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Abstract: For a long time, expressions have been something that human beings are proud of. That is
an essential difference between us and machines. With the development of computers, we are more
eager to develop communication between humans and machines, especially communication with
emotions. The emotional growth of computers is similar to the growth process of each of us, starting
with a natural, intimate, and vivid interaction by observing and discerning emotions. Since the basic
emotions, angry, disgusted, fearful, happy, neutral, sad and surprised are put forward, there are many
researches based on basic emotions at present, but few on compound emotions. However, in real life,
people’s emotions are complex. Single expressions cannot fully and accurately show people’s inner
emotional changes, thus, exploration of compound expression recognition is very essential to daily
life. In this paper, we recommend a scheme of combining spatial and frequency domain transform to
implement end-to-end joint training based on model ensembling between models for appearance
and geometric representations learning for the recognition of compound expressions in the wild. We
are mainly devoted to digging the appearance and geometric information based on deep learning
models. For appearance feature acquisition, we adopt the idea of transfer learning, introducing the
ResNet50 model pretrained on VGGFace2 for face recognition to implement the fine-tuning process.
Here, we try and compare two minds, one is that we utilize two static expression databases FER2013
and RAF Basic for basic emotion recognition to fine tune, the other is that we fine tune the model
on the input three channels composed of images generated by DWT2 and WAVEDEC2 wavelet
transforms based on rbio3.1 and sym1 wavelet bases respectively. For geometric feature acquisition,
we firstly introduce a densesift operator to extract facial key points and their histogram descriptions.
After that, we introduce deep SAE with a softmax function, stacked LSTM and Sequence-to-Sequence
with stacked LSTM and define their structures by ourselves. Then, we feed the salient key points
and their descriptions into three models to train respectively and compare their performances.
When the model training for appearance and geometric features learning is completed, we combine
the two models with category labels to achieve further end-to-end joint training, considering that
ensembling models, which describe different information, can further improve recognition results.
Finally, we validate the performance of our proposed framework on an RAF Compound database
and achieve a recognition rate of 66.97%. Experiments show that integrating different models,
which express different information, and achieving end-to-end training can quickly and effectively
improve the performance of the recognition.

Keywords: joint training; end-to-end; deep SAE; compound expression; appearance
feature; geometric feature; model ensembling; frequency domain transform; stacked LSTM;
Sequence-to-Sequence
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1. Introduction

Human language is divided into natural language and body language. Facial expression is part of
body language. As a non-linguistic signal of human beings [1], facial expressions contain rich personal
information, social interaction information, and also convey some information about people’s cognitive
behavior, temperament, personality, authenticity, psychology, and almost all of that information cannot
be replaced by other means of information expression. Therefore, accurately identifying the expression
of others is critical to successful human—computer interaction. When people see different people’s
faces, they can easily recognize the same expression, which is called facial expression recognition.

The study of facial expression began in the 19th century. In 1872, Darwin elaborated on the
connection and difference between human facial expression and animal facial expression in his famous
work [2]. In 1971, Ekman and Friesen did pioneering work on modern facial expression recognition [3].
They studied six basic human expressions (i.e., happy, sad, surprised, fearful, angry, disgusted),
determining the category of objects to be identified, systematically established a facial expression
database with thousands of different samples, and described the corresponding facial changes of
each expression in detail, including how eyebrows, eyes, eyelids, lips change, and so on. In 1978,
Suwa et al. [4] carried out the first attempt of facial expression recognition on a video animation of faces,
and proposed automatic facial expression analysis on the image sequences. Since the 1990s, K. mase
[5] have used optical flow to determine the main direction of muscle movement. After using the
proposed optical flow method for facial expression recognition, automatic facial expression recognition
has entered a new era.

With the development of expression researches, scholars focus on a more subtle expression
research, that is, the micro expression research. It is a kind of short-lived facial expression made
unconsciously by human beings when they try to hide some emotions. They correspond to seven
universal emotions: disgusted, angry, fearful, sad, happy, surprised and contempt. The duration of
micro expression is only 1/25 to 1/5 s, which expresses the real emotion that a person tries to suppress
and hide. Although a subconscious expression may last only a moment, and sometimes it expresses
the opposite emotion.

The main application fields of facial expression recognition technology include human-computer
interaction, intelligent control, security, medical, communication, education, fatigue detection,
political election and other fields. For distance education, teachers can judge the current learning
situation of students by analyzing the expression status of students during class. For smart medical
care, doctors can understand the degree of patients’ cure by capturing the expression on the patients
faces. In short, with the progress of science and technology and the continuous development of
psychology, the researches on facial expression will be more and more deep, the content will be more
and more rich, and the application will be more and more extensive.

However, no matter the macro basic expressions or micro expressions, in the real interaction, a
single expression can not fully express the complex emotional display of human beings. A major recent
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development in this issue is an article published on PNAS in 2014 [6]. This study proposes the concept
of a compound expression and points out that multiple discrete basic expressions can be combined
to form compound expressions. For example, when people encounter unexpected gifts, they should
be happy and surprised. Therefore, in addition to the six common expressions of happy, surprised,
sad, angry, disgusted and fearful, there are 21 distinguishable compound expressions, such as surprise
and joy, sadness and anger. At present, most researchers focus on the researches of basic expression
recognition, but few on compound expression recognition. The research of compound expression
is a more powerful impetus for us to understand people’s inner feelings more accurately and truly.
Therefore, in this paper, we pay our attention to the study on compound expression recognition.

In real life, we can recognize facial expressions by facial information. Generally speaking,
facial expression features can be divided into texture and geometry based according to the expression
content of facial images. In this work, we mainly start from those two aspects, proposing a scheme
of combining spatial and frequency domains to implement end-to-end joint training based on model
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ensembling between models for appearance and geometric representations learning for the recognition
of compound expressions in the wild. For appearance feature acquisition, we adopt the idea of transfer
learning, introducing the ResNet50 model [7] pretrained on VGGFace2 [8] for face recognition to
implement the fine-tuning process. Here, we try and compare two minds, one is that we utilize two
static expression databases FER2013 [9] and RAF Basic [10,11] for basic emotion recognition to fine tune,
the other is that we fine tune the model on the three channels composed of images generated by DWT2
and WAVEDEC2 wavelet transform based on rbio3.1 [12] and sym1 [13] wavelet bases respectively.
For geometric feature acquisition, we firstly introduce the densesift [14] operator to extract facial key
points and their histogram descriptions. After that, we introduce deep Stack AutoEncoder (deep
SAE) [15], stacked Long Short Term Memory (LSTM) [16] and Sequence-to-Sequence with LSTM [17]
and define their structures by ourselves. Then, we feed the key points and their descriptions into the
input three models to train respectively and compare their performances. When the model training
for appearance and geometric features learning is completed, we combine the two models with
category labels to achieve further end-to-end joint training considering that ensembling the models
which describe different information can further improve recognition results. Finally, we validate the
performance of our proposed framework on the RAF Compound database.

