Methods). In 

subsequent analyses, we focused primarily on four out of five psychiatric traits, as we 

observed limited power for major depression (Supplementary Fig. 1a–e). We observed 

tissue- and disease-dependent levels of π1 (Fig. 1a, Supplementary Table 2, and 

Supplementary Fig. 2a–d). The number of significant genes in each tissue (Table 1) was 

determined primarily by tissue sample size (Supplementary Fig. 3 and Supplementary Table 

3; Spearman’s ρ = 0.91, P = 6.43 × 10−6 for schizophrenia), showing the limitation of the 

number of significant genes as a metric for tissue prioritization. In contrast, π1 was not 

associated with tissue sample size (Spearman’s correlation ρ = 0.27, P = 0.35 for 

schizophrenia). Putamen basal ganglia (π1 = 0.33) and nucleus accumbens basal ganglia 

(π1 = 0.32) showed the highest π1 for schizophrenia, indeed greater than the DLPFC 

(π1 = 0.27) despite the latter’s larger sample size (n = 538). Our findings suggest that the 

relatively large number of schizophrenia associations in DLPFC from a recent study19 is due 

to relatively large sample size and provides limited evidence for greater relevance of this 

brain structure. For broad depression, the non-brain tissues colon (π1 = 0.21) and whole 

blood (π1 = 0.20) showed the highest estimated true positive rate, suggesting the relevance of 
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the gastrointestinal or enteric nervous20 and immune21 systems for identifying genetic 

predispositions.

Gene discoveries are shown in Supplementary Table 4a–d and reveal 275 unique genes for 

schizophrenia, 13 for bipolar disorder, 12 for ADHD, and 31 for broad depression. Of these, 

70 disease-associated genes are not in linkage disequilibrium (LD) (r2 > 0.10) with a GWAS 

index SNP and are considered novel discoveries from the PrediXcan analysis (Table 1). No 

genes were significantly associated with major depression, which may be due to its 

relatively small GWAS sample size and its large genetic and phenotypic heterogeneity. 

Interestingly, the schizophrenia and broad depression results revealed substantial overlap, as 

17 of the 31 broad depression genes, all located within the MHC region, were also found to 

be significantly associated with schizophrenia. In the PrediXcan analysis, the distribution of 

the number of cis-variant predictors for optimal modeling (see Methods) of GReX for each 

tissue-gene pair (Supplementary Fig. 4) and the number of contributing variants to the novel 

gene-level associations (Supplementary Table 4a–d) demonstrate the importance of multi-

variant models of GReX to identify trait-associated genes.

We replicated the significant associations for schizophrenia and broad depression using UK 

Biobank22 and BioVU23, respectively (see Methods), but were unable to evaluate replication 

for the other two disorders due to lack of available replication datasets. Notably, we 

observed significantly greater replication rate for schizophrenia than expected by chance 

(Fig. 1b). We identified and replicated an association between increased GReX of LRP8 in 

hypothalamus and schizophrenia risk (P = 7.77 × 10−6 in the discovery sample and P = 6.62 

× 10−8 in the UKB replication sample). LRP8 is a key component of the RELN pathway and 

was previously linked to psychosis risk24. Increased GReX for FPKP (P = 2.4 × 10−4) 

showed replicated association with depression in BioVU, but a more systematic validation 

for this phenotype would require greater sample size.

Applying a single-SNP analysis, we also identified the target genes for expression 

quantitative trait loci (eQTLs) using the “best eQTL per eGene”25,26 (b-eQTL, FDR < 0.05) 

in brain and non-brain transcriptomes to gain additional insights into the role of gene 

regulation in conferring disease predisposition. As in the PrediXcan analysis, we observed 

tissue- and disease-dependent levels of π1 (Fig. 1c and Supplementary Table 5). The 

substantial true positive rate for schizophrenia in anterior cingulate cortex (π1 = 0.45, number 

of independent true associations nta = 580) suggests that b-eQTLs from this specific brain 

region may be used to improve the search for novel trait associations.

