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Optimization of neural networks via 
finite-value quantum fluctuations
Masayuki Ohzeki1, Shuntaro Okada2, Masayoshi Terabe2 & Shinichiro Taguchi2

We numerically test an optimization method for deep neural networks (DNNs) using quantum 
fluctuations inspired by quantum annealing. For efficient optimization, our method utilizes the 
quantum tunneling effect beyond the potential barriers. The path integral formulation of the DNN 
optimization generates an attracting force to simulate the quantum tunneling effect. In the standard 
quantum annealing method, the quantum fluctuations will vanish at the last stage of optimization. In 
this study, we propose a learning protocol that utilizes a finite value for quantum fluctuations strength 
to obtain higher generalization performance, which is a type of robustness. We demonstrate the 
performance of our method using two well-known open datasets: the MNIST dataset and the Olivetti 
face dataset. Although computational costs prevent us from testing our method on large datasets with 
high-dimensional data, results show that our method can enhance generalization performance by 
induction of the finite value for quantum fluctuations.

Data-driven approach is being widely adopted in many science and engineering fields. The key technology is 
machine learning, which is supported by successful examples of the use of deep neural networks (DNNs)1. Deep 
neural networks have achieved state-of-the-art results in a wide variety of tasks, including computer vision, nat-
ural language processing, and reinforcement learning2. The revolutionary event in which artificial intelligence 
bested a human at a game of Go exemplifies the potential power of machine learning. In DNNs, iterative struc-
tures of linear and non-linear transformations construct a pattern-recognition system for designing a feature 
extractor from the raw data (such as the pixel values of natural image data) into a nontrivial internal representa-
tion or feature vector. The extracted features enable us to classify the different patterns from the input data.

To promote DNN technology, various researchers have developed learning algorithms to provide faster results 
and better performance. The algorithms for optimizing DNNs are based on the stochastic gradient descent3–5; it 
partitions a large dataset into several batches and approximates the gradient of the cost function. The standard 
choice among the various algorithms stemming from the stochastic gradient method is the Adaptive Momentum 
(Adam) algorithm6. This algorithm is designed to efficiently escape saddle points that often appear in the cost 
functions of DNNs. In practice, however, the learning of DNNs suffers from local minima with different general-
ization performance resulting from the shape of the DNN cost functions. The sharp minimizer has poorer gen-
eralization performance than that in the wide-flat minimizer. It is thus important to design a learning algorithm 
to find a more optimal solution by escaping from both the saddle points and the local minima. In a recent study7, 
the batch size is closely related to the generalization performance, which is characterized by the shape of the 
local minima. They experimentally demonstrate that the large-batch stochastic gradient method and its variants 
tend to converge to sharp minimizers with poor generalization performance. The small-batch stochastic gradient 
descent, on the other hand, is likely to fall into the wider minimizers, in which the DNNs have high generalization 
performance. The batch size is closely related to the magnitude of the stochastic noise during learning. In other 
words, injection of the stochastic noise can be an origin of an efficient learning algorithm for converging into 
wider local minima. In addition, an analytical study on discrete-weight networks revealed the subdominant solu-
tions with relatively higher generalization performance than the exponentially dominant (typical) solutions that 
deviated from the ground truth8,9. The subdominant solutions can be algorithmically reachable by considering the 
effect of entropy. As proposed in the literature10, they compute the local entropy by injection of stochastic noise 
and update the weight to take the DNN to wider local minima with better generalization performance.