The rest of this paper is arranged as follows: Section 2 discusses the recent development on
facial expression recognition and gives an explanation to our proposed framework; Section 3 reports
the experiments and results; Sections 4 and 5 concludes our proposed framework and proposes the
challenges on compound expression.

2. Materials and Methods

2.1. Related Work

The generation of facial expressions is a very complicated process. If psychological and
environmental factors are not taken into account, what is presented to the observers is the simple
muscle movements, and the resulting changes in facial shape and appearance. The static image
presents the expression state of a single image when the expression occurs, and the dynamic sequence
presents the motion of the expression between multiple images. Considering that the researches on
compound expression recognition are still relatively few, and the related databases are relatively
lacking, it is very necessary for better human—computer interaction. Therefore, in this paper we are
aimed at the exploration of static compound expression recognition under the natural scenes.

After years of development, automatic recognition of facial expressions has been formed into a
complete system. It mainly includes three key steps, namely face preprocessing, expression feature
extraction, and classification. Face preprocessing usually includes face detection and alignment,
illumination normalization, geometric pose normalization. With the gradual maturity of face
recognition technology, many algorithms for face detection and alignment have been developed.
For example, Viola-Jones [18] proposed to use a Haar operator to extract facial features and Adaboost to
judge the faces. It can detect frontal faces quickly and accurately. As a large number of studies continue,
researchers have found that detecting facial landmarks can be more conducive to the extraction of
salient features. Therefore, statistical modeling is performed using shapes and textures, and the two
statistical models of shape and texture are further fused into an appearance model which is called
Active Appearance Model (AAM) [19]. Mixtures of Trees (MOT) [20] and Discriminative Response Map
Fitting (DRMF) [21] express facial information by describing changes of local textures. Furthermore,
cascading through regression models, there are many stacked models that are dug, such as supervised
descent method (SDM) [22], Cascaded CNN [23], Tasks-Constrained Deep Convolutional Network
(TCDCN) [24] and Multi-task CNN (MTCNN) [25] for multi-target detection and alignment.

For illumination normalization, under different lighting conditions, different people present the
same expression or the same person presents different expressions, the intensity and contrast of the
illumination will show great differences. However, these differences will affect our classification of
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an expression more or less. Thus, some illumination normalization algorithms have been introduced
and promoted, such as Isotropic Diffusion (IS) [26], Discrete Cosine Transform (DCT) [27], Difference
of Gaussian (DoG), Hormophobic filter [28] and Histogram Equalization (HE) [29,30] argued that
assigning different weights on the Histogram Equalization and linear mapping features and fusing
them linearly can overcome the drawbacks in HE. Furthermore, some prominent algorithms for
geometric pose normalization are discussed in [31-33].

When it comes to feature extraction, currently, according to the degree of characterization
information, methods for extracting appearance and geometric features of expressions can be classified
into traditional feature engineering and deep learning based methods. Many handcrafted operators
are utilized to present shallow representations. Local Gradient Coding (LGC) [34], Local Directional
Pattern (LDP) [35] and LBP [36] are introduced to mine the pattern of texture changes in expression
samples. Scale Invariant Feature Transformation (SIFT) [14] is argued to extract key points and
histogram information based on key points which is robust to scale, rotation and translation.
Three-dimensional information including time series can be obtained by LBP-TOP [37], HOG-TOP [38]
and Pyramid Histogram of Oriented Gradients (PHOG-TOP) [39]. Non-negative matrix factorization
(NMF) [40], Principle Component Analysis (PCA) [41] and sparse representation [42] are considered to
save memory space and present significant information expression.

In recent years, the scale of expression databases has been expanded, showing rich diversity,
and the computer hardware processing ability has been greatly improved, as well as the successful
application of deep learning technology in various fields. Facial expression recognition technology
is gradually moving from laboratory based tests to challenging real scene recognition. The ability of
traditional handcrafted descriptors to express information is limited, most of which are shallow feature
representations, failing to capture changes unrelated to expressions. Due to the powerful learning
ability of deep learning technology, deep learning technology is gradually becoming widely used in
facial expression recognition. Deep Belief Network (DBN) [43] is used to learn feature representations
in a semi-supervised way. Deep AutoEncoder (DAE) [15] and Deep Sparse AutoEncoder (DSAE) [44]
models code samples in an unsupervised way, learning a small number of features with great
contribution to classify the expressions. The Convolutional Neural Network (CNN) [45] model is
introduced because of its robustness to affine transformations. Based on the improvement of the CNN
model, Region-CNN (R-CNN) is proposed in [46]. For dynamic sequences, 3D CNN [47] is utilized
to present the spatial-temporal information between continuous frames, and the Recurrent Neural
Network (RNN) [48] is a another structure that can express time series information well. Long Short
Term Memory (LSTM) [16], which is proposed by Hochreiter and Schmidhuber, is a representative
RNN. It has been widely promoted for dynamic expression recognition. Goodfellow et al. [49]
introduced the Generative Adversarial Network (GAN), which is mainly for generating samples
by training against each other through generator and discriminator. The Conditional Generative
Adversarial Network (cGAN) [50] is argued to generate neutral faces corresponding to expression
samples. Then expressive information can be captured in the cGAN model [51].

For the classification phase, traditional classifiers such as Support Vector Machine (SVM) [52],
Adaboost [53], random forest [54], decision tree [55], K-Nearest Neighbors (KNN) [56], naive Bayes [57]
are used to judge the expression categories. For deep learning, we can implement end-to-end learning.
Furthermore, now some dynamic expression databases provide audio information, which means that
in addition to visual information, we can also combine audio information to achieve multi-modal
expression recognition. Multiple combining methods for visual and audio representations are
explored in [58].