From the joint-tissue eQTL analysis (see Methods), which aims to improve power for eQTL 

discovery through joint-tissue mapping that captures heterogeneity in effect sizes between 

tissues while accounting for differences in sample size, non-brain b-eQTLs continued to 

show a substantial true positive rate of association after excluding eQTLs also found in brain 

(Fig. 1d and Supplementary Table 6). For example, 41% (i.e., 355 variants) of the whole 

blood b-eQTLs that are not brain eQTLs are estimated to be true associations with 

schizophrenia (compared to 30%; i.e., 1,836 variants prior to the filtering).
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We aimed to improve the functional characterization of known disease-associated loci, 

focusing primarily on the 145 schizophrenia loci13 by considering the target genes from the 

single-SNP joint-tissue eQTL analysis. The 145 schizophrenia loci, in general, contained 

multiple genes (up to 131 genes per locus, defined as the cis-region, +/− 1 Mb, of the index 

SNP; average number of genes is 10; Fig. 2a), complicating the search for the causal gene 

mechanisms and highlighting the importance of incorporating eQTL and other functional 

information to identify the relevant genes. We found that the 145 schizophrenia loci on 

average implicated 3.7 associated genes. This implies a substantial reduction in the number 

of proposed genes. The joint-tissue analysis implicated 290 genes at known GWAS loci to 

be significantly associated with schizophrenia in a tissue-specific manner (Fig. 2b).

We aimed to further reduce the number of candidate causal genes of the schizophrenia risk 

loci by distinguishing pleiotropic or causal genes (i.e., genetic variants influence both gene 

expression and disease risk) from genes that are associated indirectly27 (e.g., genes with 

causal eQTLs in LD with disease causal variants). We performed Summary-based 

Mendelian Randomization (SMR) analyses (see Methods) in conjunction with the 

Heterogeneity in Dependent Instruments (HEIDI) test using brain eQTLs from a large-scale 

meta-analysis28. Despite the limitations of these methods29, they may be used as a starting 

point for further functional studies of proposed genes. We found that 65 genes passed the 

default significance threshold of 8.4 × 10−6 under SMR. Nineteen of these genes showed a 

PHEIDI ≥ 0.05 (Supplementary Table 7a) from the subsequent HEIDI test, indicating that the 

null hypothesis of a single variant affecting both gene expression and disease risk could not 

be rejected. Of the 65 genes, 42 showed significant association in at least one tissue from the 

PrediXcan analysis. The extended MHC region is characterized by a disproportionately large 

number of OMIM genes and NHGRI catalog SNPs30; the large number of proxy SNPs and 

the high gene density at this locus illustrate the challenges in fine-mapping the causal 

variant(s) and in finding the causal gene mechanism(s), respectively. Notably, PrediXcan 

analysis, which assumes multiple-variant imputation models, implicated C4A31 to be 

associated with schizophrenia in seven GTEx brain tissues, colon, adrenal gland, and whole 

blood, but not in DLPFC (Fig. 2c).

We explored whether a non-brain tissue reveals potentially pleiotropic or causal genes and 

performed a secondary analysis using eQTL information from GTEx whole blood (see 

Methods). Significant SMR association was observed for 37 genes, of which for seven the 

null hypothesis of a single variant affecting both gene expression and disease risk could not 

be rejected (PHEIDI > 0.05). Notably, all seven genes showed PHEIDI < 0.05 based on brain 

eQTLs, consistent with a model of linkage in which two distinct causal variants (for 

expression and disease risk) in the locus exist, implying that non-brain tissues can reveal 

important additional insights into the biological mechanisms of schizophrenia.

There is substantial sharing of eQTL SNPs (as estimated by π1) among the tissues (Fig. 3a), 

with whole blood a clear outlier for the level of eQTL sharing with the other tissues. Among 

the brain regions, cerebellum and cerebellar hemisphere are outliers (Fig. 3a). We compared 

results of the single-SNP METASOFT joint-tissue analysis across tissues and found that 

different tissues may propose different regulatory mechanisms within the same locus (Fig. 
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3b). For example, GATA2DA shows strong tissue-specific effects in the METASOFT 

analysis with strong evidence for association in whole blood, while other tissues do not 

indicate association. In contrast, PBX4 is implicated in hippocampus and cerebellum, while 

associations are weaker in the other brain tissues and absent in non-brain tissues.

