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Automatic knowledge grounding is still an open problem in cognitive robotics.

Recent research in developmental robotics suggests that a robot’s interaction with its

environment is a valuable source for collecting such knowledge about the effects of

robot’s actions. A useful concept for this process is that of an affordance, defined as

a relationship between an actor, an action performed by this actor, an object on which

the action is performed, and the resulting effect. This paper proposes a formalism

for defining and identifying affordance equivalence. By comparing the elements of

two affordances, we can identify equivalences between affordances, and thus acquire

grounded knowledge for the robot. This is useful when changes occur in the set of actions

or objects available to the robot, allowing to find alternative paths to reach goals. In the

experimental validation phase we verify if the recorded interaction data is coherent with

the identified affordance equivalences. This is done by querying a Bayesian Network that

serves as container for the collected interaction data, and verifying that both affordances

considered equivalent yield the same effect with a high probability.

Keywords: affordance, learning, cognitive robotics, symbol grounding, affordance equivalence

1. INTRODUCTION

Symbolic grounding of robot knowledge consists in creating relationships between the symbolic
concepts used by algorithms controlling the robot and the physical concepts to which they
correspond (Harnad, 1990). An affordance is a concept that allows collection of grounded
knowledge. The notion of affordance was introduced by Gibson (1977), and refers to the action
opportunities provided by the environment. In the context of robotics, an affordance is a
relationship between an actor (i.e., robot), an action performed by the actor, an object on which
this action is performed, and the observed effect.

A robot able to discover and learn the affordances of an environment can autonomously adapt
to it. Moreover, a robot that can detect equivalences between affordances can quickly compute
alternative plans for reaching a desired goal, which is useful when some actions or objects suddenly
become unavailable.

In this paper, we introduce a method for identifying affordances that generate equivalent effects
(see examples in Figures 1, 2). We define a (comparison) operator that allows robots to identify
equivalence relationships between affordances by analysing their constituent elements (i.e., actors,
objects, actions).

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00026
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00026&domain=pdf&date_stamp=2018-06-08
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mandries@isr.tecnico.ulisboa.pt
https://doi.org/10.3389/fnbot.2018.00026
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00026/full
http://loop.frontiersin.org/people/482726/overview
http://loop.frontiersin.org/people/480027/overview
http://loop.frontiersin.org/people/522179/overview
http://loop.frontiersin.org/people/288381/overview


Andries et al. Affordance Equivalences in Robotics: A Formalism

FIGURE 1 | Example of equivalence between two objects for cleaning a whiteboard: a wiper and an eraser. The robot affords to clean the white board by wiping it

either with a wiper or an eraser.

FIGURE 2 | Example of equivalence between different actors and their actions for opening a door. A door can be opened by any robot that can interact with the door.

1.1. Affordance Discovery and Learning
All methods proposed in the literature for affordance learning
are similar in viewing an interaction as being composed of three
components: an action, a target object, and a resulting effect.
Different methods were proposed to infer the expected effect,
given knowledge about the action and target object.

Several papers approached affordance learning as learning
to predict object motion after interaction. For this purpose,
Krüger et al. (2011) employed a feedforward neural network
with backpropagation which learned so-called object-action
complexes; Hermans et al. (2013) used Support Vector Machines
(SVM) with kernels; while Kopicki et al. (2017) employed Locally
Weighted Projection Regression (LWPR) with Kernel Density
Estimation and a mixture of experts. Ridge et al. (2009) first
used a Self-Organising Map and clustering in the effect space to
classify objects by their effect, and then trained a SVM which

identified to which cluster an object belongs using its feature-
vector description.

Other papers addressed affordance learning from the
perspective of object grasping. Stoytchev (2005) employed
detection of invariants to learn object grasping affordances. Ugur
et al. (2012) used SVMs to study the traversability affordance of
a robot for grasping. Katz et al. (2014) used linear SVM to learn
to perceive object affordances for autonomous pile manipulation.
More details on the use of affordances for object manipulation
can be found in the dissertation of Hermans (2014).