In this paper, we put our emphasis on the compound expression recognition in the wild,
and investigate the performance of our recommended framework on the RAF Compound database.
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2.2. The Proposed Method

In our work, we propose a scheme of combining spatial and frequency domain transforms to
implement end-to-end joint training based on model ensembling between models for appearance
and geometric representations learning for the recognition on compound expressions in the wild.
The diagram for our recommended scheme is displayed in Figure 1. In the following sections, we will
elaborate on the overall process in detail.

Appearance representation learning
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Figure 1. The diagram for our recommended scheme. Copyright reference: http://www.whdeng.cn/
raf/modell. html#dataset.

2.2.1. Preprocessing Static Expression Databases

In our study, FER2013, RAF Basic and RAF Compound are introduced respectively. Among them,
FER2013 and RAF basic are used to fine tune the model, and RAF Compound is used to evaluate our
proposed framework. There will be many changes that have nothing to do with facial expression under
natural scenes, such as different backgrounds, lighting conditions, head postures and so on. Therefore,
before feature learning, we need to use preprocessing to calibrate and align the visual semantic
information of the faces, and then face detection and alignment, illumination normalization are
performed. Firstly, a Multi-task Cascaded Convolutional Network (MTCNN) is utilized to implement
face detection and alignment for three static expression databases. MTCNN algorithm is a face
detection and alignment method based on deep learning. It can accomplish the task of face detection
and alignment at the same time. Compared with traditional algorithms, it has better performance and
faster detection speed. Figure 2 shows the samples of face detection and alignment based on MTCNN
in FER2013, RAF Basic and RAF Compound.


http://www.whdeng.cn/raf/model1.html#dataset
http://www.whdeng.cn/raf/model1.html#dataset

Sensors 2020, 20, 4727 6 of 25

Figure 2. The samples of face detection and alignment based on Multi-task Convolutional Neural
Network (MTCNN) in FER2013, Real-world Affective Faces (RAF) Basic and RAF Compound.
The upper row presents samples in FER2013; the middle row presents samples in RAF Basic; the lower
row presents samples in RAF Compound. Copyright reference for FER2013: https://www.kaggle.
com/c/challenges-in-representation-learning-facial-expression-recognition-challenge / data; copyright
reference for RAF database: http:/ /www.whdeng.cn/raf/modell.html#dataset.

What we need to explain here is that we delete the samples with a large area of occlusion and no
faces detected considering that such noise samples are not conducive to model learning.

Considering that uneven illumination will lead to poor recognition results, DOG filter,
Contrast Limited Adaptive Histogram Equalization (CLAHE), and linear sharpening algorithms
are introduced. Dog filter is mainly used to convolve the target images with a Gaussian function.
This process is called denoising. CLAHE [59] is an improvement to traditional Adaptive Histogram
Equalization (AHE). For an image, the contrast of different regions may vary greatly. Maybe some
locations are bright and some locations are dim, it is not the best choice to use a single histogram to
adjust. Therefore, based on the idea of block processing, an adaptive histogram equalization algorithm
is proposed. However, sometimes this method will amplify some noise. Thus, CLAHE is proposed to
overcome the drawbacks. Linear sharpening can make the edge, outline and details of the image clear.

Preprocessing can remove the noise and improve the quality of images, which is beneficial to the
learning of the model.

2.2.2. Frequency Domain Transform on Expression Samples

The frequency domain transform of the images mainly describes the intensity of the gray changes
in the images. The high and low frequency of the images are measures of the intensity changes between
the various positions of the images. The low frequency component is mainly a comprehensive measure
of the intensity of the entire image. The high frequency component is mainly a measure of the edge
and contour of the image.

The signal tends to be simpler and more intuitive in the frequency domain than in the time
domain and the wavelet transform is a major breakthrough for Fourier transform. It overcomes the
defect that Fourier transform cannot handle some local signals very well. The change of wavelet is to
replace the infinitely long trigonometric base in the Fourier transform with a finite-length attenuated
wavelet base. Thus, it has excellent time-frequency domain characteristics and can effectively analyze
local stationary signals. At the same time, it has good energy concentration characteristics, which can
be encoded in the transform domain, and obtain higher compression efficiency. Formula (1) presents
the wavelet transform.

WT(a,r):\}E/o:of(t)*qJ(t_T)dt (1)

a
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It can be seen from the formula that unlike the Fourier transform where the variable has only
the frequency w, and the wavelet transform has two variables: the scale a (scale) and the translation
t (translation). The scale a controls the expansion and contraction of the wavelet function, and the
translation amount t controls the translation of the wavelet function. The scale corresponds to the
frequency (inverse ratio), and the amount of translation t corresponds to time. Compared with the
Fourier transform, the effect of the wavelet transform is shown in Figure 3.

=oo |

o |

-zoo

Figure 3. The effect of the wavelet transform compared with the Fourier transform. The upper denotes
the effect of Fourier transform; the lower denotes the effect of the wavelet transform.

In our research, we employ 2D Discrete Wavelet Transform (DWT2) and WAVEDEC2 to
realize the frequency domain transform. DWT?2 is a two-dimensional single-scale discrete wavelet
transform. It can perform two-dimensional single-scale wavelet decomposition by specifying wavelet
or decomposition filter. WAVEDEC2 is a two-dimensional multi-scale wavelet decomposition.
Sym1 and rbio3.1 are used as the base functions of the above two wavelet transforms. Sym, to some
extent, can reduce the phase distortion of signal analysis and reconstruction; rbio can generate
reconstruction and decomposition scaling filters. The ‘rbio3.1” wavelet has three vanishing moments for
the decomposition wavelet and one vanishing moment for the reconstruction wavelet. For WAVEDEC2
based on sym1 and rbio3.1, a two-layer transformation is performed and extracts the results of the first
layer.

We generate the frequency domain images of FER2013, RAF basic and RAF compound based on
the above two different wavelet transforms and wavelet bases respectively. For DWT2, each introduced
wavelet base produces four outputs, representing approximate component, horizontal detail
component, vertical detail component and diagonal detail component respectively. For WAVEDEC2,
each introduced wavelet base produces two outputs, denoting low frequency and high frequency
components respectively. DoG filter is firstly performed on low frequency images to achieve initial
illumination normalization, then CLAHE is utilized to further adjust the local illumination of the
images which have been processed by DoG filter. CLAHE and linear sharpening are also explored on
high frequency images separately. We want to compare smoothing and sharpening which can make
the information carried by high frequency images more prominent and beneficial to extract salient
features. The illumination normalized expression samples of frequency domain transform based on
DWT2 and WAVEDEC?2 in RAF Compound are presented in Figures 4 and 5 separately.
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Figure 4. The illumination normalized expression samples of frequency domain transform based on
DWT?2 in RAF Compound. Approximate component, horizontal detail component, vertical detail
component, diagonal detail component from left to right. Copyright reference: http:/ /www.whdeng.
cn/raf/modell.html#dataset.

