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Offline low‑frequency rTMS 
of the primary and premotor 
cortices does not impact motor 
sequence memory consolidation 
despite modulation of corticospinal 
excitability
Felix Psurek1, Bradley Ross King2, Joseph Classen1 & Jost‑Julian Rumpf1*

Motor skills are acquired and refined across alternating phases of practice (online) and subsequent 
consolidation in the absence of further skill execution (offline). Both stages of learning are sustained 
by dynamic interactions within a widespread motor learning network including the premotor and 
primary motor cortices. Here, we aimed to investigate the role of the dorsal premotor cortex (dPMC) 
and its interaction with the primary motor cortex (M1) during motor memory consolidation. Forty-
eight healthy human participants (age 22.1 ± 3.1 years) were assigned to three different groups 
corresponding to either low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) 
of left dPMC, rTMS of left M1, or sham rTMS. rTMS was applied immediately after explicit motor 
sequence training with the right hand. Motor evoked potentials were recorded before training 
and after rTMS to assess potential stimulation-induced changes in corticospinal excitability (CSE). 
Participants were retested on motor sequence performance after eight hours to assess consolidation. 
While rTMS of dPMC significantly increased CSE and rTMS of M1 significantly decreased CSE, no CSE 
modulation was induced by sham rTMS. However, all groups demonstrated similar significant offline 
learning indicating that consolidation was not modulated by the post-training low-frequency rTMS 
intervention despite evidence of an interaction of dPMC and M1 at the level of CSE. Motor memory 
consolidation ensuing explicit motor sequence training seems to be a rather robust process that is not 
affected by low-frequency rTMS-induced perturbations of dPMC or M1. Findings further indicate that 
consolidation of explicitly acquired motor skills is neither mediated nor reflected by post-training CSE.

The acquisition of a new motor skill is a multi-staged process that evolves both “online”, concurrent with repeated 
skill execution, and “offline”, between training sessions1,2. The latter is referred to as motor memory consolida-
tion during which the initially fragile training-induced internal skill model is secured against interference and 
transformed into a more robust representation in the absence of further skill execution1,3–6. In recent years, a 
large body of evidence has pointed to a fundamental role of the primary motor cortex (M1) for processing offline 
motor memory consolidation2–4,7–9. With respect to the neurophysiological mechanisms that may underlie the 
role of M1 in motor sequence consolidation, Tunovic and co-workers8 reported that the induction and magnitude 
of offline-performance increments following motor sequence training was associated with the level of post-
training corticospinal excitability (CSE). However, a large body of evidence shows that sequential motor skill 
acquisition is sustained by specific and temporally dynamic interactions between multiple nodes of a widespread 
neural network that—in addition to M1—encompasses secondary motor cortical areas, parietal areas, as well 
as basal ganglia, hippocampus, the cerebellum, and the spinal cord9–15. Within this network, recent research has 
identified the dorsal premotor cortex (dPMC) as a region that (i) has been shown to modulate excitability and 
plasticity in M1 by interconnections16–19, (ii) plays an important role in the process of online motor memory 
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formation9,20–22, and (iii) may thus also be crucially involved in offline motor memory consolidation after motor 
practice. The relevant involvement of dPMC in offline motor memory consolidation is supported by several 
studies demonstrating modulation of offline motor sequence consolidation by non-invasive brain stimulation 
(NIBS) of the dPMC23–28. However, the interpretation of these previous findings in terms of a crucial role of the 
dPMC specifically during post-training motor memory consolidation is difficult, as behavioural effects induced 
by “excitatory” or “inhibitory” NIBS protocols were inconsistent and the timing of the NIBS intervention in 
relation to the motor training session (i.e., pre, during, or after) differed across studies.

In the current study, we investigated dPMC and M1 specifically in terms of their role in post-training offline 
motor memory processing. Findings of previous studies that investigated implicit motor sequence learning 
suggest that immediate post-training “inhibitory” low-frequency rTMS of the dPMC promotes consolidation24 
while post-training low-frequency rTMS-induced treatment of M1 blocks motor memory consolidation4. This 
may point towards opposing roles of the dPMC and M1 during offline motor memory processing after implicit 
skill acquisition. However, given the evidence that the premotor cortex is particularly critical in explicit acquisi-
tion of sequential motor skills22,29–32, we applied a purely explicit and ecologically valid motor sequence learn-
ing paradigm. Twenty minutes of offline (i.e., post-training) low-frequency repetitive transcranial magnetic 
stimulation (rTMS) was used to transiently disrupt motor memory processing in the dPMC and M1 during the 
early consolidation process immediately after a motor sequence training session in the morning. Effects of post-
training stimulation on behavioral markers of consolidation were assessed with a delayed retest in the afternoon 
administered eight hours after the post-training rTMS intervention. Additionally, we assessed post-training 
rTMS-induced changes in CSE to gain insight into the potential interaction of the dPMC with M1 during early 
motor memory consolidation following explicit skill acquisition and to further explore the association of post-
training CSE changes with offline consolidation. If malleability of motor memory consolidation by offline NIBS of 
the dPMC and M1 proves to be a robust finding, it would be conceivable to explore its potential as a therapeutic 
tool to specifically target and modulate motor memory consolidation in the future.