Some works followed a supervised training approach,
providing hand-labeled datasets which mapped objects images
(2D or RGB-D) to their affordances. Myers et al. (2015) learned
affordances from local shape and geometry primitives using
Superpixel-based Hierarchical Matching Pursuit (S-HMP), and
Structured Random Forests (SRF). Image regions (from RGB-D
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frames) with pre-selected properties were tagged with specific
affordance labels. For instance, a surface region with high
convexity was labeled as containable (or a variation of it).
Varadarajan andVincze (2012) proposed anAffordanceNetwork
for providing affordance knowledge ontologies for common
household articles, intended to be used for object recognition and
manipulation. An overview of machine learning approaches for
detecting affordances of tools in 3D visual data is available in the
thesis of Ciocodeica (2016).

Another approach for learning affordances uses Bayesian
Networks. Montesano et al. (2008) and Moldovan et al.
(2012) employed a graphical model approach for learning
affordances, using a Bayesian Network which represents
objects/actions/effects as random variables, and which encodes
relations between them as dependency links. The structure of this
network is learned based on the data of robot’s interaction with
the world and on a priori information related to the dependency
of some variables. Once learned, affordances encoded in this way
can (1) predict the effect of an action applied to a given object, (2)
infer which action on a given object generated an observed effect,
and (3) identify which object generates the desired effect when
given a specific action.

Yet another popular method for supervised affordance
learning uses Deep Learning techniques. For instance, Nguyen
et al. (2016) trained a convolutional neural network to identify
object affordances in RGB-D images, employing a dataset
of object images labeled pixelwise with their corresponding
affordances. A similar approach using a deep convolutional
neural network was taken by Srikantha and Gall (2016).

Recent comprehensive overviews of affordance learning
techniques are available in the dissertation of Moldovan (2015),
and in reviews by Jamone et al. (2016), Min et al. (2016), and Zech
et al. (2017).

We argue that once affordances are learned, we can find
relations between affordances by considering the effects they
generate. One of these relations is equivalence, i.e., when two
different affordances specify corresponding actions on objects
that generate the same effect.

1.2. Affordance Equivalence
Affordance equivalence was studied by Şahin et al. (2007),
who considered relationships between single elements of an
affordance. Thus, it was possible to identify objects or actions that
are equivalent with respect to an affordance when they generate
the same effect. Griffith et al. (2012) employed clustering to
identify classes of objects that have similar functional properties.
Montesano et al. (2008) and Jain and Inamura (2013) treated
affordance equivalence from a probabilistic point of view, where,
in the context of imitation learning, the robot searches for
the combination of action and effect that maximises their
similarity to the demonstrated action on an object. Boularias
et al. (2015) discovered through reinforcement learning the
graspability affordance over objects with different shapes, and
indirectly showed equivalence of the grasp action.

Developing this line of thought, we propose a probabilistic
method to identify which combinations of affordance elements
generate equivalent effects. We first present in section 2 the

affordance formalization employed, and based on that we
then list in section 2.4 all the possible types of affordance
equivalences.

Since the purpose of this study is to identify equivalences
between affordances that were already recorded by the robot, we
are not seeking to explain how to record these affordances. In this
paper we employed the graphical model approach for learning
affordances proposed by Montesano et al. (2008). In addition,
we rely purely on perception-interaction data, without using a
priori information (Chavez-Garcia et al., 2016b). To facilitate
the experimental setup, we used pre-defined sensorial and motor
capabilities for our robots.

The remainder of this paper is organized as follows. In
section 2, we introduce our formalization of affordance elements,
and define the equivalence relationship in section 2.4. A
series of experiments on the discovery of equivalences between
affordances is detailed in section 3, together with the obtained
results. We conclude and present opportunities for future work
in section 4.

2. METHODOLOGY: AFFORDANCE
FORMALIZATION

In this section, we present the affordance formalism employed
throughout the paper.We follow the definition proposed by Ugur
et al. (2011), that we enrich by including the actor performing
the action into the affordance tuple (object, action, effect). The
inclusion of the actor into the affordance allows robots to record
affordances specific to their bodymorphologies. Although wewill
not focus on this aspect in this paper, it is possible to generalize
this knowledge through a change of affordance perspective from
robot joint space to object task space (more about this in section
2.1.2).

