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Abstract: Metastasis is the leading cause of death in lung adenocarcinomas. Identifying potential
prognostic biomarkers and exploiting regulatory mechanisms could improve the diagnosis and
treatment of lung cancer patients. We previously found that cluster of differentiation 109 (CD109)
was upregulated in lung tumor tissues, and CD109 overexpression was correlated with the invasive
and metastatic capacities of lung adenocarcinoma cells. However, the contribution of CD109 to
lung tumorigenesis remains to be elucidated. In the present study, we identified that CD109 was
upregulated in metastatic lung adenocarcinoma cells, and elevation of CD109 was correlated with
epithelial-to-mesenchymal transition (EMT) traits in patients with lung adenocarcinoma. Functionally,
CD109 expression was crucial for EMT gene expressions, tumor invasiveness, and cancer stemness
properties. Moreover, elevation of CD109 was accompanied by upregulation of the yes-associated
protein (YAP) signature in metastatic lung cancer cells and lung cancer patients, and activation of YAP
was demonstrated to participate in CD109-elicited EMT gene expressions and tumor invasiveness.
Our study reveals the molecular mechanism underlying CD109 in lung tumor aggressiveness, and
CD109 could be a potential diagnostic and therapeutic target for lung cancer patients.
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1. Introduction

Lung cancer is the leading cause of cancer-associated deaths worldwide, and its inci-
dence continues to increase every year. Lung cancer is classified into two major categories
of small-cell lung cancer (SCLC) and non-SCLC (NSCLC). NSCLC accounts for 85% of all
lung carcinomas and is comprised of squamous carcinomas, large-cell carcinomas, and ade-
nocarcinomas [1]. Although chemotherapy and radiation therapy show responses during
the early treatment of NSCLC, molecular changes in NSCLC are a major problem which

Cells 2021, 10, 28. https://dx.doi.org/10.3390/cells10010028 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-0461-4275
https://dx.doi.org/10.3390/cells10010028
https://dx.doi.org/10.3390/cells10010028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/cells10010028
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/1/28?type=check_update&version=2


Cells 2021, 10, 28 2 of 13

lead to resistance and distant metastasis [2,3]. Therefore, finding new diagnostic markers
and elucidating the underlying mechanisms are urgent needs for lung cancer therapy.

Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored
protein which belongs to the α2-macroglobulin/C3, C4, and C5 family of thioester-containing
proteins. CD109 was found to be expressed by a subset of hematopoietic cells includ-
ing platelets, endothelial cells, bone marrow CD34+ cells, and activated T cells [4]. It is
rarely expressed in normal human tissues but was found to be upregulated in a variety of
malignancies including squamous cell carcinomas [5], glioblastomas [6], melanomas [7],
pancreatic ductal adenocarcinomas, and lung and breast cancers [8]. Platelet CD109 carries
the biallelic platelet-specific alloantigen, Govα/β, which plays a major role in neonatal al-
loimmune thrombocytopenia [9]. In tumor cells, CD109 expression was reported to regulate
epidermal growth factor receptor (EGFR) and Janus kinase (JAK)/signal transducer and ac-
tivator of transcription (STAT) signaling pathways [10,11], and CD109 decreased sensitivity
to EGFR-tyrosine kinase inhibitor (TKI) therapy in lung adenocarcinoma cells [12]. In cervi-
cal squamous cell carcinoma, CD109 expression enhanced aggressiveness and maintained
cancer stemness properties through the EGFR-STAT3 signaling cascade [13], suggesting
the potential role of CD109 as a diagnostic cancer marker and therapeutic target. However,
as a co-receptor of the transforming growth factor (TGF)-β receptor (TGF-βR) [14–16],
CD109 was reported to negatively regulate the epithelial-to-mesenchymal transition (EMT)
by antagonizing TGF-β signaling in squamous cell carcinomas [17]. Thus, clarifying the
molecular functions and underlying regulatory mechanisms of CD109 in tumorigenesis is
urgently needed.