We observed significant correlations in GReX of disease-associated genes for all tissues 

(Fig. 4a for pairwise GReX correlations in putamen basal ganglia, which had the largest π1
for schizophrenia and showed significantly greater correlations than random GReX-derived 

co-expression networks in the tissue (empirical P < 0.001; Fig. 4b; see Methods), raising the 

possibility that they belong to a small number of genetically determined co-expression 

networks. Hierarchical clustering (see Methods) highlighted several clusters among these 

genes that appear to have coordinated GReX (Fig. 4c for putamen basal ganglia). 

Underscoring the challenges of precisely mapping trait causal effects (e.g., LD 

contamination), these coordinated expression patterns may also highlight “convergent” 

function32 and pathophysiology33 for the genes and, possibly, trans-regulatory 

mechanisms34 (e.g., involving the genes on distinct chromosomes) in the brain underlying 

schizophrenia genetic predisposition. Thus, genetic susceptibility loci may act through 

disease-associated genes within co-expression networks to influence a limited number of 

core disease-related biological processes.

We performed Gene Ontology (GO) enrichment analysis (see Methods) of the PrediXcan 

implicated genes for schizophrenia and identified “biological processes” that are concordant 

between tissues (Fig. 5a, for example, for the comparison between putamen basal ganglia 

and whole blood; Spearman ρ = 0.92, P <2.2 × 10−16). However, we also identified 

biological processes specific to one tissue of a tissue pair (Fig. 5b for whole blood) and 

uncovered enriched biological processes (Bonferroni-adjusted P < 0.05; Fig. 5c in the tissue 

with the highest estimated π1). These findings suggest either the tissue specificity of disease-

associated genetically determined expression or that tissue-shared genetically determined 

expression may exert their tissue-level or pleiotropic function by implicating different 

processes in the different tissues.

Our study suggests that there is enormous value in both brain and non-brain eQTL 

annotations for improved discovery of novel susceptibility genes for psychiatric disorders. 

PrediXcan analyses across tissues revealed 331 unique disease-associated genes, 76% of 

which were detected only in difficult-to-acquire tissues. Furthermore, brain and non-brain 

tissues highlight different molecular mechanisms underlying psychiatric traits. Non-brain 

tissues identified 113 of the 331 (34%) of the disease-associated PrediXcan genes. Despite 

the challenges of distinguishing relevant pathogenic tissue(s) from tissue-shared gene 

regulation35, our study highlights the importance of joint-tissue analyses, in particular using 

non-brain tissues. Notably, our findings indicate that disease-associated genes may involve 

multiple variant-predictors, implying that, consistent with the recommendations of Gusev et 
al.36 and our own previous work18,35, gene expression imputation may substantially extend 

single-eQTL-based analysis. We further showed that eQTL and transcriptome-based 

annotation of schizophrenia loci can substantially reduce the number of genes to be 

investigated in future functional studies. For example, using PrediXcan and SMR analyses 
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and taking into account potential LD confounding27, we proposed multiple gene 

mechanisms, which should be further explored by functional studies. Co-expression network 

analysis of schizophrenia-associated GReX revealed clustering into a limited number of 

genetically defined clusters. Consistent with this, GO enrichment analysis of schizophrenia-

associated GReX implicated a limited number of biological processes, highlighting shared 

molecular mechanisms, including immune function and antigen presentation, in line with 

reports on the role of immune dysregulation in schizophrenia37,38. In conclusion, 

characterizing genes based on genetic regulation in brain and non-brain transcriptomes 

improves both the identification of novel neuropsychiatric genes and the functional 

elucidation of genetic risk factors of neuropsychiatric diseases.

Online Methods

Please see the Life Sciences Reporting Summary for additional details.

Tissues and eQTL data.