We define an affordance as follows. Let G be the set of actors
in the environment, O the set of objects, A the set of actions,
and E the set of observable effects. Hence, when an actor applies
an action on an object, generating an effect, the corresponding
affordance is defined as a tuple:

α = (actor, object, action, effect), for actor ∈ G, object ∈ O,

action ∈ A, and effect ∈ E, (1)

and can be graphically represented as shown in Figure 3.
From actor perspective, it interacts with the environment (the
object) and discovers the affordances. From object perspective,
affordances are properties of objects which can be perceived by
actors, and which are available to actors with specific capabilities.
We can also consider observers, who learn by perceiving other
actors’ affordance acquisition process.

The way in which affordance elements are defined influences
the operations that can be performed with affordances. Since we
aim to establish equivalence relationships between affordances,
we will analyse the definitions of the following affordance
elements: actions (from actor and object perspectives), objects
(as perceived by robot’s feature detectors), and effects (seen as a
description of the environment).
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FIGURE 3 | A graphical representation of an affordance. An object accepts

any action that fits its interface (shown on object’s left), and produces the

specified effect (shown on object’s right). Any actor capable of performing the

expected action on this object can produce the described effect.

2.1. How Are Actions Defined?
Actions can be defined (1) relative to actors, by describing the
body control sequence during the execution of an action in joint
space; or (2) relative to objects, by describing the consequences
of actions on the objects in operational space. We refer to object
perspective when the actions are defined in the operational/task
space, making their definition independent of the actor executing
them. We refer to actor perspective when the actions are defined
in the joint space of the actor, making them dependent of the
actor executing them.

This statement comes from the different perspectives obtained
from the affordance definition in Equation (1): actor and object
perspective.

2.1.1. Actions Described Relative to Actors
Actions are here described relative to actors and their
morphology. They are defined with respect to their control
variables in joint space (i.e., velocity, acceleration, jerk), indexed
by time τ :

action : {Q, Q̇, Q̈}τ (2)

As the action is described with respect to the actor morphology
and capabilities, comparing two actions requires comparing
both the actors performing the actions, and the actions
themselves. When the actors are identical, the action comparison
is straightforward. However, when there is a difference
between actors’ morphologies (and their motor capabilities), the
straightforward comparison of actions is not possible and a
common frame of reference for such comparison is needed.

2.1.2. Actions Described Relative to Objects
When actions are described relative to objects, they represent an
action generalisation from the joint space of a particular actor
(where actions are defined on the actor) to the operational space
of any actor (where actions are defined on the object).

Thus, when actions are described relative to objects, the
actor can be omitted from the affordance tuple, to indicate that
any actor which has the required motor capabilities is able to
generate the action which causes this effect. In addition, the
action employed in this representation is defined in operational
space (and not in joint space as before). Hence, dropping the actor
from the equation, we can rewrite Equation (1) as:

α = (object, action, effect), for object ∈ O, action ∈ Ao, and

effect ∈ E (3)

where Ao is the set of all actions in operational space, applicable
to object o.

While affordances defined from actor perspective (in joint
space, e.g., joint forces to apply) allow to learn using robot’s
motor and perceptual capabilities, affordances defined from
object perspective (in task space, e.g., forces applied on the object)
allow to generalise this knowledge.

2.2. How Are Objects Defined?
If an actor has the feature detectors p1, . . . , pn corresponding to
its perception capacities (such as hue, shape, size), then an object
is defined as:

object = {p1, . . . , pn}, (4)

where each feature detector can be seen as function on a
perceptual unit (e.g., a salient segment from a visual perception
process).

