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Background: Glioblastoma (GBM), one of the most prevalent brain tumor types, is
correlated with an extremely poor prognosis. The extracellular matrix (ECM) genes could
activate many crucial pathways that facilitate tumor development. This study aims to
provide online models to predict GBM survival by ECM genes.

Methods: The associations of ECM genes with the prognosis of GBMwere analyzed, and
the significant prognosis-related genes were used to develop the ECM index in the CGGA
dataset. Furthermore, the ECM index was then validated on three datasets, namely,
GSE16011, TCGA-GBM, and GSE83300. The prognosis difference, differentially
expressed genes, and potential drugs were obtained. Multiple machine learning
methods were selected to construct the model to predict the survival status of GBM
patients at 6, 12, 18, 24, 30, and 36months after diagnosis.

Results: Five ECM gene signatures (AEBP1, F3, FLNC, IGFBP2, and LDHA) were
recognized to be associated with the prognosis. GBM patients were divided into high–
and low–ECM index groups with significantly different overall survival rates in four datasets.
High–ECM index patients exhibited a worse prognosis than low–ECM index patients. Four
small molecules (podophyllotoxin, lasalocid, MG-262, and nystatin) that might reduce
GBM development were predicted by the Cmap dataset. In the independent dataset
(GSE83300), the maximum values of prediction accuracy at 6, 12, 18, 24, 30, and
36months were 0.878, 0.769, 0.748, 0.720, 0.705, and 0.868, respectively. These
machine learning models were provided on a publicly accessible, open-source website
(https://ospg.shinyapps.io/OSPG/).

Conclusion: In summary, our findings indicated that ECM genes were prognostic
indicators for patient survival. This study provided an online server for the prediction of
survival curves of GBM patients.
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INTRODUCTION

Glioblastoma (GBM), grade IV glioma, accounts for around
40–50 percent of brain tumors in America (Ostrom et al.,
2017). There is an extremely unfavorable prognosis for GBM.
Only about 5% of GBM patients will survive more than 5 years
after diagnosis (Delgado-Lopez and Corrales-Garcia, 2016;
Monteiro et al., 2017). Radiation exposure, particularly during
childhood, is a risk factor for developing GBM (Roviello et al.,
2013). The combination of surgery and temozolomide (TMZ) has
been shown to prolong survival times. However, an increasing
number of patients with GBM will develop resistance to TMZ
after treatment (Dai et al., 2017). Consequently, it is critical to
find novel biomarkers capable of accurately predicting prognosis
and select appropriate individualized treatment strategies for
patients with GBM.

The extracellular matrix (ECM) is mainly produced by
fibroblasts and can be classified into two groups: fibrous
proteins (collagen and fibronectin) and glycosaminoglycan
(hyaluronic acid and chondroitin sulfate) (Brassart-Pasco
et al., 2020; Huang et al., 2021). As a result of the strong
crosslinking between these molecules, the ECM forms a dense
mesh structure within the tissues. The interaction between cancer
cells and ECM molecules activates many crucial pathways that
facilitate the development of cancer. The presence of ECM
components may represent a measure of tumor activity and
invasiveness and could be used as a biomarker of disease
(Brassart-Pasco et al., 2020). Therefore, a comprehensive
understanding of ECM dysregulation in the tumor
microenvironment (TME) will help identify potential GBM
treatments.

This study is aimed at examining the association of ECM genes
with GBM survival and providing models to predict survival. A
total of five ECM genes were selected using bioinformatics
analysis to build an ECM index model. A high ECM index
was found to be associated with poorer overall survival.
Potential drugs were predicted to reverse the negative
prognosis of high–ECM index patients. More importantly,
machine learning models were constructed to predict the
survival status of 6, 12, 18, 24, 30, and 36 months. A free and
user-friendly web server based on these machine learning models
was provided in this study.

METHODS AND MATERIALS

Data Curation Process
The available transcriptome and clinical data of GBM patients
from the Chinese Glioma Genome Atlas (CGGA), Gene
Expression Omnibus (GEO), and The Cancer Genome Atlas
(TCGA) were used as the datasets for finding prognostic
biomarkers and constructing prediction models. The samples,
whose histology grade was grade IV or diagnosed with GBM,
were downloaded and kept for analysis. There were 237 GBM
samples from the CGGA dataset (Zhao et al., 2021), 150 GBM
samples from GSE16011 (Gravendeel et al., 2009), and 159 GBM
samples from the TCGA-GBM project. Another independent

GBM dataset (GSE83300) that contained 50 GBM patients was
used as the validation dataset for evaluating the performance of
prediction models (Feng et al., 2017). There was a median
survival time of 12, 8.7, 9, and 16.8 months in the CGGA,
GSE16011, TCGA-GBM, and GSE83300 datasets, respectively.
All the accession IDs of used samples from the four datasets are
displayed in the Supplementary Table S1.

