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Abstract. Climate change is altering biogeochemical, metabolic, and ecological functions
in lakes across the globe. Historically, mountain lakes in temperate regions have been unpro-
ductive because of brief ice-free seasons, a snowmelt-driven hydrograph, cold temperatures,
and steep topography with low vegetation and soil cover. We tested the relative importance of
winter and summer weather, watershed characteristics, and water chemistry as drivers of phy-
toplankton dynamics. Using boosted regression tree models for 28 mountain lakes in Color-
ado, we examined regional, intraseasonal, and interannual drivers of variability in chlorophyll
a as a proxy for lake phytoplankton. Phytoplankton biomass was inversely related to the maxi-
mum snow water equivalent (SWE) of the previous winter, as others have found. However,
even in years with average SWE, summer precipitation extremes and warming enhanced phyto-
plankton biomass. Peak seasonal phytoplankton biomass coincided with the warmest water
temperatures and lowest nitrogen-to-phosphorus ratios. Although links between snowpack,
lake temperature, nutrients, and organic-matter dynamics are increasingly recognized as critical
drivers of change in high-elevation lakes, our results highlight the additional influence of sum-
mer conditions on lake productivity in response to ongoing changes in climate. Continued
changes in the timing, type, and magnitude of precipitation in combination with other global-
change drivers (e.g., nutrient deposition) will affect production in mountain lakes, potentially
shifting these historically oligotrophic lakes toward new ecosystem states. Ultimately, a deeper
understanding of these drivers and pattern at multiple scales will allow us to anticipate ecologi-
cal consequences of global change better.

Key words: alpine; climate change; cryosphere; limnology; mountain lakes; nitrogen deposition; phyto-
plankton; snowmelt timing.

INTRODUCTION

Globally, lakes are warming as a result of increasing
air temperatures and reduced cloud cover (O’Reilly et al.
2015). Changing lake thermal regimes are subsequently
driving additional changes in biogeochemical, meta-
bolic, and ecological functions (Gerten and Adrian
2002, Kraemer et al. 2016). The indirect effects of warm-
ing, such as those caused by earlier ice-out dates, can
further alter lake dynamics by lengthening the growing
season, which can alter phytoplankton populations and

successional patterns (Schindler et al. 1990, George et al.
2004). However, the responses of specific water bodies to
similar climatic drivers are likely to vary even within a
single region, owing to differences in adjacent land
cover, lake morphometry, and connectivity to other
water bodies (Kraemer et al. 2015).
Mountain lakes are particularly vulnerable to warm-

ing trends (Pepin et al. 2015, Schmeller et al. 2018), but
our knowledge of how primary producers will respond is
limited. Until recently, changes in mountain lake phyto-
plankton have been attributed to nitrogen and phospho-
rus deposition, particularly in western North America
(Goldman 1988, Wolfe et al. 2003, Brahney et al. 2015),
but increases in mountain lake productivity are begin-
ning to be described in the literature as a consequence of
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multiple concurrent stressors (Oleksy et al. 2020). The
length of the ice-free season is increasing, affecting lake
thermal structure, solute concentrations, mixing regimes,
and ultimately phytoplankton biomass and productivity
(Roberts et al. 2017, Peter and Sommaruga 2017). In
Arctic lakes, climate change is implicated as the primary
driver of altered primary producer assemblages and
ecosystem production through changes in ice cover and
lake thermal structure (Ruhland et al. 2008, Griffiths
et al. 2017). Similar processes are likely at work in moun-
tain lakes but may be obscured by inputs of nutrients;
where both warming and enrichment occur, such inter-
actions may enhance current and future algal abundance
in lakes (Jeppesen et al. 2014, Lepori et al. 2018).
Much of our understanding about variation in lake pro-