Our recent study found that CD109 expression was associated with aggressiveness
and metastasis of lung adenocarcinomas [12]. To further validate the molecular mech-
anism underlying CD109-mediated tumor aggressiveness, a metastatic CL-LM subline
from parental CL1-5 lung adenocarcinoma cells was established in the present study. We
identified that CD109 was elevated in metastatic CL-LM cells, and this was correlated
with EMT characteristics. Furthermore, expression of CD109 regulated yes-associated
protein (YAP) signaling, thereby promoting the EMT, stem cell gene expressions, and
cancer stemness properties.

2. Results
2.1. CD109 Is Upregulated in Metastatic Lung Adenocarcinoma Cells and Is Associated with EMT
Gene Expressions

We previously identified that CD109 is upregulated in lung adenocarcinoma cells,
and suppression of CD109 inhibits the metastatic capacity [12]. To further investigate
associations of CD109 with lung cancer metastasis, lung adenocarcinoma CL1-5 cells were
intravenously injected into immunocompromised mice, and CL-LM subline cells from
metastatic lung tumor nodules were isolated (Figure 1A). Transwell analyses confirmed
upregulation of the migratory and invasive capacities of metastatic CL-LM cells, compared
to parental CL1-5 cells (Figure 1B). Western blot analysis showed that the CD109 protein
level increased in metastatic CL-LM cells (Figure 1C), and results of the Western blot and
real-time PCR assays showed that expressions of mesenchymal-related genes were con-
comitantly upregulated in CL-LM cells (Figure 1D,E). Analysis of TCGA database showed
that the CD109 transcriptional level was positively correlated with EMT-related genes,
including SNAI2, ZEB1, VIM, MMP2, and TWIST1, in patients with lung adenocarcinomas
(Figure 1F), and Gene Set Enrichment Analysis (GSEA) revealed that high CD109 expres-
sion in lung cancer patients was associated with the EMT signature (Figure 1G). These data
suggest that CD109 may regulate EMT properties and tumor mobility.
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fication. Data are the mean ± SD. * p < 0.05; ** p < 0.01, as determined by an unpaired t-test. (C,D) 

Western blot analysis of CD109 and EMT protein markers in CL1-5 and CL-LM cells. (E) Real-time 

PCR analysis of EMT gene expressions in CL1-5 and CL-LM cells. (F) Heatmap plot of transcrip-

tome levels of CD109 and EMT-related genes in TCGA lung adenocarcinoma patients 

(TCGA_LUAD). Associations of transcriptome levels between CD109 and EMT-related genes were 

analyzed by Pearson correlations. * p < 0.05; ** p < 0.01; *** p < 0.001. (G) Enrichment plot between 

CD109 and the EMT signature from a Hallmark gene set in lung cancer patients using GSEA. NES, 

net enrichment score. 
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Figure 1. Elevation of CD109 is associated with the epithelial-to-mesenchymal transition (EMT) in
metastatic lung adenocarcinoma cells. (A) Illustration of the generation of lung metastatic CL-LM
cells. Parental CL1-5 lung adenocarcinoma cells were intravenously injected into the tail vein of
NOD/SCID mice for 60 days. Metastatic CL-LM cells were isolated from tumor nodules of mice
lungs. The detailed methodology is described in “Materials and Methods”. (B) Comparisons of
the capabilities of migration and invasion between parental CL1-5 and metastatic CL-LM cells.
Tumor migration and invasion were evaluated by a transwell analysis. Pictures were taken at 200×
magnification. Data are the mean ± SD. * p < 0.05; ** p < 0.01, as determined by an unpaired
t-test. (C,D) Western blot analysis of CD109 and EMT protein markers in CL1-5 and CL-LM cells.
(E) Real-time PCR analysis of EMT gene expressions in CL1-5 and CL-LM cells. (F) Heatmap plot
of transcriptome levels of CD109 and EMT-related genes in TCGA lung adenocarcinoma patients
(TCGA_LUAD). Associations of transcriptome levels between CD109 and EMT-related genes were
analyzed by Pearson correlations. * p < 0.05; ** p < 0.01; *** p < 0.001. (G) Enrichment plot between
CD109 and the EMT signature from a Hallmark gene set in lung cancer patients using GSEA. NES,
net enrichment score.