2.3. How Are Effects Defined?
We suppose that an actor g has a set ξ of q effect detectors,
that are able to detect changes in the world after an action
a ∈ Ag is applied. For example, when an actor executes
action push on an object, the object-displacement-effect detector
would be a function that computes the difference between two
measurements of the object position taken before and after
the interaction. Another effect can be the difference in the
feedback force measured in the end effector before and after the
interaction. Formally, effects are a set of q salient changes in the
world ω (i.e., in the target object, the actor, or the environment),
detected by robot’s effect detectors ξ :

effect = {ξ1(ω), . . . , ξq(ω)} (5)

2.4. Affordance Equivalence Operator
In this section, we introduce the concept of affordance
equivalence, based on the formalization presented earlier in
section 2. We provide truth tables for two different affordance
comparison operators: one for the case where actions are defined
in actor joint space, and one for the case where actions are defined
in object task space. For each case, we explore the possible types
of affordance equivalence.

We have defined an affordance as a tuple of type
(actor, object, actionjoint_space, effect) when the action is
defined relative to the actor, or as a tuple of type
(object, actionoperational_space, effect) when the action is defined
relative to the object. Let us now define the truth table for
an operator for comparing affordances (one for the actor
perspective, and one for the object perspective) and identifying
equivalence relationships between them.

We consider equivalent two affordances that generate
equivalent effects. To know when two effects are equivalent, an
effect-comparison function is required. We define an equivalence
function f (ea, eb) that yields true if two effects values ea and eb are
similar in a common frame (e.g., distances for position values,
similarity in color models, vector distances for force values).
We detect affordance equivalence by (1) feeding the continuous
(non-discretised) data on the measured effects to the Bayesian
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Network (BN) structure learning algorithm, and then (2)
querying the BN over an observed effect to obtain the empirical
decision on effect equivalence. Whenever two affordances
generate equivalent effects, it is possible to find which affordance
elements cause this equivalence. We distinguish several cases of
affordance equivalence, depending on the elements which differ
in two equivalent affordances, which are detailed below.

2.4.1. Equivalence Between Affordance With Actions

Defined Relative to Actors
The comparison cases for affordances with actions described
relative to actors are shown in Table 1. The 24 cases of
comparison between the elements of two affordances stem from
all the possible (binary) equivalence combinations between the
elements. In each case we compare the four components and
establish if the elements of affordances are equivalent.

Since actions are defined here relative to the actors, actors
with different morphologies cannot perform the same action
defined in joint space, because their joint spaces are different.
This renders inconsistent cases in which different actors perform
the same action: lines (3), (4), (7), and (8) in Table 1. This leaves
us with five cases of equivalence in Table 1, where:

• If different actors using different actions on different objects
generate an equivalent effect, then we have (actor, action,
object) equivalence

• If different actors using different actions on the same object
generate an equivalent effect, then we have (actor, action)
equivalence

• If the same actor using different actions on different objects
generates an equivalent effect, then we have (object, action)
equivalence

• If the same actor using the same action on different objects
generates an equivalent effect, then we have object equivalence

• If the same actor using different actions on the same object
generates an equivalent effect, then we have action equivalence.

We assume that the environment is a deterministic system:
each time the same actor applies the same action on the same
object, it will generate an equivalent effect. Therefore, generating
a different effect with the same actor, action, and object is
impossible, due to determinism.

Both the effect equivalence and non-equivalence cases provide
information about the relationship between two affordances.
The affordance equivalence concept is empirically validated in
section 3.

2.4.2. Equivalence Between Affordances With

Actions Defined Relative to Objects
The comparison cases for affordances with actions described
relative to objects are shown in Table 2. There are 23 cases
of comparison, corresponding to the total number of possible
(binary) equivalence cases between the elements of a pair of
affordances. In this case, three types of equivalence exist:

• If different actions on different objects generate the same
effect, then it is (object, action) equivalence;

• If same action on different objects generates the same effect,
then it is object equivalence;

• If different actions on same object generate the same effect,
then it is action equivalence.

3. EXPERIMENTS AND RESULTS:
AFFORDANCE EQUIVALENCE

We designed experiments that would confirm the capability
of our affordance representation to detect equivalences and
non-equivalences between learned affordances. We employed
a Bayesian Network structure-learning approach presented in
(Chavez-Garcia et al., 2016a) to describe and learn affordances as
relations between random variables (affordance elements). Then
we analyse how the learned affordances relate to each case of
equivalence presented in Table 2.