We used GTEx v6p dataset in the analyses presented here, including the (cis) eQTLs and 

“best eQTL per eGene”25,26 (b-eQTLs) in each of the brain regions (n = 10) and in selected 

non-brain tissues (whole blood, adrenal gland and colon). We present results on 889 brain 

RNA-seq samples from 10 brain regions and 633 non-brain samples. Up to 393 distinct 

individuals are included in this analysis. We used the CommonMind Consortium 

transcriptome data from 538 samples in dorsolateral prefrontal cortex (DLPFC). See 

Supplementary Table 1a for the sample size for each tissue.

GWAS data psychiatric disorders.

We used genome-wide association study (GWAS) meta-analysis results of five psychiatric 

traits3,10–17 (Supplementary Table 1b). These studies have been conducted in compliance 

with all ethical regulations. All studies have been approved by the ethical board of the 

relevant institution. Since each study comprises many different study cohorts, please see 

original publications for details.

PrediXcan as expression-based risk score analysis.

Proposing a gene mechanism from a disease-associated eQTL assumes that a single-eQTL 

model suffices to implicate the gene. In this case, a disease-associated eGene may be viewed 

as a single-variant-determined gene expression phenotype that shows an association with 

disease. Indeed, if x is the genotype (expressed as allelic dosage) for a GWAS individual at 

the eQTL variant S and β  its estimated effect size on the expression of the gene g as 

determined by a reference eQTL resource such as GTEx, then βx is the imputed eQTL-

determined expression of the eGene g for the GWAS sample; the imputed (genetically 

determined) gene expression can be tested for association with disease risk Y using GWAS 

summary statistics (effect size α and corresponding standard error SE α  of S on Y).

Some genes, however, may require multiple variants to adequately impute the genetically 

determined component of the gene expression phenotype or the “Genetically Regulated 

eXpression” (GReX)18. Thus, we applied PrediXcan18 to the GWAS results for five 
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psychiatric traits to discover genes with differential GReX (PBonferroni-adjusted < 0.05 after 

adjustment for the total number of genes across all tissues tested) between patients and 

controls. PrediXcan implements a tissue-dependent gene expression imputation model18 

(using elastic net), which is evaluated, for optimal modeling, through the 10-fold cross-

validation R2 within the reference transcriptome panel (GTEx). Genes implicated by 

PrediXcan for a given disease may be viewed as a generalized disease-associated eGene 

(which is conventionally the target gene of one source eQTL variant, namely the b-eQTL). 

An observed association between GReX and a disease phenotype from a causal link would 

suggest that the causal direction of effect is from GReX to disease risk since the trait is not 

likely to alter the germline genetic profile. In this generalized version, we can, using GWAS 

summary statistics, estimate the effect size α and corresponding standard error SE α  of the 

imputed genetically determined component of gene expression on disease risk as follows (by 

noting that the imputed gene expression is a genetic risk score39 with weights derived from 

the reference transcriptome panel):

α =
∑ j = 1

m θ jβ jS j
−2

∑ j = 1
m β j

2S j
−2

SE α = 2 1
∑ j = 1

m β j
2S j

−2

where β j is the effect size of the j-th variant from the gene expression model (derived from 

the reference panel) consisting of uncorrelated m cis-variant predictors (i.e., located within 

+/− 1 Mb of the gene), while θ j and sj are the effect size and the corresponding standard 

error of this effect size from the GWAS trait summary data. We note that, under the null 

hypothesis (of zero contribution θ j to trait variation from all predictors), we obtain the 

distribution of α:

α N 0, SE α 2

which allows us to assign a P-value to the observed effect size of the imputed genetically 

determined component of gene expression on disease risk. When m = 1, this reduces to the 

special case of testing an eGene for association with phenotype.

In the general case in which some LD is present in the set of m cis-variant predictors for a 

given gene, we estimate the correlation between the “genetic risk score” generated from the 

gene expression prediction model and the phenotype using only GWAS summary statistics. 