Construction and Validation of the ECM
Index
The expression values of genes in each dataset were normalized
by a min–max normalization method using the following
formula: zi = (xi–min(x))/(max(x)—min(x)). Here, zi is the
normalized value of the gene expression, xi is the expression
value before normalization, min(x) is the minimum value of
the gene expression in the dataset, and max(x) is the maximum
value of the gene expression in the dataset. After
normalization, the gene values range from 0 to 1. We used a
univariate Cox regression analysis in CGGA, GSE16011, and
TCGA-GBM to examine the links between ECM gene (1,936
unique ECM-related genes from 47 ECM gene sets) expression
and overall survival (OS). The prognostic ECM genes were
defined as the genes with p-value<0.05 in the univariate Cox
regression analysis. The prognostic ECM genes were
overlapped among the three datasets. Then, CGGA was set
as the training dataset, GSE16011 and TCGA-GBM were set as
the internal testing dataset, and GSE83300 was set as the
independent validation dataset. The LASSO method from
the “glmnet” package was adopted in CGGA to select the
prognostic genes with a high importance value (Friedman
et al., 2010). The ECM index was calculated by applying a
multivariate Cox regression analysis to calculate the regression
coefficient of genes.

The ECM index was calculated using the following formula:
ECM index = β1* Gene_1 +. . .+ βn*Gene_n. In the formula, β is
the regression coefficient and Gene_n is the expression value of
genes. In the training, testing, and validation datasets, the patients
were classified as high or low index based on the median value of
the ECM index. Subsequently, we calculated the log-rank test and
plotted the Kaplan–Meier curve to evaluate the difference in OS
between the high– and low–ECM index groups. Then, the OS
prediction ability of the ECM index was assessed by the area
under the curve (AUC) at 12, 18, 24, and 36 months.

Comparison of Expression Values Among
Normal Brain, Low-Grade Glioma, and GBM
Samples
The expression values of the selected genes were compared
between the GBM and normal brain samples from the GEPIA
web server (Tang et al., 2017). The GEPIA web server contains
163 GBM from the TCGA-GBM project and 207 normal brain
samples from the GTEx project. For comparison of LGG and
GBM, we downloaded and used the expression profiles of 159
GBM samples and 500 LGG samples from the TCGA-GBM and
TCGA-LGG projects, respectively.
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Correlation Analysis of the ECM Index With
Immune and Stromal Cell Populations
The MCP-counter which is capable of estimating the absolute
abundance of eight immune and two stromal cell populations in
the tumor samples by the expression data was used in this study
(Becht et al., 2016). The differences in the immune and stromal
cell populations were compared between the high– and low–ECM
index groups using t-test analysis.

Differential Gene Expression Analysis and
the Identification of Potential Drugs
In CGGA, GSE16011, and TCGA-GBM, the differences in
the expression levels of protein coding genes between the

high–ECM index group samples and low–ECM index group
samples for each ECM gene were analyzed using the linear
models from the “limma” R package (Ritchie et al., 2015). We
defined the cutoff criteria as p-value<0.05 and log2 fold
change>0.5 to filter the statistically significant
differentially expressed genes (DEGs) in each dataset. The
DEGs were overlapped among the three datasets to obtain
the robust DEGs. By using the Connectivity Map (CMap)
database, we were able to examine the potential drugs with a
close correlation to the diseases. The robust DEGs between
the low– and high–ECM index groups were submitted to the
Cmap database. The connectivity value from the Cmap
represents the ability of the drug to reduce ECM
formation, and the optimal connectivity value should be −1.