The gradient descent algorithm is closely related to classical dynamics in physics, and the stochastic version 
also has a connection with Langevin dynamics, which models the classical stochastic dynamics in various fields 
of nature. In the present study, we test the optimization of DNNs using the quantum fluctuation as employed in 
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quantum annealing (QA). Quantum annealing is a method that is developing as a generic solver for the opti-
mization problems. This scheme was originally proposed as an algorithm that used numerical computations to 
optimize cost functions with discrete variables11. The theoretical aspects of QA are well known. Its basic concept 
is derived from the quantum adiabatic theorem12–14, and a successful experimental implementation of QA was 
realized using present-day technology15–18. Since then, QA has been developed rapidly and has attracted much 
attention. Several protocols based on QA do not stick to the adiabatic quantum computation or maintain the 
system at the ground state; rather, they employ a nonadiabatic counterpart19–22. In addition, some studies have 
used a more sophisticated quantum effect23–25. Although the original proposal for QA was designed for opti-
mization problems with discrete variables, as described in the form of a spin-glass Hamiltonian11, the concept 
of QA can be generalized to a wider range of optimization problems, even those with continuous values. Most 
practical optimization problems, including machine learning, use continuous variables. One typical instance is 
the optimization problem for DNNs. Below, we apply the concept of QA to the DNN optimization problem. In 
the previous study, they assessed the potential efficiency of using quantum fluctuations to avoid the non-convex 
cost function by means of the replica method, which is a sophisticated tool in statistical mechanics26. Although 
the analysis in the previous study discussed the learning of the discrete-weight neural network (binary varia-
ble as in the Ising model), the essential features are expected not to differ from the continuous-variable neural 
networks. As discussed in the previous study, the generalization performance attained by the optimization with 
quantum fluctuations can be better than that without them. In the present study, we perform practical tests: the 
optimization of DNNs with quantum fluctuations, and discuss its efficiency. Because the computational cost for 
simulating quantum dynamics is prohibitive, as shown below, our test is restricted to the case for the relatively 
shallow networks. However our approach is straightforward to apply deeper networks.

The paper is organized as follows: The second section describes our method for optimizing DNNs. The fol-
lowing section demonstrates the method using three simple tasks. The last section discusses the feasibility of our 
method.

Methods
Quantum annealing for continuous variables.  The optimization problem is interpreted as the minimi-
zation of the energy function (potential energy) V(w) in the context of physics. We address the optimization of 
the weights of DNNs below. The weights are denoted by ∈w N . The standard gradient descent is given as the 
equation of motion for the overdamped system

η+ = −
∂

∂
.t t Vw w

w
w( 1) ( ) ( ) (1)

where t is the update step. This is regarded as a dynamical system in a low-temperature region in the context of 
physics. Considering the thermal effect characterized by the temperature T, the weights fluctate following the 
Gibbs-Boltzmann distribution as

β= −P
Z

Vw w( ) 1 exp( ( )), (2)

where Z is the partition function that acts as a normalization constant. In this case, instead of the equation of 
motion, a dynamical system with Langevin dynamics is adequate for description of the weights following the 
Gibbs–Boltzmann distribution as

η η+ = −
∂

∂
+ .t t

w
V T Nw w w( 1) ( ) ( ) 2 (0, 1) (3)

This is the procedure known as the stochastic gradient Langevin method27, in which the learning rate decreases 
in the same manner as in simulated annealing (SA)28. In QA, we introduce quantum fluctuations in addition to 
the energy function in the extremely low temperature T → 0(β → ∞). We consider the following time-dependent 
Hamiltonian:

ρ
= +ˆ ˆĤ t V

t
w p( ) ( ) 1

2 ( ) (4)
2

where ŵ  denotes degrees of freedom and p̂ represents momentum that satisfies the commutation relation 
= .ˆ ˆ iw p[ , ]   In addition, ρ(t) represents the mass of the weights and increases from 0 to ∞ over time throughout 

the QA process. Following the ideas of quantum mechanics, the weights fluctuate as characterized by the follow-
ing density matrix, instead of directly by the distribution function; this is defined as

ρ β= −ˆ ˆ
Z

H t1 exp( ( )) (5)

where β= − ˆZ H tTr(exp( ( ))). To specify the probability distribution of the realized configuration of the weights, 
we compute the matrix elements as

ρ= .ˆP w w w( ) (6)
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where =ŵ w w w . However, the computation of the density matrix is intractable in general. We then employ 
the Suzuki–Trotter decomposition to reduce the operators to c-numbers by introducing M copies29 and obtain the 
following path-integral representation as shown in Appendix:

∫
β ρ

β
=





− − −




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where ∫ ∫= ∏ =
− dw wk

M
k1

1 , M is the Trotter number and k is the index of the replicated system. The boundary 
condition is set to w0 = wM = w. The numerical implementation of the Suzuki-Trotter decomposition is estab-
lished as an approximation of the distribution function (7) by setting a finite number for M. For instance, in the 
quantum Monte Carlo simulation30, the configuration of the degrees of freedom is sampled using the distribution 
function as
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in which the inverse temperature is taken to be β → ∞ with β/M being finite. In other words, the quantum Monte 
Carlo simulation deals with many replicated realizations or paths wk(t) with index k (imaginary time) following 
Langevin dynamics as

η η ρ η+ = −
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− − − + .− +t t V t T t t t t T Nw w w w w w( 1) ( )

w
( ( )) ( )(2 ( ) ( ) ( )) 2 (0, 1)

(9)k k
k

k q k k k q
2

1 1

where Tq = M/β. One might recognize that many DNN realizations interact with each other through the elastic 
term, which represents the quantum effect. The elastic term urges many DNN realizations into a single condensed 
solution w* when ρ(t) takes relatively a large value. By the boundary condition w0 = wM, w* = w. For simplicity, 
let us first consider the case with a large ρ(t). The path integral formulation allows fluctuation around w*. In other 
words, the action in the exponential function in P(w) has two terms: one is the cost function, which is what we 
originally want to optimize, and the other is degree of condensation of the realizations. As in Appendix, we find 
that wk − w follows a Gaussian distribution with some covariance βVkk′(t). Thus, the approximated distribution 
function in a large ρ(t) is reduced to
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Here, we set the minimizer of the (logarithm of) the distribution function in order to make analysis simpler.
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where Mγ is a constant for maintaining this inequality. The minimizer on the right-hand side is the cost function 
appearing in the entropy stochastic gradient descent (E-SGD) algorithm, which captures the wider local minima9. 
In order to obtain the most probable weights w, taking the derivative with respect to w of the minimizer of log-
P(w), we obtain the following update equation

γ ′= −t t tw w w( ) ( )( ( ) ), (12)

where 〈 〉  takes the average of w′ in the integrand of (11). The average is directly intractable and is instead esti-
mated by the following Langevin dynamics:

η γ η′ ′′ + = −
∂

∂
+ − + .{ }s s

w
V t t s T Nw w w w w( 1) ( ) ( ) ( )( ( ) ( )) 2 (0, 1)

(13)q

In the E-SGD algorithm, γ(t) is a decreasing value, which will vanish at the completion of optimization. The 
time dependence of γ(t) is closely related to ρ(t) as described in the Appendix. In standard QA, we gradually 
increase ρ(t). Then γ(t) similarly increases. Thus, the E-SGD algorithm is essentially different from the standard 
QA procedure. As they stated, the “reverse annealing” method is considered in the literature9.

Reverse annealing is now implemented in the current system of the D-Wave machine, and shows better perfor-
mance for optimization. A similar approach for increasing the performance is to search by induction of quantum 
fluctuation31. In these cases, reverse annealing is induction of the quantum fluctuation, namely ρ(0) = ρ(T) = 0 
while ρ(t) > 0.

Finite-value quantum annealing.  As described in previous studies9,26, there is a useful algorithm exploit-
ing an entropic effect around a single condensed solution. In this algorithm, the author can elucidate one of the 
aspects related to the quantum effect: i.e., the entropy effect. In our study, we perform the direct optimization of 
the cost function, which appears in the exponential of the probability distribution (8) as,
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which involves nontrivial quantum tunneling stemming from non-perturbative effects. Here we assume β/M = 1 
because we take β → ∞ and M → ∞. Thus, we must deal with M replicated systems for optimizing the DNNs. 
In this sense, our procedure is not reasonable for optimizing DNNs in practical applications. However, our trial 
may stimulate motivation for possible applications of the quantum computation. We report several simple DNN 
optimization tests to provide future perspectives in machine learning with respect to the quantum mechanics 
described below.