Methods
Ethical standards.  The study protocol was approved by the institutional ethical standards committee at 
the University of Leipzig (registration code: 326/18-ek). All methods were performed in accordance with the 
relevant guidelines and regulations and all participants provided written informed consent before study-related 
procedures were conducted.

Participants.  Fifty-two young, healthy, and right-handed participants aged between 18 and 30 years (39 
female; mean age 22.1 ± 3.1 years) were recruited via social media or adverts on the local notice board at the Uni-
versity of Leipzig and completed the experiment. All participants were naïve to the motor sequence learning task 
and the purpose of the experiment. None of the participants had previously experienced 1 Hz rTMS or any other 
type of transcranial magnetic stimulation. Right-handedness was verified using the Edinburgh-Handedness-
Inventory (EHI33). None of the participants reported a history of neurological or psychiatric disorders (including 
abuse of alcohol or other illicit drugs) and none of the participants had a relevant medical condition (e.g., rheu-
matoid arthritis) that might impair task execution. Exclusion criteria further encompassed having been trained 
as a professional typist or a professional musician to exclude individuals in which dexterous sequential finger 
movements like in the task employed in our study were likely “overtrained”, which might confound the rate 
and magnitude of online and offline task learning. Additional TMS-specific exclusion criteria comprised a his-
tory of seizure, central nervous system active medication, and current pregnancy. All participants were further 
screened for symptoms of depression using the short version of the Beck-Depression-Inventory34. The Stanford-
Sleepiness-Scale35 was applied before the initial training session in the morning and the delayed retest session in 
the evening to assess the possibility that the task execution was confounded by relevant between-group differ-
ences in terms of sleepiness/vigilance. Data of four participants were excluded due to insufficient learning of the 
task as indicated by a negative learning slope across the initial training session (3 participants in the M1 rTMS 
group, 1 participant in the dPMC rTMS group). The final data set, therefore, comprised experimental data of 48 
participants (demographic information is detailed in Table 1).

Table 1.   Group characteristics. Stanford-Sleepiness-Scale score before training (SSS_training) and before 
retest (SSS_retest); N number of participants, BDI Beck-Depression-Inventory, EHI Edinburgh-Handedness-
Inventory, RMT Resting Motor Threshold, MEPpre individual stimulation intensity to elicit MEPs of ~ 1 mV at 
baseline. All values (excluding sex and number of participants) are displayed as mean ± standard deviation.

Group N Age, years Sex, w/m SSS_training SSS_retest BDI, score EHI, score

RMT, % 
stimulator 
output

MEPpre, % 
stimulator 
output

M1 
rTMS 16 23.2 ± 3.4 13/3 1.81 ± 0.75 2.50 ± 1.27 3.6 ± 2.9 78.5 ± 17.2 33.1 ± 4.1 39.9 ± 4.4

dPMC 
rTMS 16 20.9 ± 2.2 12/4 2.19 ± 0.54 2.81 ± 0.83 2.4 ± 1.5 80.5 ± 23.2 33.4 ± 4.0 40.5 ± 4.4

SHAM 
rTMS 16 22.1 ± 3.4 11/5 2.25 ± 0A.58 2.31 ± 0.79 2.3 ± 3.0 82.8 ± 15.4 35.8 ± 5.3 41.2 ± 6.1
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Experimental procedure.  The experiment consisted of a motor sequence training session in the morning 
and a delayed retest session after eight hours to assess offline performance changes. Participants were randomly 
assigned to one of three different groups corresponding to three different post-training rTMS interventions 
(i.e., rTMS applied to the primary motor cortex, M1 group; rTMS applied to the dorsal premotor cortex, dPMC 
group; sham rTMS, SHAM rTMS group). Immediately following the completion of the initial training session 
post-training 1 Hz rTMS was applied for 20 min using individualized stimulation intensities (for details see 
below). CSE was assessed by recording TMS-induced motor-evoked potentials from the right abductor pollicis 
brevis muscle (APB) before the initial training session (MEPpre) and immediately after termination of the post-
training rTMS intervention (MEPpost; Fig. 1).