FIGURE 1 | Selection of the prognostic ECM genes by the lasso method. (A) Intersection of the candidate protective genes. (B) Intersection of the candidate risky
genes. (C) Lasso coefficient profiles of 39 genes were generated by comparingwith the λ. Following the change of λ, the coefficients of the unimportant genes against the
L1-norm (regularization term) in the model will be reduced to zero. The number of curves is the number of genes with non-zero coefficients at the current λ. (D) This plot is
to show the cross-validation curve alongwith upper and lower standard deviation. The left vertical line indicates the gene number when the value of λ gives aminimal
mean squared error (MSE). The right vertical line indicates the gene number when the cross-validated error is within one standard error of the minimum. Based on the first
vertical line, the model included five genes with a non-zero prediction value.
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Construction of Machine Learning Models
and Web-Based Survival Rate Calculator
Machine learning methods were used in the construction of
models to predict the survival rates of GBM patients at 6, 12,
18, 24, 30, and 36 months after diagnosis. Four machine learning
algorithms, including support vector machine (SVM), random
forest (RF), generalized linear models (GLM), and artificial neural
network (ANN) from the caret R package were considered. To
identify the best parameters for model creation, five-fold cross-
validation and grid search were utilized. Data merging was
performed on the CGGA, GSE16011, and TCGA-GBM
datasets, and the samples were separated into the training
dataset (60%) and the testing dataset (40%). GSE83300 was set
as the independent validation dataset. After setting the best
parameters, the models were trained on the training dataset
and evaluated on the testing dataset and an independent
validation dataset. The receiver operating characteristic (ROC)
curve, a plot of sensitivity versus (1–specificity), was used to

estimate the performance of models. We used the R package
“shiny” to develop a web-based survival rate calculator and
survival curve predictor using these machine learning models.

RESULTS

Determination of Prognostic ECM Genes
In this study, 47 ECM gene sets containing 1,936 unique ECM-
related genes were obtained (Supplementary Table S2). Among
these 1,936 ECM-related genes, by the univariate Cox regression
analyses, 134 genes were found to be positively correlated with
prognosis in CGGA, 118 genes were found to be positively
correlated with prognosis in GSE16011, and 74 genes were
found to be positively correlated with prognosis in TCGA-
GBM. These genes were identified as protective genes.
Similarly, 223 genes were negatively correlated with prognosis
in the CGGA dataset, 205 genes were negatively correlated with
prognosis in the GSE16011 dataset, and 211 genes were negatively

FIGURE 2 | Construction of the ECM index in the CGGA dataset. (A) ECM index distribution and overall survival status of the GBM patients. (B) Kaplan–Meier
survival curves of the high– and low–ECM index groups. (C)Gene expression profiles of ECM genes in the high– and low–ECM index groups. (D) AUC values for 12-, 18-,
24-, and 36-month overall survival predictions for the ECM index. Extracellular Matrix (ECM); Glioblastomas (GBM); area under the curve (AUC).
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correlated with prognosis in the TCGA-GBM dataset. These
genes were selected as risky genes. The intersection of the
results showed that there were two common protective genes
and 37 common risky genes (Figures 1A,B).

Construction of the ECM Index
The LASSO technique was used on these 39 prognostic ECM
genes in the CGGA, and the results indicated that AEBP1, F3,
FLNC, IGFBP2, and LDHAwere the best combination of genes to
construct the model (Figures 1C,D). A multivariate Cox
regression analysis calculated the regression coefficient. The
ECM index was obtained by the following formula:
[1.0391×AEBP1] + [0.6346×F3] + [0.5396×FLNC] +
[2.1276×IGFBP2] + [2.7396×LDHA]. All the five selected
genes (AEBP1, F3, FLNC, IGFBP2, and LDHA) were the risky
genes since their regression coefficients were positive. The
median value of the ECM index was selected to divide the
patients into high– and–low ECM index groups. In Figure 2A,
the ECM index distribution and overall survival data in the
CGGA dataset were displayed and ranked according to the
index value. The survival analysis indicated that the low–ECM
index group had an apparent better prognosis than the
high–ECM index group (p-value<0.05; Figure 2B). In

Figure 2C, gene expression profiles of the high and low index
groups were illustrated. The AUC values for 12-, 18-, 24-, and 36-
month OS predictions were 0.63, 0.67, 0.69, and 0.66, respectively,
which indicate its high ability to predict the prognosis of GBM
(Figure 2D).

Survival Analysis
In CGGA, GSE16011, and TCGA-GBM, the GBM patients were
classified into two groups by the median gene expression of the five
selected genes (AEBP1, F3, FLNC, IGFBP2, and LDHA). Then,
survival analysis was used to assess the relationship between the
gene expression value and OS. There were significant negative
correlations between the expression levels of AEBP1, F3, FLNC,
and LDHA in CGGA (p-value<0.05; Supplementary Figure S1).
The findings were then validated in the GSE16011 and TCGA-GBM
datasets. In GSE16011, the gene expression levels of AEBP1, FLNC,
and LDHA were negatively correlated with OS (Supplementary
Figure S2). In TCGA-GBM, there were significant negative
correlations between the expression levels of AEBP1 and FLNC
with OS (p-value<0.05; Supplementary Figure S3).