3.1. Pre-defined Actions
We assume that an agent is equipped, since its conception, with
motor and perceptual capabilities that we called pre-defined.
However, we do not limit the agent’s capabilities to the pre-
defined set, as through learning the agent may acquire new
capabilities. In our scenario, we employed three robotic actors of
different morphologies, each with its pre-defined actions:

1. Baxtergripper: the Baxter robot’s left arm (7 DOF) equipped
with a gripper, with actions:

• Push (moving with constant velocity without closing the
gripper)

• Pull (closing the gripper and moving with constant
velocity)

• Wipe (closing the gripper and pressing downwards while
moving)

• Move aside (closing the gripper and moving aside)

2. Baxternogripper: the Baxter robot’s right arm with no gripper,
with action:

• Poke (moving forwards with constant acceleration)

3. Katana arm with no gripper (5 d.o.f.), with action:

• Side push (moving aside with constant velocity)

The actors and their pre-defined sets of actions (motor
capabilities) are shown in Figure 4.

3.2. Pre-defined Perceptual Capabilities
Our visual perception process takes raw RGB-D data of
an observed scene to oversegment the point cloud into a
supervoxel representation. This 3D oversegmentation technique
is based on a flow-constrained local iterative clustering
which uses color and geometric features from the point
cloud (Papon et al., 2013). Strict partial connectivity between
voxels guarantees that supervoxels cannot flow across disjoint
boundaries in 3D space. Supervoxels are then grouped to
obtain object clusters that are used for extracting features and
manipulation. Figure 5 illustrates the visual perception process.
The objects employed were objects of daily use: toys that can
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TABLE 1 | Comparison of two affordances, when actions are described with respect to actors.

# Actors Objects Actions Effects Conclusion

1 different different different different (actor, object, action) non-equivalence

2 different different different equivalent (actor, object, action) equivalence

3 different different same different (actor, object) non-equivalence

4 different different same equivalent (actor, object) equivalence

5 different same different different (actor, action) non-equivalence

6 different same different equivalent (actor, action) equivalence

7 different same same different actor non-equivalence

8 different same same equivalent actor equivalence

9 same different different different (object, action) non-equivalence

10 same different different equivalent (object, action) equivalence

11 same different same different object non-equivalence

12 same different same equivalent object equivalence

13 same same different different action non-equivalence

14 same same different equivalent action equivalence

15 same same same different impossible in deterministic systems

16 same same same equivalent due to determinism

Equivalence cases between affordances are presented in even rows. Inconsistencies are underlined in red. The types of affordance equivalence are shown in bold letters.

TABLE 2 | Comparison of two affordances, when actions are described with

respect to objects.

# Objects Actions Effects Conclusion

1 different different different (object, action) non-equivalence

2 different different equivalent (object, action) equivalence

3 different same different object non-equivalence

4 different same equivalent object equivalence

5 same different different action non-equivalence

6 same different equivalent action equivalence

7 same same different impossible in deterministic systems

8 same same equivalent due to determinism

Equivalence cases between affordances are presented in even rows. The types of

affordance equivalence are shown in bold letters.

be assembled, markers, and dusters. The objects were selected
so as to be large enough to allow easy segmentation and
manipulation.

3.3. Pre-defined Effect Detectors
We used custom hand-written effect detectors for the
experimental use-cases, although our experimental architecture
allows for an automatic effect detector. An effect detector
quantifies the change, if present, in one property of the
environment or the actor. For this series of experiments, we
developed the following effect detectors: color change in a 2D
image (HSV hue) for an object or a region of interest; object’s
position change (translation only); and the end-effector position.
Figure 6 illustrates the detected effects when wipe action is
performed. In our previous work we covered changes in joint
torques, distance between finger grippers and object speed.