2.2. Expression of CD109 Regulates the EMT and Tumor Invasiveness in Lung
Adenocarcinoma Cells

To validate that CD109 participates in EMT regulation, we knocked-down CD109 in
A549 cells, which were identified as overexpressing CD109 [12]. Inhibition of CD109 in
A549 cells exhibited a flat and polygonal morphology, compared to the control knockdown
A549 cells which showed an elongated shape (Figure 2A). F-actin staining also showed that
knockdown of CD109 decreased actin filament polarity, which is a feature of cellular mobil-
ity (Figure 2A). Moreover, CD109-knockdown in A549 cells downregulated EMT-associated
transcriptional factors including Snail, Slug, and Twist, and this was accompanied by re-
ductions in mesenchymal markers, such as vimentin and N-cadherin. On the contrary,
the epithelial marker, E-cadherin, increased in CD109-knockdown A549 cells (Figure 2B).
Similarly, the real-time PCR analysis showed that expressions of EMT-associated genes
were modulated by CD109 (Figure 2C). Furthermore, suppression of CD109 was confirmed
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to decrease migration and invasion of A549 cells (Figure 2D). Consistent results were
observed in CL-LM cells in which inhibition of CD109 attenuated EMT-related gene expres-
sions and tumor mobility (Figure 2B–D). To validate that CD109 promotes the EMT and
invasiveness of lung tumor cells, CD109 was ectopically overexpressed in low-invasive
CL1-3 cells. Results showed that CD109 overexpression increased mesenchymal mark-
ers (Figure 3A). Moreover, CD109 overexpression significantly promoted the migratory
and invasive capacities of CL1-3 cells (Figure 3B), confirming that CD109 expression is
responsible for EMT traits in lung adenocarcinoma cells.
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Figure 2. Suppression of CD109 downregulates epithelial-to-mesenchymal transition (EMT) gene
expressions and mobility in lung adenocarcinoma cells. (A) Bright field images of cell morphology in
A549/sh-control and A549/shCD109 cells (upper panel). Fluorescent images of actin filaments in
A549/sh-control and A549/shCD109 cells (lower panel). Scale bar = 50 µm. (B) Western blot analyses
of CD109 (left panel) and EMT-related protein levels (right panel) in CD109-knockdown A549 and
CL-LM cells. (C) CD109-knockdown suppressed EMT-related gene expressions, as determined
by real-time PCR assay. (D) Transwell analyses of migratory and invasive capacities of CD109-
knockdown A549 and CL-LM cells. Data were derived from three random fields by three independent
experiments, and results are expressed as the mean ± SD. * p < 0.05; ** p < 0.01, as determined by an
unpaired t-test.
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Figure 3. Overexpression of CD109 promotes the epithelial-to-mesenchymal transition (EMT) and
tumor mobility. (A) Western blot analyses of CD109 (left panel) and EMT-related protein levels
(right panel) in CD109-overexpressing CL1-3 cells. RFP, red fluorescent protein. (B) CL1-3 cells were
transiently transfected with the CD109 plasmid, and migratory and invasive capacities were measured
by transwell analyses. Data were derived from three random fields by three independent experiments,
and results are expressed as the mean ± SD. ** p < 0.01, as determined by an unpaired t-test.

2.3. CD109 Expression Regulates Stemness Properties

It is well documented that upregulation of EMT traits increases cancer stemness
activity. Thus, we further evaluated the involvement of CD109 in stemness properties in
lung cancer cells. Results of the real-time PCR and Western blot analyses showed that
mRNA and protein levels of stemness markers, including Oct4, Nanog, and Sox2, were
significantly downregulated in CD109-knockdown A549 and CL-LM cells (Figure 4A,B).
Conversely, overexpression of CD109 increased expression of stemness genes in CL1-
3 cells (Figure 4C). Moreover, the formation of tumorspheres, which refers to the self-
renewal ability of stem-like tumor cells, significantly decreased in CD109-knockdown A549
and CL-LM cells (Figure 4D). Conversely, CD109 overexpression increased tumorsphere
formation in CL1-3 cells (Figure 4D), indicating that CD109 expression is crucial for stem-
like properties in lung adenocarcinoma cells.