From this point forward, we do not focus on cases with a large ρ(t). We consider directly optimizing the cost 
function (8), but T → 0 in order to obtain only the quantum effect for simplicity, as

η ηρ+ = −
∂

∂
− − − .− +t t V t t t t tw w

w
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(15)k k
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In addition, we consider a finite-value quantum annealing, in which the quantum fluctuation remains at the 
final stage of optimization. In standard QA, we gradually increase ρ(t) to obtain a single realization among many 
replicas. However, as discussed later, a moderate ρ(t) value is beneficial for obtaining improved generalization 
performance. When we do not consider the “quality” of the solution, the standard QA is one of the best choices. 
The theoretical assurance of the ideal QA toward the optimal solution with the lowest cost function value is well 
established on the basis of the adiabatic theorem12. However, as in the case of DNN optimization, the quality of 
the solution is measured using a different scale than the cost function itself, namely the generalization perfor-
mance. Therefore, the standard QA method is not necessarily the best choice for optimization of DNNs. As a 
result, we inject a finite quantum fluctuation value to attain better generalization performance.

Here, we provide a simple schematic picture for the finite-value QA to attain improved generalization perfor-
mance. For simplicity, we assume that a DNN loss function has two local minima: a sharp local minimum and a 
wide local minimum. Both of the depths are the same, as shown in Fig. 1.

In other words, the first term in the cost function (14) takes the same values in two local minima. Let us here 
consider the favorable solution in the standard QA. In standard QA, we increase ρ(t) to a very large value. When 
the optimization is successfully performed without entrapment in any saddle points or trivial local minima, we 
compare the two representative local minima of the cost function (14). When most of the realizations of the 
M-replicated DNNs are condensed to the sharp local minimum, the cost function (14) takes a smaller value 
compared to the case of the wide local minimum. Thus, the successful result of the standard QA is absorbed in the 
sharp local minimum. In this sense, standard QA is not suitable for optimization of DNNs. Instead, in finite-value 
QA, the final value of ρ(t) is set to be finite. Then, depending on the final value of ρ(t), the resultant solution is 
allowed to be absorbed into the wider local minimum of the loss function. In a previous study9, γ(t) (similar to 
ρ(t)) is referred to as the scoping coefficient and is gradually decreased.

The remaining problem is that, in general, a priori we do not find an adequate strength value for quantum 
fluctuation. We propose an adaptive approach for tuning the value of ρ(t) in the next subsection.

Quantum Adam.  We hereafter assume the loss function |L w( ) for a training dataset  as the energy func-
tion. The loss function measures the discrepancy between the ground truth labels t and the output y predicted by 
the network. The gradient of the loss function is coen used in parallel computing enviromputed using the 
back-propagation method32. We here employ the stochastic gradient descent method by dividing the training 
dataset into M minibatches as { , , , }M1 2   . It is convenient to process a large amount of training data and 
mitigate the computational cost of the gradient. We then distribute the minibatch to each Trotter slice k. Following 
the standard prescription of the Suzuki-Trotter decomposition, we should utilize the same energy function on 
each Trotter slice. However, to induce the stochastic ingredients over M-replicated DNNs to perform efficient 
learning, we employ the loss function as |L( w )k k  on each Trotter slice k. Thus, we divide the training dataset into 
M minibatches, where M is the number of Trotter slices. We then sweep all the minibatches over each Trotter slice 
in an epoch. The minibatches are randomly shuffled in each epoch.