Let X be the n-by-m standardized genotype matrix and y be the standardized phenotype n-

by-1 matrix in the test GWAS. (In general, the genotype data X and phenotype data y are not 

publicly available.) Then the genetic risk score GRS(n) for the n GWAS individuals is given 

by:
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GRS n   ≔ Xβ

where β is the m-vector of model-derived effect sizes. The correlation between GRS(n) and 

y is thus given by the following expression:

cor GRS n , y = βTXTy
βTXTXβyTy (*)

We note that since X and y are standardized, the term XTy in the numerator of (*) is a 

correlation m-vector (equal to the trait effect size vector (because of the standardization), 

easily obtained using the GWAS summary statistics for the m variants). Furthermore, XTX 
in the denominator of (*) yields an m-by-m matrix (LD) matrix, which can be estimated 

from an ancestry-matched reference panel (such as from the 1000 Genomes project) with or 

without LD regularization40,41.

TWAS36 and S-PrediXcan42 have implemented approaches based on summary statistics.

We used the S-PrediXcan18,42 implementation to test genetic associations with five 

psychiatric traits (Supplementary Table 1). The P-value threshold was corrected for the total 

number of genes tested across all tissues. Since there are two pairs of brain tissues that are 

replicates and therefore do not constitute independent tissues (cortex vs. frontal cortex and 

cerebellum vs. cerebellar hemisphere), we only corrected for one of the tissues for each 

replicate pair. We removed the tissue that included the lowest number of imputed genes. The 

P-value thresholds are slightly different across traits and are reported in Supplementary 

Table 1. We further used PrediXcan18 in the replication analyses of schizophrenia in UKB 

samples (n = 1,561 cases and 267,494 psychiatrically healthy controls) and of broad 

depression in the BioVU samples23 (n = 3,570 cases and 14,456 controls). To evaluate 

replication for schizophrenia, we applied S-PrediXcan to GWAS summary statistics derived 

from an application of BOLT-LMM43. We explored potential sample overlap between 

schizophrenia GWAS data and UKB samples, using GEAR44 and LD score regression45 

analyses. The results of these analyses did not suggest a significant amount of overlap (LD 

score regression covariate intercept = 0.0038 (s.e. = 0.006) and LambdaMeta = 1.54). The 

BioVU samples included in our analyses were of European genetic ancestry, as confirmed 

by principal components analysis.

PrediXcan software can be downloaded from the github repository (https://github.com/

hakyim/PrediXcan).

Estimating the true rate of association (π1).

We estimated the true positive rate (π1 ≔ 1 − π0) for association with disease among the 

eQTLs from the “best eQTL per eGene” (b-eQTL, FDR < 0.05) set or, separately, among the 

gene-level results from the PrediXcan analysis in each tissue, using the method of Storey et 
al.25. The false discovery rate (FDR) at a given P-value p was estimated using the following 

equation:
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FDR p =
π0K p

Count  pi, D ≤ p

In the case of b-eQTLs, K is the number of eQTLs used, the pi,D is the set of P-values 

indexed by the eQTL SNP i for association with the disease trait D, and π0 is the proportion 

of null SNPs:

π0 = Count pi, D > τ /K 1 − τ

which was defined with the tuning parameter τ (selected to be 0.50, as in Storey et al.). In 

the case of the gene-level results from the PrediXcan analysis, the input set is that of genes 

tested (i.e., with imputation models).

Joint-tissue eQTL mapping.

In addition to single-tissue eQTL analysis, the joint analysis of the brain regions and the 

additional tissues may facilitate identification of additional eQTLs and quantification of their 

tissue specificity. We used METASOFT for joint-tissue eQTL analysis, across the 10 brain 

regions, whole blood, adrenal gland, and colon. METASOFT had been previously used in 

the second-phase GTEx Consortium paper46. Joint-tissue eQTL mapping extends single-

tissue eQTL mapping results by borrowing information across tissues. This approach 

allowed us to quantify the tissue specificity or tissue-sharedness of an eQTL-gene pair while 

taking into account the differential eQTL discovery power between tissues.

We used joint-tissue eQTL mapping to identify eQTLs in non-brain tissues that are not 

active in any of the brain regions. This analysis provided an approach to testing the 

importance of regulatory variation in non-brain tissues for psychiatric disease predisposition 

through the estimated true positive rate π1 for disease associations among the non-brain 

eQTLs that are not also regulatory in brain.

SMR and HEIDI analysis of schizophrenia summary statistics.