2.4. Activation of YAP Participates in the CD109-Mediated EMT and Invasiveness

We previously identified that YAP, transducer of the Hippo pathway, is increased in
metastatic tumor cells [18], and elevation of YAP/TAZ participates in EGFR-TKI sensitivity
in lung cancer cells [19]. To further elucidate the molecular mechanisms of CD109-mediated
tumor aggressiveness, we examined the involvement of YAP signaling. As shown in
Figure 5A, Western blot analysis revealed that the YAP protein level drastically increased
in metastatic CL-LM cells, compared to CL1-5 cells (Figure 5A). The ratio of phosphorylated
YAP to total YAP decreased in CL-LM cells (Figure 5A), indicating that activated YAP was
upregulated in metastatic lung tumor cells. We further examined mRNA levels of YAP and
YAP downstream by real-time PCR assay. Results showed that YAP mRNA had slightly
but insignificantly increased in CL-LM cells (Figure 5B). However, YAP downstream tar-
gets, including CTGF, CYR61, and AREG, were significantly upregulated in CL-LM cells
(Figure 5B). To validate whether CD109 regulates YAP signaling, YAP and p-YAP levels
were measured in CD109-knockdown A549 and CL-LM cells. As shown in Figure 5C,D,
CD109 suppression resulted in reductions in total and phosphorylated YAP in A549 and



Cells 2021, 10, 28 6 of 13

CL-LM cells (Figure 5C), and the expression of YAP downstream targets, including CTGF,
CYR61, and AREG, were downregulated in CD109-knockdown cells (Figure 5D). More-
over, we found that CD109 suppression increased the phosphorylation of LATS in A549
and CL-LM cells (Figure 5E), suggesting that CD109 activates YAP via a canonical Hippo
signaling event. To further clarify that activation of YAP participates in CD109-regulated
tumor invasiveness and stemness, a constitutively activated YAP plasmid (YAPS5A) was
transfected into CD109-knockdown A549 cells. Results showed that enforced expression
of YAPS5A restored EMT- and stemness-related protein levels in A549/shCD109 cells
(Figure 5F). Likewise, CD109 suppression resulted in the downregulations of tumor in-
vasiveness and tumorsphere formation were restored by the ectopic expression of YAP
(Figure 5G). These data validate that YAP activation participates downstream of CD109 in
promoting lung tumor aggressiveness.
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Figure 4. Expression of CD109 is associated with stemness properties. (A) Real-time PCR analysis
of stem-like gene expressions in control and CD109-silenced A549 and CL-LM cells. (B) Western
blot analysis of stem-like protein levels in control and CD109-silenced A549 and CL-LM cells. (C)
Real-time PCR analysis of stem-like gene expressions in control and CD109-overexpressed CL1-3
cells. (D) Representative images of tumorsphere formation in CD109-silenced A549 and CL-LM
cells (left panel) and CD109-overexpressing CL1-3 cells (right panel). Data were derived from three
independent experiments, and results are expressed as the mean ± SD. * p < 0.05; ** p < 0.01, as
determined by an unpaired t-test. Scale bar, 50 µm.
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Figure 5. Expression of CD109 regulates YAP. (A) Western blot analysis of YAP and phosphorylated
YAP protein levels in CL1-5 and CL-LM cells. Quantitative analyses were performed using Image J
software. (B) Real-time PCR analysis of YAP and YAP downstream gene expressions in CL1-5 and
CL-LM cells. (C) Western blot analysis of YAP and phosphorylated YAP protein levels in CD109-
silenced A549 and CL-LM cells. (D) Real-time PCR analysis of YAP downstream gene expressions in
CD109-silenced A549 and CL-LM cells. (E) Western blot analysis of phosphorylated LATS1 protein
level in CD109-silenced A549 and CL-LM cells. (F) Western blot analysis of EMT- and stemness-
related protein levels in A549/sh-control, shCD109, and shCD109+YAPS5A cells. (G) Representative
images of tumor migration, invasion, and tumorsphere formation in A549/sh-control, shCD109,
and shCD109+YAPS5A cells. Data were derived from three random fields by three independent
experiments, and results are expressed as the mean ± SD. Quantification of protein bands from
Western blot was carried out by Image J software. * p < 0.05; ** p < 0.01, as determined by an unpaired
t-test. Scale bar, 50 µm.
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2.5. Clinical Association of CD109 and the YAP Signature