The expression values of AEBP1, F3, FLNC, IGFBP2, and
LDHA were compared among normal brain tissue, low-grade
gliomas (LGG), and GBM. The results from the GEPIA dataset

FIGURE 3 | Evaluation of the ECM index in the internal validation datasets (GSE16011 and TCGA-GBM). The ECM indexes of all patients in the GSE16011 dataset
(A–C) and the TCGA-GBM (D–F) dataset were calculated by the same formula and were divided into a high- and a low-index group.
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showed that the expression values of these genes were higher in
the GBM samples than in the normal brain samples
(p-value<0.0001; Supplementary Figure S4). The expression
values of these genes were also significantly higher in the
GBM samples than in the LGG samples (p-value<0.0001;
Supplementary Figure S5).

Evaluation of the ECM Index Model
To further evaluate the robustness of the ECM index, the ECM index
of the samples in the GSE16011 and TCGA-GBM datasets was
obtained using the same formula. The median value of the ECM
index was also used to stratify the samples into the high– and
low–ECM index groups. The ECM index distribution, overall
survival, and ECM gene expression profiles in these two validation
sets are plotted in Figure 3A, D. The ROC analysis results in the
GSE16011 and TCGA-GBM datasets suggested that the ECM index
had a powerful ability to predict GBM survival (Figures 3B,E).
Compared to the high–ECM index patients, the low–ECM index
patients had better overall survival prognosis (GSE16011:
p-value<0.0001; TCGA-GBM: p-value = 0.0048; Figures 3C,F).

Another independent dataset (GSE83300), which contains 50
GBM patients, was used to validate the results. The ECM index
distribution, overall survival, and ECM gene expression profiles

in GSE83300 are plotted in Figure 4A. The ROC analysis results
suggested that the ECM index had a powerful ability to predict
GBM survival (Figure 4B). Compared to high–ECM index
patients, the low–ECM index patients had better overall
survival prognosis (p-value = 0.046; Figure 4C), which is in
concordance with the results from the CGGA, GSE16011, and
TCGA-GBM datasets.

Endothelial Cells and Fibroblasts Were
Higher in the High–ECM Index Group
Samples
We calculated the association between the ECM index and
population abundances of the immune and stromal cells in the
combined CGGA, GSE16011, and TCGA-GBM datasets. As
shown in Figure 4D, the high index group samples were
found to comprise higher endothelial cells and fibroblast.

Identifying DEGs and Screening Potential
Drugs
Data profiles from CGGA, GSE16011, and TCGA-GBM were
used to find the DEGs between the high– and low–ECM index

FIGURE 4 | Evaluation of the ECM index in the independent dataset (GSE83300). The ECM index of all patients in the GSE83300 dataset (A–C)was calculated by the
same formula and was divided into a high- and a low-index group. (D) Comparison of immune cells and stromal cells between than the low– and high–ECM index patients.
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groups. DEGs calculated from the three datasets were overlapped
to obtain the robust DEGs, and a total of 286 robust DEGs were
identified. To predict the potential drugs for GBM, CMap was
implemented on the robust DEGs between the low– and
high–ECM index groups. The 20 drugs with high and
significant associations with robust DEGs are listed in
Supplementary Table S3. Among these drugs,
podophyllotoxin, lasalocid, MG-262, and nystatin revealed
higher negative correlations and the potential to reverse the
high ECM index tumor status.

Development of Machine Learning Models
to Predict GBM Patient Survival
The combination of genes, age, and gender was used to predict the
survival status of GBM patients. The survival status of 6, 12, 18,
24, and 30 months was predicted by the machine learning
methods. First, CGGA, GSE16011, and TCGA-GBM were
combined into one dataset. Then, the combined dataset was
randomly divided into training (60%) and testing (40%)
datasets. The commonly used machine learning classifiers,
including GLM, ANN, SVM, KNN, and RF, were constructed
to predict the survival status of patients at 6, 12, 18, 24, 30, and
36 months after the treatment, respectively. After setting the best

parameter via a five-fold cross-validation strategy, we calculated
the AUC value in the testing dataset to characterize the ability of
the model to distinguish between the dead and alive. KNN, RF,
ANN, ANN, RF, and RF demonstrated the highest AUC values in
predicting the survival status at 6, 12, 18, 24, 30, and 36 months
(Figures 5A–E, F), respectively. Then, these constructed machine
learning models were also validated by an independent dataset
(GSE83300). RF, SVM, GLM, GLM, ANN, and GLM
demonstrated the highest AUC values in predicting the
survival status at 6, 12, 18, 24, 30, and 36 months (Figures
6A–F), respectively.