We sought to further refine the set of candidate causal genes by distinguishing pleiotropy or 

causality (i.e., a single variant affecting both gene expression and disease risk) from a model 

of linkage (i.e., two distinct causal variants, for gene expression and disease risk). We 

applied Summary-data based Mendelian Randomization (SMR) and HEterogeneity In 

Dependent Instruments (HEIDI) tests47, which were implemented in SMR software (http://

cnsgenomics.com/software/smr/), to the schizophrenia GWAS results. For the input GWAS 

results, effect sizes were calculated as log(odds ratio) with its corresponding standard error. 

The top associated eQTL for the SMR test was selected using the default value of PeQTL < 

5.0 × 10−8. For the HEIDI test, up to 20 SNPs (eQTL P < 1.57 × 10−3; LD r2 with top SNP < 

0.9) in the cis-eQTL region (including the top cis-eQTL) were included per recommendation 

of the software developers.
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The SMR analyses were based on eQTL information provided by Qi et al.28 who meta-

analyzed GTEx-brain, CMC, and ROSMAP eQTL data (estimated effective sample size: n = 

1,194). The Brain-eMeta eQTL summary data were downloaded in binary format (see http://

cnsgenomics.com/software/smr/#DataResource). In addition, we explored the value of a 

non-brain tissue by using eQTL summary data based on GTEx whole blood (version 7) for 

SMR analysis (http://cnsgenomics.com/software/smr/#DataResource). SMR locus plots and 

plots of GWAS and eQTL effect sizes were created with R code (http://cnsgenomics.com/

software/smr/#SMRlocusplot).

Co-expression analysis, hierarchical clustering, and pathway analysis.

We hypothesized that genetically defined co-expression networks (versus networks based on 

directly measured gene expression, as typically done) would improve our ability to highlight 

novel biology underlying psychiatric disease predisposition. Using Weighted Gene Co-

expression Network Analysis (WGCNA v1.61) with default settings, we performed co-

expression network analysis and hierarchical clustering of the GReX levels estimated in the 

1000 Genomes European samples (using gene expression imputation, as implemented in 

PrediXcan18) for the disease-associated genes. In general, the availability of a reference 

population panel (e.g., 1000 Genomes) in a population of interest enables network analysis 

of the genetically determined expression traits.

We also applied multiscale bootstrap resampling48 (n = 1,000 bootstrap replicates) to 

hierarchical clustering in order to quantify the uncertainty in the clusters, with “average” as 

the agglomerative method and “correlation” as distance method, generating an 

“Approximately Unbiased” P-value and a “Bootstrap Probability” for each cluster. This 

analysis allowed us to identify the clusters for which the null hypothesis of the non-existence 

of the cluster is rejected at α = 0.05.

In each tissue, we determined the significance of the set of pairwise (Spearman) correlations 

in GReX levels (of the 1000 Genomes European samples). We evaluated whether the 

resulting network was more highly correlated than expected based on 1,000 co-expression 

networks derived from the GReX of random sets of genes (each comprising the same 

number of genes as the actual network). We further explored whether some disease-

associated genes may be regulatory for other such genes. The GReX correlation matrix for 

the disease-associated genes may be used to identify novel trans-regulatory mechanisms 

driving genetic susceptibility. For example, a cis eQTL (schizophrenia-associated) SNP for a 

gene may serve as a trans eQTL for another distal gene (that is correlated with the first).

Using clusterProfiler49, we compared the sets of “biological processes” (as defined by Gene 

Ontology) implicated by the disease-associated genes from each pair of tissues. We 

calculated the Spearman correlation for the proportion of disease-associated genes mapping 

to each biological process to quantify the level of concordance between tissues. For each 

tissue pair, we identified the biological processes present only in one tissue and with at least 

five genes. Furthermore, we performed a two-proportions z-test using prop.test in R and 

identified those processes that significantly differed between tissues (q-value < 0.05) 

between tissues.
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Software for statistical analysis and visualization.

The software package R (https://www.r-project.org/) was used for the statistical analysis. We 

used the libraries “ggplot2” and “corrplot” for visualization.