We further examined the clinical association between CD109 and YAP signaling from
TCGA lung adenocarcinoma dataset (LUAD), and results showed that CD109 expression
was positively correlated with YAP downstream targets including AXL (Pearson r = 0.539),
AREG (Pearson r = 0.448), CTGF (Pearson r = 0.219), and CYR61 (Pearson r = 0.309)
(Figure 6A). Additionally, the GSEA revealed significant associations between CD109 and
YAP signatures in lung cancer patients (Figure 6B), and positive correlations of CD109 and
stem-like signatures (Figure 6B), confirming the in vitro findings that CD109 regulates YAP
signaling. Moreover, lung adenocarcinoma patients with higher coexpression of CD109
and YAP showed worse overall and disease-specific survival probabilities (Figure 6C),
underpinning the potential role of CD109 possibly serving as prognostic and therapeutic
targets for lung adenocarcinoma patients.

Cells 2021, 10, x FOR PEER REVIEW 8 of 14 
 

 

LATS1 protein level in CD109-silenced A549 and CL-LM cells. (F) Western blot analysis of EMT- 

and stemness-related protein levels in A549/sh-control, shCD109, and shCD109+YAPS5A cells. (G) 

Representative images of tumor migration, invasion, and tumorsphere formation in A549/sh-con-

trol, shCD109, and shCD109+YAPS5A cells. Data were derived from three random fields by three 

independent experiments, and results are expressed as the mean ± SD. Quantification of protein 

bands from Western blot was carried out by Image J software. * p < 0.05; ** p < 0.01, as determined 

by an unpaired t-test. Scale bar, 50 μm. 

2.5. Clinical Association of CD109 and the YAP Signature 

We further examined the clinical association between CD109 and YAP signaling from 

TCGA lung adenocarcinoma dataset (LUAD), and results showed that CD109 expression 

was positively correlated with YAP downstream targets including AXL (Pearson r = 

0.539), AREG (Pearson r = 0.448), CTGF (Pearson r = 0.219), and CYR61 (Pearson r = 0.309) 

(Figure 6A). Additionally, the GSEA revealed significant associations between CD109 and 

YAP signatures in lung cancer patients (Figure 6B), and positive correlations of CD109 

and stem-like signatures (Figure 6B), confirming the in vitro findings that CD109 regulates 

YAP signaling. Moreover, lung adenocarcinoma patients with higher coexpression of 

CD109 and YAP showed worse overall and disease-specific survival probabilities (Figure 

6C), underpinning the potential role of CD109 possibly serving as prognostic and thera-

peutic targets for lung adenocarcinoma patients. 

 

Figure 6. Expression of CD109 is associated with the YAP signature in lung adenocarcinoma pa-

tients. (A) Associations of CD109 and YAP downstream genes in TCGA lung adenocarcinoma 

patients (LUAD). Correlations were determined using Pearson’s test. (B) GSEA plots of enrich-

ment of YAP and stem cell signatures with CD109 in lung cancer patients. (C) Disease-specific 

survival (DFS) and overall survival (OS) probabilities in lung adenocarcinoma patients stratified 

by CD109/YAP_high and CD109/YAP_low groups. The survival probability was analyzed by a 

log-rank (Mantel-Cox) statistical test. 

Figure 6. Expression of CD109 is associated with the YAP signature in lung adenocarcinoma patients.
(A) Associations of CD109 and YAP downstream genes in TCGA lung adenocarcinoma patients
(LUAD). Correlations were determined using Pearson’s test. (B) GSEA plots of enrichment of YAP
and stem cell signatures with CD109 in lung cancer patients. (C) Disease-specific survival (DFS) and
overall survival (OS) probabilities in lung adenocarcinoma patients stratified by CD109/YAP_high
and CD109/YAP_low groups. The survival probability was analyzed by a log-rank (Mantel-Cox)
statistical test.