3.4. Affordance Learning
Affordance elements E (effects), O (objects) and A (actions) are
represented as random variables of a Bayesian Network (BN) B.
First, in each actor interaction we record the values (discretized)
for the random variables representing the objects (section 3.2),
actions (section 3.1), and effects (section 3.3). The problem of
discovering the relations between E, O, and A can be then
translated to finding dependencies between the variables inB, i.e.,
P(B|D) learning the structure of the corresponding network B

from data D. Thus, affordances are described by the conditional
dependencies between variables in B.

We implemented an information-compression score to
estimate how well a Bayesian Network structure describes data
D (Chavez-Garcia et al., 2016b). Our score is based on the
Minimum Description Length (MDL) score:

MDL(B|D) = LL(B|D)− |B|
logN

2
, (6)

where the first term measures (by applying a log-likelihood
score Suzuki, 2017) how many bits are needed to describe data
D based on the probability distribution P(B). The second term

counts the number of bits needed to encode B, where log(N)
2 bits

are used for each parameter in the BN. We consider log(N)
2 as

factor that penalizes structures with larger number of parameters.
For a BN’s structure B, its score is then defined as the posterior
probability given the data D.

We implemented a search-based structure learning algorithm
based on the hill-climbing technique, as we did in our previous
work. As inputs, this algorithm takes values for the variables in
E, O, and A obtained from robot’s interaction. This procedure
estimates the parameters of the local probability density functions
(pdfs) given a Bayesian Network structure. Typically, this is a
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FIGURE 4 | Set of pre-defined actions for three actors: Baxtergripper equipped with a 7 d.o.f. arm, and an electrical gripper attached to it, Baxternogripper equipped

only with a 7 d.o.f. arm, and Katana 5 d.o.f. arm without gripper. Poke is the only pre-defined action of actor Baxternogripper, and side push the only pre-defined action

of Katana. The arrows show the direction of the manipulator movement. The arcs show the position of the gripper with respect to the object, while the black bullet

represents the object.

FIGURE 5 | An example of the visual perception process output. From left to right: (A) reference image (B) RGB cloud of points of the scene (C) supervoxel extraction

(D) clusterization of supervoxels. For visual perception we use a Microsoft Kinect sensor that captures RGB-D data.

FIGURE 6 | Example of captured effects when performing the action wipe on the object duster. Left figure shows the spatial (pose) and perceptual (color) state of the

duster, and the surface. After wipe action is performed, the effects on position and in hue are detected: duster has changed position but not color, surface has

changed color but not position. Although for this experiment we do not use the force in the joints, we are also capturing these changes.

maximum-likelihood estimation of the probability entries from
the data set, which, for multinomial local pdfs, consists of
counting the number of tuples that fall into each table entry of
each multinomial probability table in the BN. The algorithm’s
main loop consists of attempting every possible single-edge
addition, removal, or reversal, making the network that increases
the score the most the current candidate, and iterating. The

process stops when there is no single-edge change that increases
the score. There is no guarantee that this algorithm will settle at a
global maximum, but there are techniques to increase its reaching
possibilities (we use simulated annealing).

By using the BN framework, we are capable of displaying
relationships between affordance elements. The directed
nature of its structure allows us to approximate cause-effects
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relationships. It also handles uncertainty through the established
probability theory. In addition to direct dependencies, we can
represent indirect causation.

3.4.1. Detection of Affordance Equivalence
Equivalence between two affordances can be identified by
comparing their ability to consistently reproduce the same effect
e, judging by the cumulated experimental evidence. The precise
type of equivalence between two affordances, which tells which
affordance elements’ values are equivalent, can be identified by
probabilistic inference on the learned BN. Inference allows to
identify which (actor, object, action) configurations are more
likely to generate the same effect. In practice, this inference is
calculated through executing queries to the Bayesian Network,
which allow to compute the probability of an event (in our case:
the probability of an effect having a value between some given
bounds) given the provided evidence data.