Figure 1.  Schematic pictures of two local minima and quantum effects.
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We here assume that our procedure is employed in practice in a parallel computing environment. In the con-
text of the current machine learning environment, parallel computing for learning is sometimes employed for 
very large datasets. As in our case, the elastic term ρ − ⁎w wk 2

2 has been used in parallel computing environ-
ments33. Another study prepared the master with w and updated it by summing over gradients obtained by slaves 
with wk

34.
We now address the remaining problem of determining the magnitude of the coefficient ρ(t) of the elastic 

term. We exploit the idea of the Adam method, which is often implemented in DNN optimization6, to adaptively 
change the coefficient. It accelerates the update when the gradient tends to shrink around the saddle point. In 
Adam, instead of the standard gradient descent method (1),

η
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+ = −
+

∼


t t
t

tw w
v

m( 1) ( )
( )

( ),
(16)
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Here, g(t) is the gradient of the loss function. The hyperparameters β1 and β2 are chosen a priori. The quantity of 
ε avoids accidental division by zero. The calculation of the product  and the division between vectors are per-
formed in a component-wise manner. During update iterations, the magnitude of the gradient becomes small 
around the saddle point. Then, v(t) becomes a vector with small-valued elements. The coefficient η ε+ tv/ ( )  of 
the effective gradient ∼m(t) is then increased. The updates are then efficiently performed, even around the saddle 
point. This is a rough sketch of the learning acceleration provided by Adam.

For tuning ρ(t), we employ a technique similar to one in Adam, in which the coefficient of the effective gradi-
ent is adaptively changed as follows:
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Here, = − −+ −t t t tg w w w( ) 2 ( ) ( ) ( )k
q

k k k1 1 . Similar to the process followed in Adam, the hyperparameters α1 and 
α2 are set a priori. The above update rule adequately tunes the elastic term. It reads that the coefficient is tuned as 
ρ ρ ε→ +( )t tv( ) / ( )k

q .
Following the standard QA, the weights are randomly initialized in order to search for good candidates for the 

optimal solution over a relatively wide range. In other words, in the initial stage of optimization, the weights asso-
ciated with the different Trotter slices deviate. Owing to the elastic term, the discrepancies between Trotter slices 
begin to lessen after several iterations. In other words, the tunneling effect gradually decays, and the effective 
coefficient ρ ε+( )tv/ ( )k

q  then increases to enhance the tunneling effect again. Therefore, the above update rule 
efficiently induces the tunneling effect without directly tuning the value of the mass ρ. We call the above update 
rule “quantum Adam” in the sense that we add the quantum effects stemming from tg ( )k

q  while tuning the contri-
bution of the effect during the learning. We emphasize that other gradient methods developed for machine learn-
ing, including AdaGrad35, AdaDelta36, RMSprop37, and the Sum of Functions Optimizer38, can be implemented 
in conjunction with the quantum effect in the same manner.

In the following section, we demonstrate the effectiveness of quantum Adam by testing it against two datasets: 
the MNIST handwritten digit dataset39 and the Olivetti face image dataset40; both are open datasets often used in 
benchmark tests for machine learning.

Results
In this section, we demonstrate the application of quantum Adam to DNNs by using a well-known open dataset. 
Although the datasets used in the experiments contain data that are relatively easy to analyze, there are high com-
putational costs incurred when implementing the M-replicated DNNs for the realization of quantum Adam. In 
this sense, the present study is simply a proof of concept.

For simplicity, we used ReLU as the activation function in the middle layers in all experiments. We used cross 
entropy as the cost function for classification and the mean-squared error for auto-encoding in the results shown 
below. The weights are initialized with i.i.d. Gaussian samples with a zero mean and deviation N1/ l , where Nl is 
the number of inputs for each layer l. We use the standard choice of α1 = β1 = 0.9 and α2 = β2 = 0.999. We set the 
common initial conditions and performed M-independent classical (standard) and quantum Adam tests for com-
parison. We then assessed the generalization performance in terms of the average and minimum/maximum of the 
loss function/accuracy.
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The first task was to classify the MNIST 8 × 8-pixel images of handwritten digits. We constructed an all-to-all 
single-layer neural network (NN) for classifying the handwritten digits. Figure 2 shows the accuracy with test data 
for classical and quantum Adam. We trained the NN by feeding it 500 data items and setting M = 500. We then 
measured the accuracy using 1297 data items. In this case, we set the coefficient ρ = 2.0. Both the average and the 
maximum accuracy confirm that quantum Adam is superior to classical Adam.