3. Discussion

Despite several studies having reported CD109 upregulation in a variety of malig-
nant tumors, its molecular function and detailed regulatory mechanism are still largely
unknown. Although the literature reports that CD109 is highly expressed in squamous
cell carcinoma [13,20], our previous study identified that CD109 overexpression was specif-
ically associated with poor survival probability in patients with lung adenocarcinoma
but not with squamous cell carcinoma [12]. In the current study, we further identified
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that CD109 expression was significantly associated with EMT and stem-like signatures,
and activation of YAP participated in the CD109-elicited EMT and cancer stemness traits.
In lung adenocarcinoma patients, coexpression of CD109 and YAP rendered a worse
survival prognosis.

CD109 is a glycosyl phosphatidylinositol (GPI)-anchored protein and was reported to
be cleaved by furinase [15]. Soluble CD109 is associated with the TGF-βR and results in
negative regulation of TGF-β-mediated cellular events. A recent study reported that CD109
expression blocked the TGF-β-elicited EMT process [17]; however, CD109 overexpression
was shown to alleviate TGF-β-mediated suppression of cell growth in oral squamous cell
carcinoma [5]. Additionally, CD109 was elevated in aldehyde dehydrogenase 1 (ALDH1)-
positive epithelioid sarcoma cells, and CD109 expression increased ALDH1 activity by
suppressing the TGF-β/Smad signaling pathway [21]. ALDH1 participates in drug detox-
ification and is well recognized as a surface marker for cancer stem cells [22], implying
that CD109 expression might associate with stem-like feature. The Janus face of TGF-β’s
effect on different tumor development stages indicates that other intracellular mechanisms
may crosstalk with CD109 in addition to its association with TGF-β signaling. Previous
studies reported that CD109 is associated with and regulates the EGFR [11,12]. In cervical
squamous cell carcinoma, CD109 expression enhanced EGFR-induced phosphorylation
of STAT3, resulting in increased tumor aggressiveness and stemness activity [13]. We
previously reported that CD109 is responsible for EGFR-TKI sensitivity in lung tumor
cells through regulating the EGFR-AKT-mammalian target of rapamycin (mTOR) signaling
cascade [12]. Additionally, CD109 acts as a metastatic driver in lung cancer via regulating
JAK/STAT3 [10]. Of note, a recent study showed that CD109 expression in glioma stem
cells was not associated with TGF-β or STAT3 signaling pathways, but instead regulates
YAP/TAZ [23]. Our data were in line with previous findings that CD109 promotes YAP
signaling in lung adenocarcinoma cells. Moreover, activation of YAP participated in CD109-
mediated EMT and cancer stemness properties. We found that CD109 and YAP were
concomitantly upregulated in metastatic CL-LM cells, and expression of CD109 is crucial
for YAP downstream gene expressions. Enforced expression of YAP rescued EMT gene
expressions, and tumor migration and invasion in CD109-silenced cells. Clinically, CD109
expression is associated with the YAP signature, and coexpression of CD109/YAP renders
the worst survival outcome in lung cancer patients. Contrarily, a recent study argued
that CD109 suppression did not affect YAP downstream gene expressions in pancreatic
ductal adenocarcinoma cells [24]. These findings imply that CD109 may regulate different
intracellular mechanisms in a context-dependent manner. Thus, more evidence from future
studies is needed to clarify signaling event crosstalk with CD109.