Figure 5. The illumination normalized expression samples of frequency domain transform based on
WAVEDEC?2 in RAF Compound. The upper row denotes illumination normalized expression samples
of WAVEDEC?2 transform based on sym1; the lower row denotes illumination normalized expression
samples of WAVEDEC?2 transform based on rbio3.1. Copyright reference: http://www.whdeng.cn/
raf/modell. html#dataset.

2.2.3. Appearance Feature Acquisition Based on Transfer Learning for Resnet50 with Samples in
Spatial and Frequency Domain

In our recommended scheme, we mainly study the appearance and geometric representations of
the compound expressions. Due to the small number of expression samples, too shallow of a model
is not conducive to the capture of abstract information. Because deep learning has strong migration
ability in some similar scenarios and we want to get better performance in deep learning models with
small databases, the mind of transfer learning is introduced. Transfer learning can be understood
as applying mature knowledge in one field to other scenarios. If the two scenarios are very similar,
the model for transfer learning can achieve satisfactory results with a slight change in structure and a
small amount of training and vice versa.

Face technology is the foundation of expression technology, and with the rapid development
of face detection and recognition technology, expression recognition technology has been gradually
improved. Therefore, for faster training and more accurate recognition results, ResNet50 model
pretrained on the VGGFace2 database for face recognition is utilized to fine tune given that expression
describes the movement and transformation of facial muscles, making some shallow features of the
face and expression have commonality.

With the deepening of the network, the accuracy of the training set decreases. We can be sure
that this is not caused by overfitting. So a new network called deep residual network is proposed to
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solve the problem of performance degradation after the network deepens. It proposes two kinds of
mapping: one is identity mapping and the other is residual mapping, so the final output is y=F(x)+x.
The key structure of ResNet is depicted in Figure 6.

weight layer
F(x) l relu

weight layer

X

identity
F(x) +x

Figure 6. The key structure of ResNet.

The appearance feature describes the texture distribution pattern of the images and vividly
presents the image content. For the mining of appearance features, we have made two attempts, one
is based on gray-scale images, the other is based on frequency-domain transform images. For the
learning in the space-time domain, gray images in FER2013 and RAF Basic are used to fine tune
ResNet50 respectively, because FER2013 and RAF basic contain seven kinds of basic expressions which
are the basis of forming compound expressions. After fine tuning, we started to train the model on the
RAF Compound’s training set and test it on its test set.

For the learning in the frequency domain, we fine tune ResNet50 using images based on frequency
domain transform for FER2013 and RAF Basic. Before fine tuning the model, we first generate the
frequency domain images based on DWT2 and WAVEDEC?2. For outputs of DWT2 which are expressed
as Formula (2), we set up two groups, one is to take the approximate component (CA), the horizontal
detail component (CH) and the vertical detail component (CV) as the three channels of input samples,
the other is to take the horizontal detail component (CH), the vertical detail (CV) component and the
diagonal component (CD) as the three channels of input samples for model training. For outputs of
WAVEDEC?2 transform based on rbio3.1 and sym1 wavelet bases, which can be presented in Formulas
(3) and (4), we use the original gray images, low frequency component (C) and high frequency
component (S) as three channels of input samples for model learning. When the fine tuning of the
model is completed, the training based on the samples of frequency domain transform in the RAF
Compound is started.

[CA,CH, CV,CD] = dwt2 (X, 'rbio3.1) ?)
[C,S] = wavedec2 (X,2, 'rbi03.1") (3)
[C,S] = wavedec2 (X,2, 'sym1’) 4)

2.3. Deep Learning on Densesift Descriptions for the Extraction of Geometric Features

The geometric features of an image refer to the features of the object’s position, orientation,
perimeter, and area in the image. Although the geometric features of the image are relatively
straightforward and simple, they play an important role in many image analysis problems.
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Here, we mainly train three different deep models on densesift descriptions for mining geometric
information on expression samples.

2.3.1. Descriptions for Densesift Operator

For data selection to generate geometric features, the densesift operator is used to extract the
salient feature points of the face and histogram descriptions of the feature points. The densesift
algorithm is a feature extraction process that performs block processing on the input images and
performs SIFT operation on each block. Densesift can properly meet the feature representation ability
of images under different classification tasks according to the adjustable parameters’ size.

Densesift is often the first step in feature extraction in non-deep learning models. When the
sampled points are extracted from the SIFT descriptor, after the codebook projection, the sample points
are projected on the same codeword, which represents a set of similar descriptors. The ability to
distinguish between sample points is different between different codewords (equivalent to each bin of
the histogram). Densesift does not attempt to use a classifier to determine whether it is a salient point
when looking for a salient point, but for simplification, all significant points are equally dense across
the various regions of the images.

2.3.2. Descriptions of Each Deep Learning Model Used to Extract Abstract Geometric Features

For model selection to train on densesift descriptions, we have separately defined the model
structures of SAE, LSTM, Sequence-to-Sequence to train. We introduce some time series models under
such assumption that when an expression occurs, each key point extracted is changed according to a
certain timing.

AutoEncoder (AE) is an unsupervised learning technique that uses neural networks for feature
representation. That is, we design a neural network architecture that imposes a “bottleneck” in the
network, forcing the original input to compress the knowledge representation. This compression
and subsequent reconstruction will be a very difficult task if the input features are independent of
each other. However, if there are some structures in the data (i.e., there is a correlation between the
input features), then those structures can be learned and used when forcing a bottleneck through the
network. Sparse AutoEncoder actually adds sparse constraints to model so as to extract the main
features and achieve the effect of reducing dimensions. Furthermore, it also has some anti-noise ability
and interpretability due to its sparsity. We can generate a deep SAE by stacking multiple AE structures.
The main body of the simple AE is shown in Figure 7.