Motor sequence learning task.  To assess explicit motor sequence learning, we applied a modified ver-
sion of the explicit sequential finger-tapping task introduced by Karni and colleagues7. Participants were asked 
to perform a five-element finger-tapping sequence (4-1-3-2-4; where 1 = index finger, 2 = middle finger, 3 = ring 
finger, 4 = little finger) on a four-button keyboard with the right hand. Prior to the beginning of the actual train-
ing session, participants were required to correctly reproduce the finger-tapping sequence on the keyboard three 
times in a row to verify explicit knowledge of the sequence. Both the training session and the delayed retest ses-
sion after eight hours encompassed 14 blocks of successive sequence execution, which were separated by 25-s 
rest intervals. A green visual cue displayed on a computer monitor in front of the participants indicated an active 
training block, while a rest period was indicated by a switch of the cue colour to red (i.e., after 60 key taps). Par-
ticipants were instructed to perform the finger-tapping sequence as fast as possible, while making as few errors 
as possible. Unbeknownst to the participants, each block of active task execution was terminated after 60 key 
taps, resulting in a maximum number of 12 correct sequences per block. This design ensures that all participants 
received the same amount of training (i.e., performed the same number of finger movements).

Transcranial magnetic stimulation.  Transcranial magnetic stimulation was applied by a MagPro X100 
(MagVenture, Farum, Denmark) connected to a MagVenture MC-B70 70 mm figure‐of‐eight coil. The stimula-
tion coil was placed tangentially over the left hemisphere and the handle of the coil was pointed diagonally to 
the floor behind the subject with an angle of approximately 45 degrees. Electromyography of the right abductor 
pollicis brevis muscle (APB) was recorded using a Digitimer D360 (Digitimer Ltd., Letchworth Garden, UK). 
The “motor hotspot” for stimulation of the M1 hand area was identified by applying low-frequency (< 0.2 Hz) 
stimulation at multiple sites likely overlying left M1 while recording surface EMG from the right APB. We then 
obtained individual APB resting motor thresholds (RMT) using threshold hunting36. BrainSight 2 Neuronaviga-
tion (Brain Products, Gilching, Germany) aided to guide constant coil positioning throughout the experiment 
via virtual landmarks on the scalp. The post-training rTMS intervention encompassed the application of 1200 
TMS pulses at a frequency of 1 Hz (i.e., 20 min of stimulation) with the stimulator output intensity set to 110% 
of the individual RMT. For the post-training rTMS intervention in the M1 group, the coil was placed over the 
individual “motor hotspot”, whereas post-training rTMS of the dorsal premotor cortex in the dPMC group was 
applied with the similarly oriented coil placed 2.5 cm anterior of the APB “motor hotspot”17,18. In the SHAM 
group, rTMS was applied at the same frequency and stimulator output intensity, but the coil was placed vertically 
to the scalp approximately over M1. This procedure results in the characteristic TMS-sound while providing no 
effective stimulation. During the post-training stimulation period, participants were asked to remain seated as 
still as possible with their eyes open. Coil positioning and orientation to stimulate M1 or dPMC were kept con-
stant by using the neuro-navigation system. APB surface EMG was recorded across the post-training stimulation 
period to verify that the right hand was relaxed, to assess potential changes of APB MEP amplitude sizes across 
time in the M1 group and to demonstrate that post-training dPMC rTMS did not induce suprathreshold M1 
stimulation caused by current spread due to the proximity of stimulation sites. To assess potential rTMS-induced 
modulation of corticospinal excitability (CSE), 20 APB-MEPs that were elicited at 0.1 Hz with the stimulator 
output set to an individually adjusted intensity to produce MEPs of ~ 1 mV were recorded before introduction 

Figure 1.   Experimental design. At the onset of the experiment, 20 motor evoked potentials (MEPs) of 
the right abductor pollicis brevis muscle (APB) were evoked at 0.1 Hz with the stimulator output set to an 
individually adjusted intensity to elicit MEPs of ~ 1 mV (MEPpre). This baseline assessment of corticospinal 
excitability (CSE) was followed by 14 blocks of task training with the right hand (TRAINING). Immediately 
after termination of TRAINING, participants received low-frequency (1 Hz) repetitive transcranial magnetic 
stimulation (rTMS) of either the left primary motor cortex (M1 rTMS), the dorsal premotor cortex (dPMC 
rTMS), or SHAM rTMS. 20 MEPs from the APB were again recorded (MEPpost) with the same individually 
adjusted stimulator output level as during the MEPpre assessment. Participants were retested on task 
performance (14 blocks) after an interval of 8 h (RETEST).
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of the task and onset of training (MEPpre) and immediately following the post-training rTMS intervention 
(MEPpost; Fig. 1).

Data acquisition and analysis.  Custom MatLab (Mathworks, Natick, USA) scripts were used to record 
the timing of key presses and to extract measures of speed performance and accuracy. Speed was defined as 
the average time (seconds) needed to execute correct sequences within a given block of task training (correct 
sequence duration, CSD). Accuracy was defined as the ratio of the number of correctly performed sequences 
per block divided by the maximum number of correct sequences per block (i.e., 12). To take potential interin-
dividual differences into account with respect to the strategy to improve task performance (e.g., prioritize speed 
over accuracy, or vice versa), we additionally quantified task performance using a performance index (PI) that 
incorporates both equally important components of task performance37.