YAP and TAZ are transducers of the Hippo pathway, and dysregulation of YAP/TAZ
has been well documented to play crucial roles in tumor growth, stemness, metastasis, and
drug resistance [25,26]. Activation of YAP/TAZ can be regulated by the canonical Hippo
signaling cascade or by a non-canonical intracellular signaling mechanism such as actin
dynamic, G protein couple receptor (GPCR), or β-catenin [27,28]. Minata et al. identified
that CD109-positive glioma stem cells are highly enriched in tumor-initiating and radiation-
resistant properties [23]. They also found that suppression of CD109 downregulated the
YAP/TAZ signature and decreased the TAZ protein level in glioma stem cells. Likewise,
Gangwani et al. reported that the Drosophila Tep1 gene (ortholog of human CD109) regu-
lates Yki (the Drosophila ortholog of human YAP/TAZ) using a Drosophila glioma cell
model [29]. However, the molecular mechanism through which CD109 regulates YAP/TAZ
was not clarified in the abovementioned studies. Our previous study has also identified
that CD109 regulates EGFR-AKT-mTOR signaling cascade, and knockdown of CD109 in
A549 cells significantly suppressed lung metastasis in vivo [12]. Our present study further
discovered that CD109 regulates EMT and stemness of lung adenocarcinoma cells via a
YAP-dependent manner. Moreover, CD109 inhibition induced phosphorylation of LATS,
and subsequently increased YAP phosphorylation, suggesting that CD109 may regulate
YAP by a Hippo signaling cascade. EMT is an evolutionarily conserved process that occurs
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during development and is important for tumor progression. Although CD109 is reported
that negatively regulates TGFβ signaling, which is an inducer of EMT. Paradoxical roles
of TGFβ signaling can be either promote or suppress tumor formation, suggesting that
CD109 regulates EMT in a cellular context manner and that also highlights the crucial
role of CD109-YAP/TAZ signaling pathway in regulating EMT and cancer stemness. In-
terestingly, elevation of YAP/TAZ was reported to participate in resistance to EGFR-TKI
therapies by lung cancer cells [19,30–32]. Our previous study also identified that CD109
expression contributes to sensitivity to EGFR-TKI by crosstalk with EGFR signaling [12].
This evidence implies the important role of CD109 in EGFR-TKI therapies, and it also
highlights translational relevance of CD109 as a diagnosis and therapeutic target in lung
adenocarcinoma patients. Targeting CD109 could provide therapeutic benefits against lung
cancer metastasis and drug resistance.

4. Materials and Methods
4.1. Cell Lines and Reagents

The human A549 lung adenocarcinoma cell line was purchased from the Bioresource
Collection Research Center (BCRC, Hsinchu, Taiwan). CL1-5 and CL1-3 cells which re-
spectively exhibit high-invasive and low-invasive capabilities, were provided by Prof.
Hsiao-Chi Chung (Taipei Medical University). CL-LM metastatic subline cells were estab-
lished by intravenously injecting CL1-5 cells into the tail vein of nonobese diabetic/severe
combined immunodeficiency (NOD/SCID) mice for 60 days. Tumor-bearing mice were
sacrificed, and mice lungs were excised and minced into small pieces. Lung tissues were
then incubated with 0.25% trypsin and type IV collagenase (Sigma, St. Louis, MO, USA)
for 2 h at 37 ◦C. Disassociated tumor cells that had migrated out of the lung tissues were
washed with phosphate-buffered saline (PBS) and expanded by continuous cultivation
for at least 2 weeks [18]. The CL-LM cells are a mixed clone from three mice lung tis-
sues. Cells were maintained in RPMI medium supplemented with 7% fetal bovine serum
(FBS), 1% antibiotic-antimycotic, and 1% GlutaMAX (Thermo Fisher Scientific, New York,
USA). An antibody against CD109 was purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Antibodies against YAP, LATS, phosphorylated (p)-LATS, and p-YAP
were purchased from Cell Signaling Technologies (Beverly, MA, USA). Antibodies for
E-cadherin, vimentin, Snail, Slug, Twist, Oct4, Nanog, Sox2, and β-actin were obtained
from GeneTex (San Antonio, TX, USA). The CD109 open reading frame (ORF) in pCMV3
was purchased from Sino Biological (Wu-Han, China). The pCMV-flag-YAPS5A plasmid
was kindly provided by Addgene (#27371).

4.2. Short Hairpin RNA and Lentiviral Infection

shRNAs for human CD109 (TRCN0000073649) were obtained from the National
RNAi Core Facility (Academia Sinica, Taipei, Taiwan). The shRNA target sequence is
GCCGATCCTTACATAGATATT. Lentiviral preparation and viral infection were performed
as previously described [19]. In brief, HEK293T cells were cotransfected with pLKO.
shRNA together with the pCMV-∆R8.91 and pMDG plasmids. At 48 h post-transfection,
virus-containing supernatants were mixed with polybrene (8 µg/mL) and incubated with
target cells for another 48 h. Transduced cells were selected using puromycin (5 µg/mL). A
control shRNA targeting the red fluorescent protein (RFP) was used as a negative control.