Queries have the following form: P(proposition|evidence)
where proposition represents the query on some variable x, and
evidence represents the available information for the affordance
elements, e.g., the identity of the actor, the description of the
action, and the description of the object. In the example of the
robot pushing an object, the following query allows to compute
the probability of the object displacement falling between certain
bounds:

P
(

(position > lower bound) and (position < upper bound) |

actor = Baxter, action = push, object = block
)

(7)

After querying the learned BN with the corresponding elements
from Tables 1, 2 as evidence, if two (actor, object, action)
configurations have probabilities of generating an effect that
are higher than an arbitrary threshold, then we consider both
affordances equivalent:

if P(e|actor1, object1, action1) > θ

and P(e|actor2, object2, action2) > θ (8)

then (actor1, object1, action1) ≡ (actor2, object2, action2)

For our experiments, we empirically established the equivalence
threshold θ = 0.85. The aforementioned querying process
connects the learning and reasoning steps, and according to the
current goal of an actor, it allows for an empirical threshold
selection or an adaptive mechanism.

3.5. Experimental Results
As shown in Table 1, affordances composed of 4 elements
(actor, object, action, effect), which have their actions defined
from the actor perspective, have five cases of equivalence (see
Figure 7 for some illustrated examples). We have selected three
of them to demonstrate the use of the affordance equivalence
operator: (object) equivalence, (action) equivalence, and (actor,
action) equivalence. In Figure 7 they correspond to the settings
(a), (b), and (c). These experiments are detailed below. For
a video demonstration of these experiments, please see the
Supplementary Material section at the end of this document.

3.5.1. The (Actor, Action) Equivalence
This experiment consisted in discovering the equivalence
between (actor, action) tuples. The goal was to identify
configurations that are equivalent in their ability of uncovering a
region of interest (a red mark on the table) by moving the object
occluding it from robot’s camera view (in the case of the Baxter
— a toy with features color: blue and shape: box; in the case of
the Katana actor — a box with the same perceptual features). In
our representation, two objects with the same perceptual features
are considered the same. Actor Baxtergripper is equipped with a
gripper and can perform actionmove_aside. Actor Baxternogripper
does not have a gripper and can only perform action poke. Actor
Katana does not have a gripper and can only perform side push
action.

The Bayesian Network structure was learned using data
from 15 interactions using each (actor, action) tuple (Figure 8).
Variables object_shape and object_color represent the object
features, variable color_mark captures the presence or absence
of a colored mark. Queries performed on the BN suggested that
the effect of revealing the red mark is consistently recreated
when moving the object toy, with a probability of 0.98 for
the action move_aside done by the hand with a gripper,
0.97 for the action poke done by the hand with no gripper,
and 0.94 for the action side_push done by the Katana arm
on the box object. The probabilities are based on the total
number of trials verifying these relationships. Since these
affordances consistently recreate equivalent effects while having
some equal elements (same toy object for Baxtergripper and
Baxternogripper, and a similar object for Katana), this points
that affordance elements that differ between configurations are
in fact equivalent in their ability to generate the effect of
revealing the red mark, i.e., the tuples (Baxternogripper, poke),
(Baxtergripper, move_aside) and (Katana, side_push). Source code
of the experimental setup for the Katana actor is available at
https://romarcg@bitbucket.org/romarcg/katana_docker.git.

3.5.2. The (Object) Equivalence
The experiment consisted in determining the equivalence
between two visually different whiteboard dusters: dusterblue and
dusterorange. Actor Baxtergripper applies the same action wipe to
remove a red marker trace from a blue colored surface, as shown
in Figures 4, 6. For distinguishing the clean blue colored surface
from the surface dirtied with the red marker, the robot’s pre-
defined effect detector measured the effect on the hue extracted
from an HSV histogram.

The robot performed 25 trials of the wipe action with each
duster, and the obtained data was subsequently used to learn
the Bayesian Network structure (see Figure 8B). Objects are
represented in the same way as in section 3.5.1. The effect
capturing the change in the wiped area is described by the
variable color_effect. Queries revealed that the wipe action cleans
the red marker trace from the blue colored surface with a
probability of 0.95 in both cases. Since the observed effects were
equivalent, and the actor and action were the same, the objects
dusterblue and dusterorange are considered equivalent in their
ability to reach this effect.
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FIGURE 7 | Illustrated examples for each of the five types of affordance equivalences, from the actor perspective, when affordances are represented as (actor, object,

action, effect) tuples: (A) A robot can use two different objects (wiper/eraser) to obtain the same effect of obtaining a clean whiteboard when performing wipe action.