In the traditional RNN, BackPropagation through Time (BPTT) [60] is used in the training
algorithm. When the time is long, the residuals that need to be returned will decline exponentially,
resulting in the slow updating of network weights, which can not reflect the long-term memory effect
of RNN. Therefore, a storage unit is needed to store the memory, namely, the LSTM. LSTM is a special
RNN model, which added a method of carrying information across multiple time steps to solve the
problem of gradient dispersion of the RNN model. Bidirectional LSTM is a variant of the normal LSTM,
and it takes advantage of the sequential sensitivity of the RNN, consisting of two RNNSs, each of which
processes the input sequence in one direction (time positive order and time reverse order) and then
merges their representations together in both directions. By processing the sequence in both directions,
the bidirectional RNN is able to capture patterns that may be ignored by the one-way RNN.
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Figure 7. The main body of the simple AutoEncoder (AE).

The Sequence to Sequence [61] model was first developed by a Google engineer in 2014. The model
is a kind of end-to-end algorithm framework, which is a transform model from sequence to sequence,
applied in machine translation, automatic response and other scenarios. It is generally implemented
by the encoder-decoder framework. The encoder converts a variable-length signal sequence into a
fixed-length vector representation, and the decoder turns this fixed-length vector into a signal sequence
of variable-length targets. The encoder and decoder sections can be any text, voice, image, or video
data. The model can use CNN, RNN, LSTM, Gated Recurrent Unit (GRU), BLSTM, and so on. Figure 8

presents the algorithm framework in Sequence-to-Sequence.

Semantic
Coding : C

A

Encoder - Decoder

Figure 8. The algorithm framework in Sequence-to-Sequence.

In our work, we try to train deep SAE, stacked LSTM, stacked BLSTM and Sequence-to-Sequence
model with stacked LSTM and stacked BLSTM based on densesift descriptions and compare their
performances. In addition, it is worth noting that after the unsupervised training on deep SAE.
We combine the encoder of deep SAE with the softmax classifier to further supervise training, which is

displayed in Figure 9.
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Input Feature1 Feature2  SoftmaxClassifier

Figure 9. The encoder of deep Stack AutoEncoder (SAE) with softmax classifier.

3. Results and Discussion

3.1. Introduction for FER2013, Raf Basic and Raf Compound

FER2013: the FER2013 facial expression database consists of 35,886 facial expression images,
including 28,708 training pictures, 3589 public test pictures (PublicTest) and private test pictures
(PrivateTest). Each gray image is fixed by size 48 x 48, there are seven kinds of expressions,
corresponding to the digital label 0-6, the specific expression corresponding to the label is as follows:
0 angry; 1 disgusted; 2 fearful; 3 happy; 4 sad; 5 surprised; 6 neutral. Since FER2013 is only used
for pretraining of models, in order to involve as many samples as possible in training, we merge the
train and the private test set as a large training set, and use the public test set as the validation set
to fine tune or pretrain. The distribution of each category sample in FER2013 is described in Table 1.
(download link: https:/ /www.kaggle.com/c/challenges-in-representation-learning-facial-expression-
recognition-challenge/data).

Table 1. The distribution of each category sample in FER2013.

Basic Expressions  Train + PrivateTest PublicTest

Angry 4486 467
Disgust 490 56
Fear 4625 496
Happy 8094 895
Neutral 5591 607
Sad 5424 653
Surprise 3587 415

RAF: Real-world Affective Faces database (RAF) was built by downloading more than 30,000
images in batches on Flickr image social networks using expression-related keywords, and use
crowdsourcing technology to annotate these images. Those annotation results and the annotators’
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reliability are evaluated based on the expectation maximization algorithm, which further filters
out those noise labels for more accurate annotation results. The entire database contains nearly
30,000 images with a seven-dimensional expression distribution. According to the seven-dimensional
expression probability distribution vector corresponding to each picture, we divide the database
into seven basic expressions and eleven types of compound expressions (download link: http:
/ /www.whdeng.cn/raf/modell. html#dataset).

There is a big difference between the facial expression naturally revealed in people’s daily life and
the facial expression uniformly regulated in the laboratory environment. In real life, different people
express their expressions in various ways. Each expression will contain many different forms due to the
different identities of the characters, which undoubtedly challenges the expression recognition in the
real face world. In our research, we mainly focus on the compound expression recognition in the wild.
Tables 2 and 3 shows distribution of various samples in RAF Basic and RAF Compound separately.

Table 2. Distribution of various samples in RAF Basic.

Basic Expressions Train  Test

Angry 705 162
Disgust 717 160
Fear 281 74
Happy 4772 1185
Neutral 2524 680
Sad 1982 478
Surprise 1290 329

Table 3. Distribution of various samples in RAF Compound.

Compound Expressions Train Test

Angrily Disgusted 667 174
Angrily Surprised 138 38
Disgustedly Surprised 113 35
Fearfully Angry 117 33
Fearfully Surprised 444 116
Happily Disgusted 219 47
Happily Surprised 562 135
Sadly Angry 130 33
Sadly Disgusted 597 141
Sadly Fearful 107 22
Sadly Surprised 68 18

3.2. Experiment Setups

We implement our experiments on the 64-bit ubuntul8.04 system with the TITAN RTX 2080T1
GPU and pytorch framework.

For data settings, before model training for appearance information mining, we resize the inputs
into 224 x 224 pixels. Furthermore, we extract the densesift descriptions of 36 x 128 and 64 x 128,
respectively, for geometric feature extraction considering that different numbers of key points may
have different effects on the training of the model.

For model settings, we only replace the output layer of ResNet50 with the number of category
tags for the current training set. In addition, we define the structures of deep SAE, stacked LSTM,
BLSTM and Sequence-to-Sequence with stacked LSTM and BLSTM from scratch. We stack several
LSTMs and a softmax layer to generate a stacked LSTM model, and we set the number of categories of
the current training set to the number of nodes in the softmax layer. The stacked BLSTM model is built
similar to the stacked LSTM model. In addition, the stacked LSTM and BLSTM are also embedded
in the Sequence-to-Sequence model, which is concentrated on Sequence-to-Sequence mapping to
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generate compressed coding representations. The encoder and decoder for the deep SAE are built
with several dense layers respectively. It is worth mentioning that the input for stacked LSTM and
BLSTM and Sequence-to-Sequence is a three-dimensional vector, which contains batchsize, timesteps
and input_features. However, the deep SAE'’s input is a one-dimensional vector.