where x = block of trials.
Effects of repeated practice on task performance across the initial training session and the delayed retest 

session (i.e., online performance changes) were assessed by applying separate repeated measures analyses of vari-
ance (rmANOVA) to the training and retest speed, accuracy, and combined PI values with Group (post-training 
M1, dPMC, SHAM rTMS) as the between-subject factor and Block (e.g., B1, …, B14) as within-subject factor. 
This allowed us to investigate potential between-group differences in terms of the magnitude and rate of online 
performance changes as a function of repeated practice within the training and delayed retest sessions. Offline 
consolidation effects were computed as the difference between the individual end-of-training baseline (EoT; 
i.e., average performance across the last 4 blocks of the training session) and the performance at the beginning 
of the delayed retest (BoRT, performance in the first block of the delayed retest) so that positive values indicate 
offline performance increments relative to EoT and negative values indicate offline performance impairments. 
We chose to use only the first block of retesting to compute offline consolidation to not confound the consolida-
tion measure with additional online learning.

Electromyographic data was recorded using “CED Signal” (Cambridge Electronic Design Ltd., Cambridge, 
England) and manually processed with the “palMEP” tool (Perellón-Alfonso et al. 2018). All recorded MEPs were 
evaluated separately and discarded if any artefacts (pre-activation, voluntary movements etc.) were observed in 
the EMG recordings. For evaluation of potential rTMS-induced effects on CSE, we averaged MEP amplitude sizes 
across MEPpre and across MEPpost assessments and applied a rmANOVA with the within-subject factor Time 
(MEPpre, MEPpost) and the between-subject factor Group to these values. To assess alterations of CSE across 
the 20 min of the post-training 1 Hz rTMS intervention in the M1 group, MEP amplitude sizes were averaged 
across blocks of 4 min (240 frames) each and analysed using rmANOVA with the within-subject factor Time 
(minutes 1–4, 5–8, 9–12,13–16, 17–20).

Spearman´s rank correlation coefficient was applied to assess associations of rTMS-induced modulation of 
CSE (difference between MEPpost and MEPpre; MEPpost) and the magnitude of offline performance changes.

All statistical analyses were performed with SPSS 25 (SPSS, Chicago, IL, USA). For all statistical tests, the 
alpha level was set to p < 0.05. rmANOVAs were checked for violation of sphericity and degrees of freedom and 
p-values were corrected accordingly if necessary (Greenhouse–Geisser correction).

Results
Participant characteristics.  Demographic information and characteristics of the three groups (M1, 
dPMC, SHAM rTMS) corresponding to the three different post-training rTMS interventions are detailed in 
Table  1. There were no significant between-group differences in terms of age, sex, depressive symptoms as 
assessed by the BDI, handedness as assessed with the EHI, the baseline resting motor threshold, nor the stimu-
lation intensity required to elicit MEPs of approximately 1 mV (all p ≥ 0.114). There were also no significant 
differences in terms of vigilance before training (p = 0.161), and before the delayed retest (p = 0.265) as assessed 
with the Stanford-Sleepiness-Scale. This collectively indicates that potential between-group differences in terms 
of online and offline motor learning are unlikely to be generated by differences in group demographics and 
characteristics.

Offline low‑frequency rTMS‑induced effects on corticospinal excitability.  Pre-training baseline 
CSE as indexed by average MEP amplitude was 0.91 mV (CI 0.73–1.09) in the M1 rTMS group, 0.93 mV (CI 
0.57–1.28) in the dPMC rTMS group, and 0.88 mV (CI 0.59–1.16) in the SHAM rTMS group and, thus, did not 
significantly differ between groups (F(2,45) = 0.037, p = 0.964). A rmANOVA including the between-subject factor 
Group (M1, dPMC, SHAM) and the within-subject factor Time (MEPpre, MEPpost) revealed a significant main 
effect of Group (F(2,45) = 5.898, p = 0.005) and a significant Time x Group interaction (F(2,45) = 7.684, p = 0.001) in 
the absence of a main effect of Time (F(1,45) = 1.588, p = 0.214). Subsequent rmANOVA showed that the significant 
interaction of Time x Group was driven by a significant decrease of the average MEPpost amplitude compared 
to the average MEPpre amplitude in the M1 rTMS group (− 0.337 mV, CI − 0.566 to − 0.109, Time: F(1,15) = 9.886, 
p = 0.007), while there was a significant MEP amplitude increase in the dPMC rTMS group (+ 0.868 mV, CI 
0.202–1.535; Time: F(1,15) = 7.706, p = 0.014), and no relevant change of CSE in the SHAM group (− 0.037 mV, CI 
− 0.486–0.412; Time: F(1,15) = 0.031, p = 0.863; Fig. 2). Collectively, this demonstrates that post-training CSE was 
significantly and differentially modulated depending on the type/location of the post-training rTMS interven-
tion. While, as expected, post-training 1 Hz M1 rTMS significantly decreased the size of the MEP amplitudes, 
post-training 1 Hz rTMS of the dPMC significantly increased CSE compared to the pre-training assessment. 
Evaluation of the evolution of CSE across the post-training 1 Hz rTMS intervention directed to M1 showed that 