The second task was to make the auto encoder. It recovers the original input as the output by using MNIST 
8 × 8-pixel images of handwritten digits. To encode the handwritten digits, we constructed two-convolution lay-
ers with a filter size of three and an output of six channels. The middle layer has 96 nodes in this case. To decode 
the images, we constructed two deconvolution layers in an inverse manner. Figure 3 shows the loss function 
for the test data with classical and quantum Adam. We trained the NN by feeding it 100 data items and setting 
M = 100. We then measured the loss function for 1697 data items to determine the generalization performance. 
In this case, we set the coefficient ρ = 1.0. Both the average and the minimum of the loss function in the replicated 
systems confirm that quantum Adam is superior to classical Adam. However, this result might be accidental, as 
there were no significant improvements in several experiments in terms of the mean-square error.

The third task was to classify the Olivetti 64 × 64-pixel images of human faces. We constructed an all-to-all 
three-layer (4096-2048-1024-40) NN for classifying face images. Figure 4 shows the accuracy with the test data 
for classical and quantum Adam. We trained the NN by feeding it 200 data points and setting M = 40. We then 
determined the accuracy using 200 data items. In this case, we set the constant ρ = 1.0 and performed batch 

Figure 2.  Accuracy for test data (red and dashed curves: classical Adam, blue and solid curves: quantum Adam) 
in single-layer NN for MNIST. All results from the M-replicated systems are indicated by light-colored curves. 
The bold curves denote the average, and the thin curves represent the maximum in the replicated NNs. The 
horizontal axis represents the epoch, and the vertical axis represents the accuracy of the test data.

Figure 3.  Loss function for test data in an auto encoder using MNIST. All results from the replicated systems 
are indicated by light-colored curves. The bold and thin curves indicate the average and the minimum in 
replicated NNs. The horizontal axis represents the epoch, and the vertical axis represents the loss function of the 
test data. The inset shows an enlarged view of the average loss functions during 800–1000 epochs.
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normalization at each layer. Both the average and the maximum accuracy are evidence that quantum Adam is 
superior to classical Adam in the last stage of learning.

Discussion
We proposed a quantum Adam formulated through a path-integral representation for optimization of DNNs. 
The proposed algorithm generates an elastic term between different realizations of DNNs and could find a better 
solution in terms of generalization performance than that by classical Adam. The point is to control the quantum 
fluctuation by introducing the adaptive change of the coefficient and inducing the wide-flat local minimum by 
means of the entropy effect, as discussed in the previous studies9,26. In the present study, we directly optimize the 
M-replicated DNNs while dealing with the non-perturbative effect, which allows the quantum tunneling effect. 
Although relatively small datasets are used, we demonstrate better generalization performance by considering 
the optimization with a finite quantum fluctuation strength. In this sense, our method does not conform to 
the standard QA method. The ideal QA might not be the best choice of learning algorithm for DNNs because 
the resultant solutions are absorbed into a sharp minimum. In recent development of manufacturing microde-
vices, QA has been successfully implemented in superconducting qubits, or so-called quantum annealer. Several 
experiments have shown that the resultant solutions seem to fall into wide local minima41. However, this is due 
to the freezing phenomena in the quantum annealer, which is a particular problem in the quantum device. The 
resultant solutions are closely related to low-energy states with a certain value of quantum fluctuation as pointed 
out in the literature42. In other words, the output from the present version of the quantum annealer follows the 
Gibbs-Boltzmann distribution with a certain value of quantum fluctuations. In this sense, QA, which is per-
formed in real experiments, can be a choice of learning algorithm. In addition, the current version of a quantum 
annealer, the D-Wave 2000Q, implements two optimization techniques by manipulating a certain value of quan-
tum fluctuation, namely quenching, and reverse annealing. These two techniques will be available for efficiently 
attaining better generalization performance in real experiments, as discussed in the literature26.