3.3. Experimental Results

We implement two training mechanisms for the extraction of appearance representations. One is
based on gray images, the other is based on the input of the three channels composed of images of the
frequency domain. There are four forms of frequency domain images based on different wavelet bases
and illumination normalization methods: dwt2_firstthree (rbio3.1), which denotes CA, CH, CV of
DWT?2 transform based on wavelet basis rbio3.1; dwt2_latterthree (rbio3.1), which represents CH,
CV, CD of DWT?2 transform based on wavelet basis rbio3.1; wavedec2_rbiosharpen, which describes
WAVEDEC2 transform based on wavelet basis rbio3.1 and the linear sharpening method is employed on
a high frequency component; and wavedec2_symsharpen, which depicts WAVEDEC2 transform based
on wavelet basis sym1 and the linear sharpening method is employed on a high frequency component,
respectively. For the training process, we first fine tune the ResNet50 model on FER2013, then the RAF
Basic is utilized to further train the fine-tuned model based on FER2013 for two learning mechanisms.
Finally, three-fold cross-validation and grid search is introduced to utilize RAF Compound to train the
ResNet50, which is fine tuned on FER2013 and RAF Basic.

The model parameters for appearance feature learning are set as follows: we set the epoch to
20; 0.001, 0.0001, and 0.00001 are selected to find the best learning rate, the size of batch is set to 64
or 128; and Adam, RMSprop, SGD are tried separately. It should be noted that fine tuning ResNet50
on dwt2_latterthree (rbio3.1) performs worse than other three frequency domain transforms, thus,
dwt2_latterthree (rbio3.1) was not considered to continue subsequent learning on RAF Compound.
The results of the RAF Compound test set based on different input channels of ResNet50 fine tuned on
FER2013 are shown in Table 4; the results of the RAF Compound test set based on ResNet 50 pretrained
on FER2013 and RAF Basic are displayed in Table 5.

Table 4. The results of the RAF Compound test set based on different input channels of ResNet50 fine

tuned on FER2013.
Model InputChannels TestAccuracy
ResNet50 Gray 57.12%
ResNet50 Gray+wavedec2_rbiosharpen 58.81%
ResNetS0  Gray+wavedec2_symsharpen 58.94%
ResNet50 dwt2_firstthree(rbio3.1) 53.63%

Table 5. The results of the RAF Compound test set based on different input channels of ResNet 50
pretrained on FER2013 and RAF Basic.

Model InputChannels TestAccuracy
ResNet50 Gray 65.80%
ResNet50 Gray+wavedec2_rbiosharpen 65.41%
ResNet50  Gray+wavedec2_symsharpen 64.28%
ResNet50 dwt2_firstthree(rbio3.1) 60.88%

By comparing Tables 4 and 5, we find that the model just fine tuned on FER2013 performs worse
on the test set of RAF Compound than the model fine tuned on FER2013 and RAF Basic although there
are some slight differences in data presentation between the two databases. It can be concluded that
databases with similar contents can be beneficial to train the model and achieve good results in the
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final task. Tables 4 and 5 also confirm that for small databases that want to achieve better results on
deeper and more complex models, transfer learning is a very good choice.

In addition, in our research, we fine-tune the ResNet50 with spatial and several different forms of
frequency-domain images, respectively. We argue that the spatial and frequency domains provide us
with different perspectives. The shape of the signal can be directly observed in the space-time domain,
but the signal cannot be accurately described with limited parameters. However, in the frequency
domain, some features are more prominent and easy to process. For example, it is difficult to find the
noise pattern in the spatial images. If it is transformed into the frequency domain, it is better to find
the noise pattern and it can be more easily processed.

From Table 4 we can see that test accuracy on the input data composed of a combination of
frequency and spatial domain images is the best, while the model trained on spatial images achieves
slightly higher results in Table 5. Investigating the reason, we think that the difference between the
expressions of the two sample sets has a lot to do with it. In summary, from the results of the two
tables above, the learning based entirely on the frequency domain is the worst, while the learning
combining the spatial and frequency domains shows more outstanding performance. The confusion
matrices on the RAF Compound test set based on different input channels for ResNet50 pretrained on
two databases for the recognition of basic emotions are presented in Figures 10-13.
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Figure 10. The confusion matrix of the RAF Compound test based on the input channels composed of
spatial images.

From the confusion matrices, we can derive that imbalance of various samples leads to huge
differences in recognition results. The imbalance of various types of samples leads to huge differences
in recognition results. The recognition accuracy of categories with a larger number of samples is
relatively high, and vice versa. Some expressions with similar facial muscle movements are easy to
misrecognize. For example, it is easy to mistake ‘sadly fearful” as ‘sadly disgusted’, especially for
complex expressions, which are composed of multiple emotions, it is easier to be misclassified.

In addition to extracting the appearance information to express the texture features, we also
extract the key points of the faces and the histogram descriptions based on the key points to achieve
the exploration of geometric features. In this regard, we have introduced a total of two types of
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models, one is an unsupervised AutoEncoder and the other is a sequence model. We defined a stacked
AutoeEncoder from scratch and two sequence models which includes LSTM and Sequence-to-Sequence.
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Figure 11. The confusion matrix of the RAF Compound test based on the input channels composed of
the combination of spatial and frequency domain images under wavelet base rbio3.1.
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Figure 12. The confusion matrix of the RAF Compound test based on the input channels composed of
the combination of spatial and frequency domain images under wavelet base sym1.



Sensors 2020, 20, 4727 17 of 25

Confusionmatrix dwt2 firstthree
AD .0.02 0.02/0.01/0.02 0.01 0.010.18

As |0.11

0.8

0.030.22 0.080.05 0.03
0.7

Ds |0.29 0.03 0.18 0.12

FA (0.100.10 .0.07 0.13

g FS|0.010.02 0.03. 0.06 0.03
g HD [0.30 0.02 0.02 .0.17 0.04 0.09
S Hs [0.03 0.06 0.01 0.25 0.01.0.01 0.04 0.01
=
SA |0.21 0.06 0.09 0.03 0.24 0.300.06
sD |0.17 0.010.010.01 0.01.
SF |0.05 0.05 0.14 0.09.0.23
ss [0.12 0.06 - 0.06/0.29 0.12

(o] (7] n wn wn [TH wn
< < o = T % T & o 7] 7]

Predicted testlabel

Figure 13. The confusion matrix of the RAF Compound test based on frequency domain images
under rbio.3.1.