Data Availability Statement

The protected data for the GTEx project (e.g., genotype and RNA-sequence data) are 

available via access request to dbGaP accession number phs000424.v6.p1. Processed GTEx 

data (e.g., gene expression and eQTLs) are available on the GTEx portal (https://

gtexportal.org). The URLs of the summary statistics datasets of all the GWAS meta-analyses 

analyzed in the paper can be found in Supplementary Table 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. PrediXcan and eQTL analysis of GWAS of psychiatric traits.
a, Heatmap and hierarchical clustering based on true positive rate (π1) for trait associations 

among PrediXcan associations in each tissue. Schizophrenia and bipolar disorder were most 

highly enriched in putamen basal ganglia and adrenal gland, respectively. Broad depression 

showed relatively strong enrichment in colon. b, Significant replication of schizophrenia 

PrediXcan associations (Bonferroni-adjusted P < 0.05, indicated by horizontal line) was 

observed within the UK Biobank sample (1,561 cases; 267,494 controls). Replication P-

value for a gene was from the application of S-PrediXcan to GWAS summary statistics 

derived from BOLT-LMM. c, Heatmap and hierarchical clustering based on true positive rate 

(π1) for trait associations among b-eQTL associations in each tissue. d, Non-brain eQTL 

enrichment was observed even after conditioning on brain eQTLs from the joint-tissue 

eQTL analysis. The joint-tissue analysis allowed us to quantify the tissue specificity and 

tissue-sharedness of an eQTL-gene pair while taking into account differential power for 

eQTL discovery between tissues. The x-axis shows the π1 after including only those b-

eQTLs active in the non-brain tissue but not regulatory in any of the 10 brain regions. The y-

axis shows the π1 without the filtering. Points below the diagonal line show disease and 

tissue pairs for which a higher true positive rate was observed after filtering the brain 

eQTLs. Sample sizes: schizophrenia (40,675 cases, 64,643 controls); ADHD (20,183 cases, 

35,191 controls); bipolar disorder (11,974 cases, 51,792 controls); broad depression 

(113,769 cases, 208,811 controls).
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Figure 2 |. Proposing causal variant and causal gene mechanism at known schizophrenia-
associated loci (n = 145 loci; 179 index SNPs).
a, Distribution of number of nearby genes (defined as +/− 1 Mb of index SNPs) at known 

loci. b, From the joint-tissue (METASOFT) analysis, 290 genes at known loci were 

significantly associated with schizophrenia (40,675 cases, 64,643 controls) in a tissue-

dependent manner. Significant associations (METASOFT m-value ≥ 0.90) of these 290 

genes are shown as red bars, while non-significant associations are shown as white bars. The 

figure shows clustering of genes that are shared across tissues, but also indicates genes that 

have tissue-specific effects. c, LocusZoom plot of the region surrounding the C4A gene 

indicates that C4A is significantly associated in GTEx cerebellum but not in dorsolateral 

prefrontal cortex. y-axis is the schizophrenia association P-value (in log scale). The large 

number of SNPs and genes in the locus illustrate the challenges in fine-mapping the causal 

variant and in determining the gene driver(s).
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Figure 3 |. Complexity of identifying the relevant gene mechanism in tissue of pathology.
a, There is extensive eQTL sharing among tissues, as estimated by π1. Note that the easily 

accessible tissue whole blood is a clear outlier, showing the least amount of sharing with the 

other tissues. Among the brain regions, cerebellum and cerebellar hemisphere are outliers. 