PIx = 100 ∗ e
−CSDx

∗ e
ACCx−1
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the MEP amplitude size decreased from an average of 0.382 mV (CI 0.017–0.746) during the first four minutes 
to 0.245  mV (CI 0.088–0.402; rmANOVA Time: F(1.15,16.13) = 1.558, p = 0.234) across the last four minutes of 
stimulation (please note that data of one participant were excluded from this ANOVA due to missing data at the 
beginning of the post-training rTMS stimulation period). No MEPs were detected during the post-training 1 Hz 
SHAM rTMS intervention or during the 1 Hz dPMC stimulation. The latter observation demonstrates absence 
of supra-threshold current spread despite the proximity of the dPMC stimulation site to M1.

Behavioural results.  Accuracy.  Accuracy of task performance was very high amounting to 0.937 (CI 
0.924–0.951) across the training and delayed retest sessions, indicating that participants, on average, produced 
less than one incorrect sequence per block (Fig. 3A). Moreover, a rmANOVA conducted on the accuracy meas-
ure revealed no significant effect for the factors Group (M1, dPMC, SHAM rTMS) and Block (B1, …, B14), or 
the interaction of both factors across the initial training session (all p ≥ 0.385) as well as across the delayed retest 
session (all p ≥ 0.117). Collectively, this indicates that motor sequence performance in terms of accuracy was not 
modulated by repeated task practice, potentially because participants performed at or close to accuracy ceiling 
even at the beginning of the experiment. Online task learning and potential effects of the rTMS intervention on 
offline consolidation were therefore assessed using speed as the primary performance measure.

Training session–online learning.  A rmANOVA conducted on the speed performance measure (CSD) with the 
between-subject factor Group (M1, dPMC, SHAM rTMS) and the within-subject factor Block (B1, …, B14) 
revealed a significant main effect of Block (F(3.79,170.35) = 54.745, p < 0.001) in the absence of a significant main 
effect of Group (F(2,45) = 0.011, p = 0.989), or a significant interaction of both factors (F(7.57,170.35) = 0.763, p = 0.629). 
Average baseline CSD in the first block of the training session amounted to 1.624 s (CI 1.480–1.769) and did not 
significantly differ between groups (F(2,45) = 0.038, p = 0.963). Speed performance reached a similar asymptotic 
plateau in all groups at the end of the training session (EoT, average performance across the last 4 blocks of the 
training session; 1.068 s, CI 0.977–1.160), as indicated by a non-significant effect of Block (F(2.45,110.45) = 1.669, 
p = 0.186) and Group (F(2,45) = 0.003, p = 0.997), and the absence of a significant interaction of Block × Group 
(F(4.91,110.45) = 1.164, p = 0.332). The above results, collectively, indicate that participants in all groups increased 
speed of performance at a similar rate across the initial training session and reached similar asymptotic perfor-
mance at the end of the training session (EoT), against which consolidation effects were assessed. This rules out 
that potential effects of the following offline rTMS intervention on consolidation may have been confounded by 
differences of online skill acquisition during the training session.

Delayed retest—offline consolidation.  Offline performance changes as measure of consolidation were assessed 
between EoT (average performance across the last 4 blocks of training) and the performance at the beginning 
of the delayed retest (BoRT, first block of delayed retesting). rmANOVA including the within-subject factor 
Time (EoT, BoRT) and the between-subject factor Group revealed a significant main effect of the factor Time 
(F(1,45) = 8.605, p = 0.005), which was driven by an offline speed (CSD) improvement between EoT and BoRT of 
63.8 ms (CI 20.9–106.6) across all groups. There was no significant main effect of the factor Group (F(2,45) = 0.005, 

Figure 2.   1 Hz rTMS-induced effects on corticospinal excitability. Mean amplitudes of 20 motor evoked 
potentials (MEPs) before the training session (MEPpre) and immediately after (MEPpost) 20 min of post-
training 1 Hz rTMS of the primary motor cortex (M1 rTMS), the dorsal premotor cortex (dPMC rTMS), or 
sham rTMS. Error bars indicate the standard error of the mean. The asterisks indicate significant differences 
between the MEPpre and MEPpost assessments, p < 0.05.
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p = 0.995), and, most importantly, no significant interaction of Group x Time (F(2,45) = 0.162, p = 0.851; Fig. 3B). 
This indicates that, although 1 Hz rTMS of M1 and 1 Hz rTMS of dPMC significantly modulated post-training 
CSE in different directions, neither type of intervention had a relevant effect on the consolidation process com-
pared with the sham intervention. Of note, we had decided to use the first block of retesting to compute offline 
performance changes against EoT to not confound the consolidation measure with additional task training and 
potential online learning effects. However, the above results remain similar if averages of different subsets of 
delayed retest blocks (e.g., average of the first two, three, or four retest blocks) were used to compute the con-
solidation measure.