Same as the pretraining strategy for models used for appearance representations, we pretrain our
model continuously on FER2013 and RAF Basic for unsupervised and supervised learning. Based on
being able to capture more distinctive features of each image by encoding itself, AutoEncoder is
considered given that the occurrence of expressions, the process of performing actions at significant
key points on the face also occurs in a certain order, and different expressions have different orders,
sequence models are selected. Table 6 presents the performance of sequence models and AutoEncoder
on the RAF Compound test set.

Table 6. The performance of sequence models and autoencoder on the RAF Compound test set.

Model Inputs TestAccuracy
LSTM 36 x 128 dsift descriptions 37.44%
64 x 128 dsift descriptions 37.82%
BLSTM 36 x 128 dsift descriptions 41.32%
64 x 128 dsift descriptions 37.56%
DSAE+Softmax 4608 dsift descriptions 41.45%
Seq-to-Seq with LSTM+Softmax 36 x 128 dsift descriptions 33.81%
64 x 128 dsift descriptions 34.59%

Seq-to-Seq with BLSTM+Softmax 36 x 128 dsift descriptions 34.33%
64 x 128 dsift descriptions 34.59%

From Table 6, we can see that DSAE+Softmax achieves the best results compared to other models
for geometric representation learning. Introducing AutoEncoder to reconstruct the samples in an
unsupervised way and by minimizing the reconstruction error, the model structures and parameters
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are optimized to extract the most expressive information for the samples firstly. Then, we combine
the encoder with the softmax layer and incorporate the category labels to realize supervised learning.
Based on that, we can also infer that applying unsupervised and supervised learning to some
recognition tasks may achieve better performance than a single learning method.

Furthermore, from Table 6, we also notice that Sequence-to-Sequence with LSTM or BLSTM is also
a self-encoding unsupervised learning mode, which is just a sequence-to-sequence self-encoding mode.
In our work, we use its implementation principles to carry out sequence-to-sequence modeling on a
series of extracted facial key points and their histogram descriptions. In order to avoid underfitting
caused by insufficient sample sizes, we extracted densesift descriptions of two sizes respectively,
but the performance is so unsatisfactory. The possible causes of that result are, as a sequence
expression, its context information is not closely connected, time information is also not obvious,
and the feature size and number of samples are not enough by observing that inputs with 64 x 128
densesift descriptions outperform 36 x 128.

In addition, for the simply supervised training mode, BLSTM is better than LSTM based on the
results presented in Table 6. We can conclude that in the case of avoiding overfitting, bidirectional
sequence learning is helpful for mining more useful information.

After completing the model training for appearance and geometric information, model ensembling
technology is utilized to integrate appearance and geometric representations to generate more
comprehensive information and achieve better recognition results. The accuracy rates of the RAF
Compound test set based on different model ensembling strategies are shown in Tables 7 and 8.

Table 7. The accuracy rates of the RAF Compound test set based on model ensembling between
ResNet50 trained on spatial domain images and models trained on densesift descriptions.

MergedModel Inputs TestAccuracy

ResNet50 Gray images

DSAE+Softmax 4608 dsift descriptions 66.97%
ResNet50 Gray images

LSTM 64 x 128 dsift descriptions 65.93%
ResNet50 Gray images

BLSTM 36 x 128 dsift descriptions 66.32%
ResNet50 Gary images

Seg-to-Seq with LSTM+Softmax 64 x 128 dsift descriptions 65.03%
ResNet50 Gary images

Seq-to-Seq with BLSTM+Softmax 64 x 128 dsift descriptions 64.77%

Table 8. The accuracy rates of the RAF Compound test set based on model ensembling between
ResNet50 trained on spatial and frequency domain images and models trained on densesift descriptions.

MergedModel Inputs TestAccuracy
ResNet50 Gray+WAVEDEC2_rbiosharpen
DSAE+Softmax 4608 dsift descriptions 66.19%
ResNet50 Gray+WAVEDEC2_rbiosharpen
LSTM 64 x 128 dsift descriptions 65.93%
ResNet50 Gray+WAVEDEC2_rbiosharpen
BLSTM 36 x 128 dsift descriptions 65.80%
ResNet50 Gray+WAVEDEC2_rbiosharpen
Seqg-to-Seq with LSTM+Softmax 64 x 128 dsift descriptions 66.19%
ResNet50 Gray+WAVEDEC2_rbiosharpen
Seqg-to-Seq with BLSTM+Softmax 64 x 128 dsift descriptions 66.32%

From Tables 7 and 8§, it can be observed that model ensembling can effectively improve the
recognition effect by observing that most ensembling strategies achieve better results on the final task
compared to the previous single model. And the combination of unsupervised and supervised learning
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is still far ahead of other models based on the recognition results generating from the model ensembling
between ResNet50 and DSAE+Softmax. Furthermore, the performance of model ensembling between
ResNet50 and Sequence-to-Sequence on spatial and frequency domain images is better than spatial
images. It can also be inferred that the sequence model is more suitable for frequency domain images
that are more sensitive to timing signals.

An interesting discovery is that model ensembling between ResNet50 trained on spatial and
frequency domain images and Seg-to-Seq with LSTM or BLSTM+Softmax achieves the satisfactory
recognition rates in Table 7. Based on that, we can infer that model diversity plays a vital role in model
ensembling and it is not how good your best model is.

4. Discussion

The confusion matrices based on different model ensembling strategies are displayed in Figures 14
and 15. Based on different model ensembling strategies, the learned information is also different,
and from the confusion matrices, we can observe that for categories with a small number of samples,
the recognition results are different for different model ensembling strategies, some can get a small
recognition rate, some can get a high recognition rate, but some results are 0. This also precisely shows
that although we have introduced the model ensembling technology, we have only ensembled two
models, and the diversity of models is insufficient, resulting in the learned information not being
comprehensive. There are significant shortcomings in both the number of models and the diversity
of models.

Allin all, for our final task, the ensembling of different models is still very beneficial. We think the
framework we propose is flexible and extensive. First of all, in terms of the form of features, we combine
texture and geometric features, which will make the expression of features more comprehensive;
second, in terms of the basic properties of the signal, we combine the temporal and spatial images,
which allows us to analyze the signal changes in the images from different angles; third, in terms of
the model, we introduce the convolutional neural networks to describe the spatial information and
the recurrent neural networks to describe the temporal information respectively; fourth, as for the
inputs of the model, we consider both the information of the whole images and the information of the
local image blocks. As for the learning of geometric features, we define the model structures ourselves,
so other researchers can redefine the model related to their tasks according to their own needs, which is
more flexible. In addition, the model used for texture feature learning can also be replaced with other
models. Based on the combination of the two, when implementing end-to-end training, the training is
relatively fast. We believe that the framework we recommend has a certain reference for application in
real life.