AWeb-Based Interactive Tool for Predicting
Survival Probability and Plotting the Survival
Curve
Tomake these constructed machine learning models accessible to
GBM researchers, we developed a web tool to predict the survival
probability of GBM patients called OSPG. OSPG can be used in
five steps 1) visiting the website https://ospg.shinyapps.io/OSPG/;
(2) inputting the values of five genes, including AEBP1, F3,
FLNC, IGFBP2, and LDHA (gene expression values range
0–1); 3) inputting the values of age and gender (male or
female); 4) selecting the machine learning models for each

FIGURE 5 | Development of the machine learning models to predict the survival status at 6 (A), 12 (B), 18 (C), 24 (D), 30 (E), and 36 (F)months based on gender,
age, and ECM genes (AEBP1, F3, FLNC, IGFBP2, and LDHA). The models were trained on the training dataset, and these AUC results were calculated on the testing
dataset.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8514277

Qian et al. Prognostic Model for Glioblastoma

https://ospg.shinyapps.io/OSPG/,(2
https://ospg.shinyapps.io/OSPG/,(2
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


time point (6, 12, 18, 24, 30, and 36 months), and 5) clicking the
“submit” button. An example is illustrated in Figure 7.

DISCUSSION

The prognosis of GBM is very poor; only about 5 percent GBM
patients could survive more than 5 years (Delgado-Lopez and
Corrales-Garcia, 2016). Currently, therapeutic options for
GBM include surgery alone or adjuvant radio/chemotherapy
in combination with surgical resection (Chen et al., 2020).
Surgical resection is ineffective because cancer cells may have
infiltrated the surrounding tissues or metastasized. In addition,
it is still debatable whether systemic adjuvant medication can
be administered following surgery due to the possibility of
adverse effects (Abdul et al., 2018). As a result, it is critical to
identify possible biomarkers for predicting GBM prognosis.
The key findings of this study are as follows: 1). we identified
five ECM genes associated with prognosis, and these five genes
were used to calculate the ECM index. 2). We constructed the
machine learning models to predict the survival status of the
GBM patients at 6, 12, 18, 24, 30, and 36 months after
treatment. 3). We provided a web server to predict the
survival curves of GBM patients by these machine learning
models.

ECM is one of the major components of the TME, and its
interaction with the tumor cells promotes tumor growth and
migration (Klank et al., 2017). Thus, computing the ECM scores
in diverse cancers is critical for comprehending and potentially
addressing various tumors thoroughly. In this study, we identified
five ECM genes that are associated with prognosis and used their
expression values to calculate the ECM index. The high ECM
index was correlated with a negative prognosis. The predicted
drugs, including podophyllotoxin, lasalocid, MG-262, and
nystatin, might contribute to reversing the oncogenic roles of
the ECM in GBM tumor development. Podophyllotoxin, a
natural product, and its derivatives have the potential to
inhibit cell growth by tubulin polymerization (Ardalani et al.,
2017). Semisynthetic derivatives of podophyllotoxin have been
used as therapies for cancers including leukemia, lymphoma, and
GBM (Ardalani et al., 2017; Chen et al., 2013). Lasalocid could
work against tumor cells by cell cycle arrest (Kim et al., 2017).
MG-262 is a potent proteasome inhibitor, and more studies are
needed to clarify the effect of MG-262 on tumor growth,
especially GBM. Nystatin is a cholesterol-sequestering
antifungal drug and could further prolong animal survival and
significantly suppress tumor growth (Chen et al., 2015).