In the present study, we manipulate the optimization in classical computers. In addition, we select the strength 
of the quantum fluctuation by employing adaptive change inspired by the Adam method. The potential perfor-
mance of quantum Adam emerges in cases with many Trotter numbers that correspond to the number of mini-
batches. When we use a small number of minibatches, quantum Adam does not work well. This is because most 
of the DNNs fall into the sharp minimizers. In addition, the ρ value should be tuned adequately. When we select 
a ρ value that is too high, the searching range will be narrow, whereas a ρ value that is too small will not lead to a 
condensed solution. We tested three different tasks to assess the performance of quantum Adam in comparison to 
classical Adam. The results demonstrate that quantum Adam can provide fairly good performance. We emphasize 
that the most important feature of quantum Adam should be its generalization performance. In machine learning, 
the purpose of improvements in learning is nothing more than enhancing generalization performance with lim-
ited epochs and computational resources. In quantum Adam, the elastic term aggregates DNNs while learning. 
This effect might work to prevent sudden falls into the valley. In other words, when most of the DNNs are in the 
wide minimizer, the others do not tend to fall into the sharp minimizer; this can lead to improved generalization 
performance.

In quantum Adam, we use M-replicated DNNs. In a sense, this seems to be too abundant. However, when we 
process a large number of datasets, we distribute each batch to a number of processors or GPUs and establish a 
consensus to obtain DNNs with high generalization performance. Our present method is too computationally 
expensive to implement in the ordinary environments used in a wide range of research efforts, although it might 
be useful for learning large datasets in parallel computing environments. In this sense, our algorithm might be 
helpful even in classical computers. In future research, we shall test quantum Adam in a parallel computing 
environment with a large dataset comprising high-dimensional components, and propose another simplified 
algorithm by elucidating the most significant part of the quantum fluctuations, as in previous studies9,26.

Figure 4.  Accuracy for test data for classification of Olivetti face images. The same curves as those in Fig. 2 are 
used. The horizontal axis represents the epoch, and the vertical axis represents the accuracy of the test data.
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We remark on the time complexity of quantum Adam. The standard assessment of the time complexity of QA 
can be performed by estimating the energy gap in the time-dependent Hamiltonian. In our case, through the 
Suzuki–Trotter decomposition, the problem is reduced to the optimization problem for the cost function with 
continuous variables. By considering the rate of convergence to be at a minimum in the feasible set, the classical 
Adam method has a convergence rate of O T(1/ ), as shown in the literature6. We believe that a similar analysis 
can also be performed for quantum Adam. In addition, we emphasize that the most important feature of quantum 
Adam is its generalization performance. In this sense, the present study triggers a new aspect of QA not for pur-
suing the minimum of the cost function, but for different optimality measured in a different indicator from the 
cost function itself.

Finally, in present study, we demonstrate a potential power of quantum fluctuation, as done by QA. It pro-
motes “quality” of solution via optimization with quantum fluctuation. The standard assessment of the perfor-
mance of optimization solver is evaluated by the cost function itself. In particular, the performance of QA has 
been discussed through the decrease of the cost function. However, the robustness of the solution can be attained 
by optimization of the cost function in conjunction with the local entropy as discussed in the literature9,26. The 
optimization with quantum fluctuation automatically and potentially leads to the robustness of the solution as 
discussed in the present study. In the context of machine learning, the generalization performance is robust-
ness of the solution. In future, deepening the understanding of the quantum fluctuation would promote various 
approaches in machine learning and beyond.

Path integral representation.  By use of the Suzuki-Trotter decomposition, we formulate the path integral 
representation. Let us start the following expression of the Suzuki-Trotter decomposition as
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Strong limit of ρ(t).  First we consider the Fourier transformation on the discrepancy from the center of 
weights w* as
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We find that ar follows the Gaussian distribution. We then perform the inverse Fourier transformation and attain
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In M → ∞, we use 2πr/M = x and 2π/M = dx
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