We further assessed whether the post-training rTMS intervention may have affected potential differences in 
online learning across the delayed retest session by applying a rmANOVA on the CSD values across the 14 blocks 
of delayed retesting. This analysis revealed a significant main effect of Block (F(6.37,286.74) = 7.700, p < 0.001), while 
there was no significant main effect of Group (F(2,45) = 0.209, p = 0.812), nor a significant interaction of Group x 
Block (F(12.74, 286.74) = 1.155, p = 0.314), indicating similar online learning across the delayed retest session inde-
pendent of the previous post-training rTMS intervention. In addition to the observation of significant offline 
performance improvements from EoT to BoRT across all groups, the significant Block effect in this rmANOVA 
suggests that the lack of a between-group difference in offline consolidation cannot be attributed to reaching 
a ceiling in performance speed at the end of the initial training session. In accordance with the above results, 
non-parametric correlation analyses revealed no relevant association of the magnitude of offline performance 
changes between EoT and BoRT with the amplitude of the MEPpost amplitudes (r = 0.139, p = 0.346) nor with 
the magnitude of rTMS-induced changes in CSE (Delta MEPpost—MEPpre; r = − 0.055, p = 0.713).

Performance index.  Although average accuracy across blocks and groups was not relevantly modulated by the 
task, we chose to additionally apply a performance index incorporating speed and accuracy measures to account 
for potential interindividual differences with respect to the strategy to improve task performance (e.g., prioritize 
speed performance at the expense of accuracy). A rmANOVA conducted on the PI values across the training ses-

Figure 3.   Behavioural results. (A) Performance changes of all three experimental groups (post-training M1 
rTMS, dPMC rTMS, and SHAM rTMS) across blocks of task execution in terms of speed (mean duration of 
a correct sequence, CSD), accuracy (ratio of the number of correct sequences per block/number of maximum 
correct sequences per block), and the combined performance index. The grey column between the training and 
retest graphs represents the 8-h break interval. Error bars indicate the standard error of the mean. (B) Offline 
task performance changes (difference) between end-of-training (mean performance across the last 4 blocks of 
the training session) and beginning of the delayed retest (first block of delayed retesting). Note that differences 
were computed such that positive values indicate offline performance improvements (i.e., offline learning). Error 
bars indicate the standard error of the mean (n.s.: not significant).
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sion revealed a significant main effect of Block (F(6.08,272.77 = 41.049, p < 0.001) in the absence of a significant effect 
of Group and absence of a significant interaction of Group x Block (both p ≥ 0.837), indicating similar online 
learning across the training session (Fig. 3A) Initial average PI of the first block of training amounted to 21.38 
(CI 18.43–24.33) and reached an average of 34.04 (CI 31.08–36.99) across the last four blocks of training (EoT). 
Similar to the speed performance analysis, a rmANOVA with the within-subject factor Time (EoT, BoRT) and 
the between-subject factor Group was conducted to assess potential differences in offline consolidation. While 
there was a significant effect of the main factor Time (F(1,45) = 14.948, p < 0.001), this analysis revealed no signifi-
cant effect of Group nor a significant interaction of factors Time x Group (both p ≥ 0.483). The significant main 
effect of time was driven by an offline average PI improvement between EoT and BoRT of 2.81 (CI 1.36–4.27) 
across all groups (Fig. 3B), indicating significant offline learning during the consolidation period irrespective of 
the type of post-training rTMS intervention (again, results were similar when different subsets of retest blocks 
were defined as BoRT). Performance increased further across the 14 delayed retest session blocks in all groups as 
indicated by a significant effect of Block (F(8.14, 366.37) = 2.665, p = 0.007), while there was no significant main effect 
of Group or a significant interaction of Block x Group (both p ≥ 0.625), demonstrating that also online learning 
during delayed retesting was not modulated by any type of the prior post-training rTMS intervention. Moreover, 
there were no significant correlations of the magnitude of offline performance changes between EoT and BoRT 
with the amplitude of the MEPpost amplitudes (r = 0.071, p = 0.630) or the magnitude of rTMS-induced changes 
in CSE (Delta MEPpost—MEPpre; r = -0.044, p = 0.766). Consistent with the analyses of movement speed above, 
these results collectively indicate that the stimulation intervention had no impact on motor sequence perfor-
mance as assessed with a speed-accuracy aggregate measure.