AEBP1 has the potential to bind with collagen and then
contribute to collagen polymerization, which is critical for
several biological processes such as tissue repair and fibrosis

FIGURE 6 | Development and evaluation of the machine learning models to predict the survival status at 6 (A), 12 (B), 18 (C), 24 (D), 30 (E), and 36 (F) months
based on gender, age, and ECM genes (AEBP1, F3, FLNC, IGFBP2, and LDHA). These AUC results were calculated on the independent dataset (GSE83300).
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(Blackburn et al., 2018). The high levels of AEBP1 were found in
collagen-rich tissues, including the dermal layer of the skin, the
medial layer of blood vessels, and the basement membrane.
Recent research has established that AEBP1 plays a critical
function in carcinogenesis and progression. For example, the
expression value of AEBP1 is higher in the glioma cells, and
inhibition of AEBP1 could induce apoptosis of GBM cell lines
(Ladha et al., 2012). F3 is the gene for encoding tissue factor (TF),
and the proinvasive activity of F3 is positively correlated with the
ECM–receptor interactions and the invasiveness of GBM cells
(Unruh et al., 2019). FLNC is a cytoskeletal protein and could
contribute to GBM metastasis by promoting ECM degradation
(Kamil et al., 2019). The survival analysis results also found that
the high FLNC expression was linked with a negative GBM
prognosis. IGFBP2 is positively correlated with tumor grades
and negatively associated with the prognosis of glioma patients
(Lin et al., 2009). Similarly, LDHA expression levels and stage of
the tumor are positively correlated (Di et al., 2018). The
knockdown of LDHA decreased the cell growth by impairing
cell cycle progression and triggering apoptosis in glioma cell lines.

The cellular distribution of these selected genes was different. For
AEBP1 (Layne et al., 2001), F3 (Indira et al., 2019), IGFBP2
(Gyuris et al., 2019), and LDHA (Lin et al., 2018), they are
abundantly expressed in the extracellular components. However,
the expression of FLNC results in cytoplasmic distributionmainly
associated with actin fibers (Valdes-Mas et al., 2014).

Recently, a systematic review summarized the available models for
the survival prediction of GBM (Tewarie et al., 2021). It is a challenging
field since there are several problems: 1)GBMpatients have a very poor
prognosis. For example, in the current study, the median survival time
of patients from CGGA, GSE16011, and TCGA-GBM datasets is 12,
8.7, and 9months, respectively. The short survival time limits the ability
of models to predict the prognosis. 2) Machine learning methods can
only predict binary or continuous targets and are not accessible to the
censored survival data, which contains survival time and survival status.
In the article by Ishaan (Tewarie et al., 2021), according to the AUC
(0.58–0.98), accuracy (0.69–0.98), and C-index (0.66–0.70), the
prediction performance of 59 models differed greatly. For most of
these models, it is hard to reach a strong sensitivity or specificity
(AUC>0.8). Only seven of these models have been independently

FIGURE 7 | OSPG: a web tool to explore and predict the overall survival status of the glioblastoma patients. OSPG can be used in four steps: (1) via the website
https://ospg.shinyapps.io/OSPG/, (2) inputting the values of five genes including AEBP1, F3, FLNC, IGFBP2, and LDHA (gene expression values range 0 to 1), (3)
inputting the values of age and gender (male or female) including AEBP1, F3, FLNC, IGFBP2, and LDHA (gene expression values range 0 to 1), (4) selecting the machine
learning models for each time point (6, 12, 18, 24, 30, 36 months), and (5) clicking the “submit” button.
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evaluated, and only three studies have converted their models into an
online prediction tool. For example, a predictionmodel constructed by
clinical information achieved amaximumC-index value of 0.66 (Gorlia
et al., 2008). Another online survival probability and survival curve
predictor for the patients with GBM that uses patient demographics
and clinical characteristics was provided (C-index = 0.70) (Senders
et al., 2020).

The advantages of this study were that it provided accurate models
and constructed the web server. In the independent dataset, the
machine learning models reached the AUC values of 0.878 and
0.868 in predicting the survival status at 6 and 36months
(Figure 6), respectively. In order to predict the survival curve of
GBM, we constructed models to predict the survival probability of
time points such as 6, 12, 18, 24, 30, and 36months. Then, the survival
curve was generated and plotted by the survival probability values.

Nevertheless, the present study has several limitations. First,
although validation datasets were used in this study, the models
need to be carefully assessed and validated by future prospective
studies. For example, the survival status of GBM patients could be
predicted by the machine learning models and expression profiles of
these five genes. Then, the accuracy of our models could be validated
by comparing the predicted and real survival status. Second, the roles
of the selected genes in GBM also need to be tested by experiments.

CONCLUSION

We identified the ECM genes with prognostic power and offered
potential small-molecule drugs for the treatment of GBM. The

online web server based on the five ECM genes could accurately
predict the survival curves of GBM patients after the diagnosis,
which could be particularly useful for tailoring clinical care to the
needs of the individual GBM patient.
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