The abbreviations of the above expression categories are shown in Table 9.

Table 9. The abbreviations of the above expression categories.

Expression Category = Abbreviation

Angrily Disgusted AD
Angrily Surprised AS
Disgustedly Surprised DS
Fearfully Angry FA
Fearfully Surprised FS
Happily Disgusted HD
Happily Surprised HS
Sadly Angry SA
Sadly Disgusted SD
Sadly Fearful SF

Sadly Surprised SS
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Figure 14. The confusion matrix on the RAF Compound test set for the model ensembling of
ResNet50 and DSAE+Softmax (left); the confusion matrix on the RAF Compound test set for the

model ensembling of ResNet50 and BLSTM (right).
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Figure 15. The confusion matrix on the RAF Compound test set for the model ensembling of ResNet50

and Seq-to-Seq with LSTM+Softmax (left); the confusion matrix on the RAF Compound test set for the

model ensembling of ResNet50 and Seq-to-Seq with BLSTM+Softmax (right).
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However, due to the lack of researches on compound expressions, we cannot directly compare with
other researchers’ works on this topic. Therefore, we have taken several traditional classic operators
that describe texture and geometric information on our database to extract features and a SVM classifier
is introduced to recognize. In addition, we employ four-fold cross-validation and grid search methods
to train and select the best parameters for SVM. Results of the comparison are listed in Table 10.
From Table 10, we found that our proposed combination of texture and geometric representation
based on traditional and deep learning methods performs better than the single traditional feature
engineering methods.

Table 10. Comparison with several traditional classic operators on the RAF Compound test set.

Other Methods Linear Kernel RBF Kernel
HoG [38]+SVM 39.38% 40.28%
LBP+SVM 26.94% 28.24%
LGC [34]+SVM 20.73% 21.89%
HoG+LBP+SVM 39.12% 40.54%
HoG+LGC+SVM 38.86% 39.38%
HoG+LBP+LGC+SVM 37.56% 39.51%

ours (66.97%) - -

5. Conclusions

In this study, we propose a framework of combining spatial and frequency domain transform to
implement end-to-end joint training based on model ensembling between models for appearance and
geometric representations learning for the recognition of compound expressions in the wild. In our
scheme, we explore the appearance features based on the spatial and frequency domains respectively.
In addition, we dig the more abstract geometric information based on training the models of different
structures with densesift descriptions, which are extracted from gray images. When the two models
complete the training independently, we conduct model ensembling based on independent models
with large structural differences for further training to get more comprehensive information and more
accurate results. Finally, the validity of our recommended framework is verified on RAF Compound.
At the same time, our work also shows that model learning based on the combination of spatial and
frequency domains is better than single-form input. Furthermore, model ensembling is a very effective
way to improve the final recognition results and there is much more room to mine. In addition, much
more attention should be paid to the model diversity for the learning of complementary information.

Another point is that although there have been many studies on seven basic expressions,
theresearches on the compound expressions are far from enough. There are some questions that
we need to consider. So far, the defined categories of compound expression cover only a small
part. Compound expressions are not just about two basic emotions, they may have more emotions
happening at the same time. In addition, an old-fashioned question is one of unbalanced sample
distribution across categories, leading to poor recognition performance on the categories with small
size. Annotation of samples is also an arduous task due to annotators with different backgrounds,
cultures and ages. Furthermore, the features learned only based on visual modality may not be
complete. We need to introduce more modalities to achieve comprehensive and complementary
feature mining.

In addition, in future work, we will make improvements in the following aspects: for the learning
of texture features, in the final feature extraction, add a layer of feature transformation based on a
nonlinear injective function, which retains more potential information. For the learning of geometric
features, we introduce a recurrent network model that describes time series information based on local
image blocks. For this part, considering that when facial expressions occur, facial actions occur in a
certain time sequence, and the contribution of each local block is different. Therefore, the attention
mechanism in NLP can be introduced into the recurrent neural network, such as self-attention and
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multi-head attention. What is more, the convolution models currently used are all based on the
data with Euclidean structure to achieve feature learning. However, most data in real life exists
in non-Euclidean structures, but the convolutional neural network models seem to be invalid in
the face of such a data structure, because it has no translation invariance. In order to find a model
suitable for this structure, graph neural network (GNN) came into being, and then graph convolutional
neural network was also proposed. However, not all data have some kind of adjacency relationship,
forming a topological graph, so that poses another challenge for the application of graph convolutional
neural networks. In order to solve this problem, dynamic Graph Convolutional Network (GCN) was
introduced, based on a certain similarity calculation method to dynamically find the K neighbors
of each node, and then realize the aggregation of the features of the neighboring nodes. In terms of
feature aggregation for GCN, whether the aggregation function has a nonlinear injective property
plays a vital role in the performance of the entire model. We are considering combining the model
based on data with Euclidean structure and the model based on the data with non-Euclidean structure
to achieve end-to-end training, using the input of the former as the output of the latter for joint training.
In addition, in the division of local image blocks, we can try to obtain local image blocks based on 68
facial landmarks as the center. Such local blocks may be more sensitive to changes in facial movements.

All in all, there are many more spaces to explore, especially based on compound expression
recognition under natural scenes.
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Abbreviations

The following abbreviations are used in this manuscript:

DSAE Deep Stacked AutoEncoder

MTCNN Multi-task Cascaded Convolutional Neural Networks
LSTM Long Short Term Memory

BLSTM Bidirectional Long Short Term Memory

Seq-to-Seq Sequence-to-Sequence

HE Histogram Equalization

CLAHE Contrast Limited Adaptive Histogram Equalization
DoG Difference of Gaussian

FER2013 Facial Expression Recognition 2013

RAF Basic Real World Affective Faces-Basic emotions

RAF Compound  Real World Affective Faces-Compound emotions
LGC Local Gradient Code

HoG Histogram of Gradient

LBP Local Binary Pattern

SVM Support Vector Machine

dsift densesift

GNN Graph Neural Network

GCN Graph Convolutional Neural Network
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