(B) A robot can perform two different actions (push/pull) to obtain the same effect of revealing a book underneath. (C) Two different robots can perform two different

actions on the same object to obtain the same effect of opening a door. (D) A robot can perform two different actions (pull/push) on two different objects (door

handle/door) in order to obtain the same effect of opening those doors. (E) Two robots can apply two different actions on two different objects (light switch, lamp) to

obtain the effect of turning on the light.

3.5.3. The (Action) Equivalence
In this experiment we analysed equivalence between the actions
of an actor. This experiment consisted in placing the same object
toy into a desired location using two different actions push and

pull of the actor Baxtergripper. The robot performed 30 trials using
each of the push and pull actions. Figure 8C shows the learned
BN for (action) equivalence. The arrival of the object (described
as in previous experiments) to the desired position is described
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FIGURE 8 | Learned Bayesian networks for the experiments. (A) (actor, action) equivalence between Baxter and Katana actors using different movements to

reveal a colored region of interest (section 3.5.1). The BN shows the dependence between the chosen actors and actions and the revelation of the colored region of

interest. (B) (object) equivalence between two dusters of different colors that clean a whiteboard (section 3.5.2). The BN shows the irrelevance of object_color

feature for the wiping affordance. (C) (action) equivalence between push/pull actions (section 3.5.3). The BN shows the relation between the chosen action and the

final displacement of the object (feature x_end).

by the effect variable x_end (only the x component of the 3D
position was measured). The target location to which we aim to
push/pull the object is at x coordinate 0.72 ± 0.02m. Variable
object_x_start is an object feature representing the object initial
position. According to the BN that processed the obtained data,
there was a 0.97 probability to pull the object to the desired
location, and a 0.89 chance to do so by pushing it. With all the
rest being equal (the actor, object, and effect are the same), and
since both actions have a high probability of generating the given
effect, these push and pull actions can be considered equivalent
for placing the object toy in a desired location.

4. CONCLUSIONS AND FUTURE WORK

Wehave presented a formalization for affordances with respect to
their elements, and the equivalence operator for comparing two
affordances from the actor and object perspective. We performed
Bayesian Network structure learning to capture affordances
as sensorimotor representations based on the observed
experimental data. We analysed and validated experimentally
the affordance equivalence operator, demonstrating how to
extract information on the tuples of actors, actions and objects
by comparing two affordances and determining if such tuples are
equivalent.

In practice, the learned affordance equivalences can be
interchangeably used when some objects or actions become
unavailable. In a multi-robot setting, these equivalences can
allow an ambient intelligence (an Artificial Intelligence system
controlling an environment) to select the appropriate robot for
using an affordance to reach a desired effect.

4.1. Future Work
Our future work will focus on the domain of transfer learning.
We plan to implement a transformation between the affordances
learned by specific robots (in their own joint space) to affordances
applicable to objects and defined in their operational space. This
will generalise the affordances learned and perceivable by a robot
with a specific body schema, making them perceivable (and
potentially available) to robots with any type of body schema
(morphology).

We are already working on an automatic method for
generating 3D object-descriptors. This would allow us to remove
human bias from the way in which the robot observes and

analyses its environment. By using an auto-encoder (a type of
artificial neural network) that trains on appropriate datasets, it
can automatically adapt to changes in objects that the robot
interacts with.

Work is also underway on representing robot actions in a
continuous space (e.g., using a vector representation of torque
forces, or Dynamic Movement Primitives), which would be an
improvement from today’s discrete representation of actions
(e.g., move, push, pull).

Ultimately, we intend to define an algebra of affordances
detailing all the operations that are possible on affordances,
and which would encompass operators such as affordance
equivalence, affordance chaining (Ugur et al., 2011), and other
operators that are still to explore.
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