4.3. Transwell Assay

Cells at 1–2 × 105 cells/well suspended in serum-free medium were seeded in 24-
well transwell inserts (8-µm pore size, Corning Costar, New York, NY, USA) coated with
Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) or left uncoated for 24 or 48 h. Serum-
containing medium was added to the bottom wells of the transwell as a chemoattractant.
Cells in the upper wells were removed with a cotton swab, and cells which had migrated to
the lower well were fixed with methanol, stained with crystal violet solution, and observed
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under a microscope with a 20× objective (total magnification 200×). The number of cells
in three randomly selected fields was counted.

4.4. Western Blotting

Cells were lysed in ice-cold radioimmunoprecipitation assay (RIPA) buffer supple-
mented with a protease and phosphatase inhibitor cocktail (Millipore, Bedford, MA, USA).
Equal amounts of proteins were separated by sodium dodecylsulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE) and transferred to 0.45-µm-pore-size polyvinylidene difluoride
(PVDF) membranes. Membranes were blocked with 1% bovine serum albumin/TBST
blocking buffer at room temperature for 30 min and then incubated overnight at 4 ◦C with
specific primary antibodies. Membranes were washed with TBST wash buffer followed by
incubation with a horseradish peroxidase-conjugated secondary antibody at room temper-
ature for 1 h. Bands were detected with an enhanced chemiluminescence (ECL) system
(Millipore, Bedford, MA, USA). Western blotting was performed at least three times, and
representative experiments are shown. Quantification of protein bands from Western blot
was carried out by Image J software.

4.5. Tumorsphere Formation Assay

Lung adenocarcinoma cells (103 cells) were seeded in six-well ultra-low-attachment
plates (Corning Costar). Cells were maintained in serum-free Dulbecco’s modified Eagle
medium (DMEM)-F12 supplemented with 20 ng/mL of epidermal growth factor (EGF; Pe-
proTech, Rocky Hill, NJ, USA), 25 ng/mL basic fibroblast growth factor (bFGF; PeproTech),
and B27 (Gibco) for 10 days. Formation of tumorspheres was observed and counted under
a light microscope.

4.6. Real-Time Polymerase Chain Reaction

Target cell total RNA was extracted with a GENEzolTM TriRNA Pure kit (Geneaid
Biotech, Taipei, Taiwan) and reverse-transcribed with a TOOLS Easy Fast RT kit (Biotools,
Taipei, Taiwan). Complementary DNA was amplified with EvaGreen Master Mix (Biotium,
Hayward, CA, USA) in a StepOne Plus Real-Time PCR system (Applied Biosystems,
Darmstadt, Germany) with specific primers as previously described [12,18,33]. Results
were calculated using the ∆∆CT equation and are expressed as multiples of change relative
to a control sample [33].

4.7. Bioinformatic Analyses

Gene expression patterns of CD109, EMT- and YAP-associated genes, and overall
and disease-specific survival prognostic values from The Cancer Genome Atlas (TCGA)
lung adenocarcinoma (LUAD) dataset were downloaded from the University of California,
Santa Cruz (UCSC) Xena browser (https://xenabrowser.net/). A high-expression group
was defined as occurring in greater than 30% of patients. Associations of CD109 with hall-
mark_EMT and YAP_conserved signatures in the GSE31210 cohort [34–36] were analyzed
using a gene set enrichment analysis (GSEA) algorithm.

4.8. Statistical Analyses

Data are presented as the mean ± standard deviation (SD) of three independent
experiments. Statistical significance was determined by an unpaired, two-tailed Student’s
t-test unless stated otherwise. * p < 0.05; ** p < 0.01. A correlation coefficient was analyzed
by the Pearson test. The survival probability was plotted by Kaplan-Meier and analyzed
by a log-rank (Mantel-Cox) statistical test. All statistical analyses were carried out with
GraphPad Prism 6.0 software (San Diego, CA, USA).

5. Conclusions

In summary, we demonstrate that expression of CD109 regulates YAP signaling,
thereby promoting the EMT, stem cell gene expressions, and cancer stemness properties.

https://xenabrowser.net/
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CD109 could be a potential diagnostic and therapeutic target for lung cancer patients.
Targeting CD109 could provide therapeutic benefits against lung cancer metastasis and
drug resistance.
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