Sample sizes for the tissues can be found in Supplementary Table 1. b, Illustration of tissue-

specific regulation from the METASOFT analysis. The b-eQTL of GATA2DA (rs2905432) 

impacts its expression only in whole blood, while the b-eQTL of PBX4 
(chr19_19756073_D) influences its expression in cerebellum/cerebellar hemisphere and in 

hippocampus, but not in the remaining tissues. These examples indicate that delineating the 

biological mechanisms of schizophrenia based on eQTL information requires a tissue-

specific approach for at least some of the eQTL-gene associations.
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Figure 4 |. Genetically determined co-expression networks of disease-associated GReX.
a, We observed significant correlations in GReX of disease-associated genes (Bonferroni-

adjusted P <0.05 from S-PrediXcan analysis of schizophrenia) for all tissues. Shown here 

are the pairwise GReX correlations in putamen basal ganglia, which had the largest π1 for 

schizophrenia (40,675 cases, 64,643 controls). b, The observed GReX correlations were 

significantly greater (empirical P < 0.001) than expected based on 1,000 randomly 

generated, genetically defined co-expression networks. c, Hierarchical clustering of GReX 

of disease-associated genes in putamen basal ganglia was performed and identified several 

genetically determined clusters that appear to have coordinated expression including on 

distinct chromosomes.
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Figure 5 |. Tissue-specific GReX, joint-tissue eQTL mapping, and tissue-specific or tissue-shared 
functional categories for schizophrenia.
a, Substantial concordance between tissues (for example, between whole blood (n = 338) 

and putamen basal ganglia (n = 82), Spearman ρ = 0.92, P = 3.86 × 10−164) was observed in 

the proportion of disease-associated GReX levels (Bonferroni-adjusted P < 0.05 from S-

PrediXcan analysis) that map to a biological process (as defined by Gene Ontology). b, List 

of biological processes present only in whole blood and represented by five or more disease-

associated GReX levels in the tissue. c, Enriched biological processes (hypergeometric test, 

Bonferroni-adjusted P < 0.05) in putamen basal ganglia (n = 82), which had the largest π1
for schizophrenia, and the gene ratio for the genes that map to the processes.
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Table 1 |

Number of gene discoveries from PrediXcan analyses and an overview of the number of significant 

associations in brain, difficult-to-acquire, and non-brain tissues

Schizophrenia Bipolar disorder ADHD Broad depression

Tissue* n n n n

Dorsolateral prefrontal cortex 126 8 4 14

Adrenal gland 60 2 4 4

Anterior cingulate cortex BA24 35 2 2 3

Caudate basal ganglia 38 3 3 6

Cerebellar hemisphere 45 4 4 4

Cerebellum 68 5 4 8

Cortex 40 2 3 4

Frontal cortex BA9 35 2 4 5

Hippocampus 21 0 2 3

Hypothalamus 27 2 2 3

Nucleus accumbens basal ganglia 37 0 3 1

Putamen basal ganglia 29 1 3 2

Colon transverse 74 4 4 6

Whole blood 94 5 4 13

n unique genes “total” 275 13 12 31

n unique genes “novel PrediXcan” 46 5 8 11

n genes “difficult-to-acquire” (%) 242 (88) 12 (92) 12 (100) 24 (77)

n genes “brain” (%) 204 (74) 7 (54) 11 (92) 21 (66)

n genes “non-brain” (%) 91 (33) 7 (54) 3 (25) 12 (39)

n genes “difficult-to-acquire-only” (%) 207 (75) 10 (77) 11 (92) 23 (74)

n genes “brain-only” (%) 113 (41) 6 (46) 9 (75) 9 (29)

n genes “non-brain only” (%) 71 (26) 6 (46) 1 (8) 10 (32)

n genes “whole blood” (%) 68 (25) 3 (23) 1 (8) 8 (26)

n unique genes “total” = number of unique genes that are significant in ≥1 tissue; n unique genes “novel PrediXcan” = number of unique genes that 

are not in LD (r2 > 0.10) with a GWAS index SNP; n genes “difficult-to-acquire tissue” = number of genes that are significant in ≥1 difficult-to-
acquire tissue; n genes “brain” = number of genes that are significant in ≥1 brain tissue; n genes “non-brain” = number of genes that are significant 
in whole blood, adrenal gland or colon; n genes “brain-only” = number of genes that are significant in ≥1 brain tissue and not significant in any 
non-brain tissue; n unique genes “non-brain only” = number of genes that are significant in whole blood, adrenal gland or colon, but not significant 
in any of the brain tissues; n unique genes “whole blood” = number of genes that are significant in whole blood.

*
Sample sizes for the tissues can be found in Supplementary Table 1.
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