Discussion
The current study was primarily designed to investigate the function of the premotor cortex and its potential 
interaction with the primary motor cortex during early post-training motor memory consolidation. Our main 
findings were that targeting the dPMC with “inhibitory” low-frequency rTMS immediately after explicit motor 
sequence training enhanced the excitability of M1 output neurons but had no modulatory effect on subsequent 
offline skill consolidation. As expected, post-training 1 Hz rTMS applied to M1 induced a significant decrease of 
post-training CSE. However, also post-training 1 Hz rTMS of M1 failed to induce a relevant behavioural effect 
on subsequent motor memory consolidation. Importantly, online learning across the initial training session was 
similar among all three experimental groups (i.e., post-training sham rTMS, dPMC rTMS, and M1 rTMS) with 
respect to all assessed measures of performance (i.e., speed, accuracy, and the combined performance index). 
This rules out that potential post-training rTMS-induced effects on consolidation or CSE were confounded by 
differences of online skill acquisition within the initial training session. Moreover, all three experimental groups 
demonstrated similar significant between-session performance increments (i.e., offline-learning) independent of 
the level of post-stimulation CSE or changes in CSE between the pre-training baseline and the post-stimulation 
assessments. Collectively, the present findings challenge the idea that any potential role that the dPMC or M1 
might have in early consolidation can be disrupted by post-training low-frequency rTMS. Furthermore, although 
our findings do not exclude a role of dPMC or M1 in early consolidation, it is highly unlikely that this role is 
mediated by or apparent as changes in CSE.

Previous studies that investigated the role of the premotor cortex in motor learning reported that the post-
training consolidation process may be modulated by NIBS of the dPMC, indicating its relevant involvement 
in motor memory consolidation. However, results of these studies are inconsistent in terms of the direction of 
effects on motor memory consolidation induced by the application of either “excitatory” or “inhibitory” NIBS 
protocols. While Boyd and co-workers23 reported a facilitation of motor memory consolidation by application 
of “excitatory” 5 Hz rTMS to the dPMC (and no effect of 1 Hz rTMS), Kantak and co-workers25 demonstrated 
impaired motor consolidation when the dPMC was targeted with “excitatory” anodal tDCS. On the other hand, 
application of “inhibitory” cathodal tDCS to the dPMC resulted in impaired delayed reproduction of a motor 
sequence in one study27, while the same intervention was reported to facilitate post-training stabilization of a 
newly learned motor sequence in another study26. Moreover, the interpretation of these findings in terms of a 
role of the dPMC specifically during early offline motor-memory consolidation is difficult because in the above 
studies NIBS was applied either before23,26,27, or during25 task training. Therefore, it cannot be excluded that the 
reported effects on subsequent consolidation were confounded by an interaction of NIBS-induced effects on 
dPMC (or persisting after-effects if applied before training) with processing of online skill acquisition during 
training. However, studies in which NIBS of dPMC was applied after motor sequence training—thus exclusively 
targeting the direct interaction of NIBS-induced modulation of dPMC with early post-training offline motor 
memory processing—also produced mixed results. While Meehan and co-workers24 reported facilitation of 
motor sequence consolidation by immediate post-training “inhibitory” 1 Hz rTMS of the dPMC, which might 
suggest an inhibitory influence of the dPMC during early consolidation, Nitsche and co-workers28 demonstrated 
enhanced consolidation by delayed post-training “excitatory” anodal tDCS of the dPMC during sleep. However, 
immediate post-training “excitatory” anodal tDCS of the dPMC exerted no effect on motor sequence consolida-
tion in a group of healthy older people in a recent study from our group38. Findings of the latter study are in line 
with the current results that do not provide evidence of a relevant involvement of the dPMC during early post-
training consolidation following explicit training-induced sequential motor skill acquisition in young adults. 
This interpretation may be supported by a recent meta-analysis that suggests that motor sequence learning is 
mainly and particularly driven by contributions of the basal ganglia, whereas the premotor cortex as well as the 
cerebellum play a subordinate or negligible role for learning-specific aspects in motor sequence learning39. Col-
lectively, if the above body of evidence indeed reflects absence of the dPMC in motor sequence learning, then 
this interpretation may perhaps explain the inconsistent results of the dPMC NIBS studies.
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Another potential explanation may be that the diverging results of the dPMC NIBS studies are driven by dif-
ferent task characteristics in terms of explicit or implicit motor sequence skill acquisition. Explicit and implicit 
sequence learning are believed to be sustained by at least partly different neural substrates and involvement of 
the premotor cortex was reported to be particularly critical in explicit sequence learning22,29,30. However, in 
the current study as well as in our previous study38, which both indicated no relevant role of the dPMC during 
early consolidation, we used a purely explicit motor sequence learning task. While this does not exclude a role 
of the dPMC during explicit online learning, it still questions a relevant role of the dPMC at least during early 
consolidation of explicitly acquired sequential motor skills. Moreover, findings in terms of involvement of the 
dPMC during consolidation were also inconsistent among the studies that applied implicit serial reaction time 
tasks24–26,28. Collectively, this body of evidence does not support the conclusion that involvement of the dPMC 
during post-training consolidation is determined by whether motor sequence skill was acquired under explicit 
or implicit conditions.

As expected, and consistent with earlier research40–42, 1 Hz rTMS of M1 decreased CSE across the post-
training intervention, resulting in significant CSE suppression in the post-stimulation (MEPpost) assessment. 
Interestingly, post-training 1 Hz rTMS of the dPMC induced the opposite effect on CSE, i.e., significant facili-
tation of post-training CSE. Besides the fact that we did not detect any MEPs during the post-training dPMC 
rTMS intervention, this excludes suprathreshold current spread from the dPMC stimulation to M1 which would 
likely have resulted in decreased CSE. One might then still ask whether facilitation of CSE by 1 Hz rTMS of the 
dPMC may be caused by subthreshold current spread to M1. However, we think that this is unlikely as we are 
not aware of any studies that suggest facilitation of CSE by subthreshold low-frequency M1 rTMS. Thus, facilita-
tion of CSE by post-training 1 Hz rTMS of dPMC rather indicates modulation of M1 output neuron excitability 
via dPMC > M1 projections. This interpretation may be supported by previous studies that also demonstrated 
modulation (albeit depression) of CSE by low-frequency rTMS18,43 or continuous theta burst stimulation16,17 of 
the dPMC in the absence of a prior motor training intervention. Facilitation of M1 output neuron excitability 
by post-training “inhibitory” 1 Hz rTMS of dPMC in the current study points to the possibility of a tonic inhibi-
tory input of the dPMC on M1 during early consolidation after explicit sequence skill acquisition that reflects 
a state-dependent interconnection of M1 and dPMC. This view is, however, challenged by findings of Meehan 
and co-workers24 who did not report relevant changes of CSE following post-training low-frequency rTMS of 
dPMC after implicit motor sequence learning.

Another interesting aspect of our findings was that also targeting M1 with low-frequency rTMS after motor 
sequence training did not affect consolidation despite rTMS-induced reduction of post-training CSE. This was 
unexpected given previous findings suggesting that immediate post-training inhibition of M1 by 1 Hz rTMS 
interventions was shown to not only block offline consolidation of simple ballistic finger movement skills3, but 
to also block over-the-day consolidation of more complex implicitly-acquired finger tapping sequences in a 
study by Robertson and co-workers4. The induction of consolidation during wakefulness over the day was, fur-
thermore, linked to post-training CSE by Tunovic and colleagues8 who reported that acquisition of a sequential 
motor skill under explicit conditions induced an immediate post-training decrease of CSE which was associated 
with absence of offline-learning, while performing the same task under implicit conditions did not induce a 
post-training CSE decrease and was followed by significant offline performance gains. Moreover, the magnitude 
of offline-performance increments was shown to be associated with the level of immediate post-training CSE. 
Interestingly, the induction of offline performance gains subsequent to explicit task training was restored when 
the immediate post-training CSE decrease was prevented by remote rTMS8. Facilitation of consolidation follow-
ing training-induced acquisition of sequential motor skills by post-training application of anodal transcranial 
direct current stimulation (tDCS) of M138,44,45 may, thus, be explained by a similar mechanism, i.e., facilitation 
of immediate post-training CSE. Collectively, these observations have been suggested to indicate that the level 
of immediate post-training CSE represents a neurophysiological signal that determines whether and how much 
training-induced motor representations are promoted offline during wakefulness. However, results with respect 
to facilitation of consolidation by offline application of tDCS to M1 are inconsistent for both explicit46 and 
implicit motor sequence learning47. Moreover, we did not detect an immediate post-training decrease of CSE as 
described by Tunovic and co-workers8, although a purely explicit motor sequence learning task was applied in 
the current study. Moreover, neither subsequent post-training depression of CSE induced by 1 Hz rTMS of M1 
nor significant remote facilitation of post-training CSE induced by 1 Hz rTMS of dPMC influenced the magni-
tude of offline skill performance changes between sessions. This suggests that neither (i) dichotomic differential 
modulation of immediate post-training CSE by prior implicit or explicit sequential motor skill acquisition nor 
(ii) determination of induction of consolidation by the level of post-training CSE are generalizable principles 
in motor sequence learning.

Of note, considering the evidence for a distinct role of spinal cord plasticity in motor sequence learning 
(e.g.,15), we would like to point to a limitation of our study that we have no information on if and to which extent 
spinal cord plasticity was modulated or contributed to the current findings.

In conclusion, despite evidence of an interaction of dPMC and M1 at the level of CSE, current findings 
indicate that the post-training consolidation process following motor sequence skill acquisition under explicit 
conditions is not accessible to perturbation of dPMC or M1 by low-frequency rTMS. In contrast to previous 
findings that suggest modulation of motor memory consolidation by post-training NIBS of dPMC24 and M14 in 
implicit motor sequence learning, this may suggest that offline processing of explicitly acquired motor sequence 
skills is a rather robust process that is at least not malleable by low-frequency rTMS-induced manipulation of 
just single nodes of the motor learning network. Our results further indicate that offline processing of explicitly 
acquired motor sequences is neither mediated nor reflected by post-training changes in CSE which questions 
the generalizability of this marker as a predictor of consolidation beyond specific learning tasks.
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Data availability
The data used to support the findings of this study are available from the corresponding author upon reasonable 
request.
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