cesses has emerged from a legacy of research in the north-
ern and midwestern United States and northern
European lake districts, which have distinctly different cli-
mate and land-use characteristics compared to mountain
lakes. Although this research has provided insight into the
drivers of nutrient concentrations (Soranno et al. 2015),
gross primary production (Kelly et al. 2018), phytoplank-
ton–nutrient relationships (Wagner et al. 2011), and syn-
chrony in responses across these landscapes (Magnuson
et al. 2004), a thorough understanding of the patterns and
drivers of phytoplankton dynamics in mountain lakes is
lacking. Understanding the dominant drivers that regu-
late the base of lake food webs is critical for developing
climate adaptation and biological conservation strategies,
especially because these systems give rise to the major riv-
ers of the world and support downstream communities
(Huss et al. 2017, Klein et al. 2019). Mountain lakes can
serve as model systems for understanding spatiotemporal
ecosystem dynamics and processes affecting lake systems
globally because of their responsiveness to environmental
change and relatively undisturbed catchments (Moser
et al. 2019).
There are an estimated 2,600 natural lakes 2,700 or

more meters above sea level in the southern Rocky
Mountains (SRM) (Nelson 1988). In light of recent
increases in lake productivity observed in two SRM
lakes stimulated by increased nutrients and warming
(Oleksy et al. 2020), the goal of the current paper was to
construct predictive models to describe phytoplankton
biomass (as chlorophyll a) dynamics across multiple spa-
tial and temporal scales in the region. Specifically, we
used three data sets to ask (1) what are the most impor-
tant drivers of phytoplankton biomass across the region?
and (2) do the drivers of phytoplankton biomass differ
interannually and intraseasonally? For the first question,
we hypothesized that variation in phytoplankton bio-
mass from lake to lake would be controlled by nutrient
concentrations as well as watershed features that influ-
ence nutrient delivery in headwater aquatic ecosystems,
including glacier, vegetation cover, and underlying geol-
ogy (Ren et al. 2019). Land cover influences water qual-
ity and ecosystem functioning in other regional-scale
studies because of nutrient delivery from the adjacent

landscape (Wagner et al. 2011, Filstrup et al. 2014,
Lapierre et al. 2017). For the second question, we
hypothesized that variation in annual snow-water equiv-
alent (SWE) would explain phytoplankton responses
over decadal time scales, given the importance of SWE
on growing-season length in mountain lakes (Preston
et al. 2016). Within a season, we expected that the role
of nutrients, particularly the relative availability of nitro-
gen (N) to phosphorus (P), would explain the most vari-
ability in phytoplankton biomass, because the SRM
region has been subjected to high atmospheric N deposi-
tion (Wolfe et al. 2003, Elser et al. 2009a).

METHODS

Data acquisition

To identify drivers of regional variation in phytoplank-
ton biomass, 28 lakes from just below and above treeline
(2,987–3,550 m) in the Colorado Front Range were sam-
pled shortly after ice-off and again during late summer
between 2015 and 2016 (n = 147; Fig. 1). The majority
were situated in watersheds with less than 25% vegetation
cover (Table 1). The lakes were characteristic of SRM
lakes according to the Western Lake Survey (Eilers et al.
1987), being on average ≤7 ha in surface area and ≤10 m
deep in watersheds ≤400 ha or smaller (Appendix S2:
Table S2). To identify drivers of interannual phytoplank-
ton biomass, two alpine lakes, Green Lake 1 (GL1) and
Green Lake 4 (GL4) from the Green Lakes Valley, part of
the Niwot Ridge Long-Term Ecological Research Pro-
gram, were sampled a minimum of five times annually
between ice-off (May to June) and September between
2008 and 2016 (n = 104; Fig. 1). Finally, to identify dri-
vers of intraseasonal phytoplankton biomass, the sub-
alpine Loch and alpine Sky Pond within the Loch Vale
watershed (LVWS) of Rocky Mountain National Park
were sampled approximately weekly in 2015–2016 and
monthly in 2017 from the week of ice-off through mid-
September (n = 81, Baron 1992; Fig. 1).
Predictor variables were collected as described in the

following corresponding sections and classified as envi-
ronmental, climatic, or watershed (Table 1,
Appendix S1: Table S1). With each field visit, water sam-
ples were collected to analyze chlorophyll a concentra-
tions (as a proxy for phytoplankton biomass) along with
nutrient contents and temperature. We used three dis-
tinct data sets to produce our models:

1. Data from 28 lakes sampled from 2015 to 2016 (re-
gional model);

2. Data from Green Lakes 1 and 4 from 2008 to 2016
(long-term model);

3. Data from The Loch and Sky Pond from 2015 to
2017 (intraseasonal model).

Because of the high number of samples from The
Loch, Sky Pond, and Green Lakes 1 and 4, we randomly
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selected one sampling date per month for each site to
prevent these four lakes from disproportionately influ-
encing the regional model results.

Environmental variables

Water chemistry and chlorophyll a were collected at
the deepest point of each lake from the upper mixed
layer and hypolimnion with a peristaltic pump. Chloro-
phyll a samples were filtered (0.7 µm) in situ, held on ice
until being returned to the laboratory, and then frozen
until analysis. Water chemistry measurements included
nitrate (NO3), total dissolved phosphorus (TDP), total
dissolved nitrogen (TDN), and dissolved organic carbon
(DOC). All samples were filtered within 24 h of collec-
tion and frozen until analysis. We only collected unfil-
tered aliquots for total phosphorus (TP) analysis for
LVWS lakes. Water temperature and conductivity were
measured in situ with a hand-held probe (Thermo Scien-
tific Orion 3-Star, Waltham, Massachusetts, USA). Fish
presence or absence data were based on investigator site-
specific knowledge or through fish stocking records from
Colorado Parks and Wildlife. We included sampling
depth as a predictor in the models to account for differ-
ences in drivers between epilimnion and hypolimnion
samples. A full description of water-chemistry lab meth-
ods is outlined in Appendix S1.

Climate and weather variables

We used the prism package (Hart and Bell 2015) in R
version 3.5.0 (R Development Core Team 2018) to
obtain estimates of temperature and precipitation for
each study site from the parameter-elevation regressions
on independent slopes model (PRISM Climate Group
2018). For each sample date, we extracted the daily mean
temperature and total precipitation and calculated the
mean daily temperature and total precipitation for the 7
d and the 30 d preceding the sampling date. To comple-
ment these data, we compared monthly temperature and
precipitation to climate normal data (1981–2010) for the
calendar month closest to the sampling date. We also
obtained snowfall data for the winter preceding sam-
pling from the nearest snow telemetry (SNOTEL, U.S.
Department of Agriculture), including the maximum
observed snow water equivalent, comparisons of this
maximum SWE to average historical SWE (1980–2010
data), and the difference between the observed spring
snow-free date and historical average snow-free date.

Watershed variables

Watersheds for each lake were delineated from lake
outlets with the U.S. Geological Survey (USGS)
StreamStats online tool (USGS 2016). We calculated

FIG. 1. Locations of the study region and lakes included in the study: (a) the southern Rocky Mountain ecoregion (after the
Western Lakes Survey; Eilers et al. 1987); (b) lakes included in the regional model; (c) the Loch Vale Watershed lakes (The Loch
and Sky Pond; LVWS) that were included in the intraseasonal model; and (d) the Green Lakes Valley lakes (GL1 and GL4; GLV)
that were included in the long-term model. [Color figure can be viewed at wileyonlinelibrary.com]
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and extracted several watershed predictors (WS) that we
hypothesized might play a role in explaining lake-to-lake
variation in chlorophyll a, including dominant vegeta-
tion types, wetland extent, rock glacier and perennial ice
cover, and underlying geology. A full description of how
watershed variables were derived is included in
Appendix S1: Table S1.

Statistical analyses

We used boosted regression trees (BRTs) to identify
drivers of chlorophyll a regionally, seasonally, and intra-
annually (Breiman et al. 1984, Elith et al. 2008). Regres-
sion trees provide flexibility by allowing for nonlinear
relationships between predictor and response variables;
are robust to missing predictor data, nonindependence,
and collinearity; can detect interactions among predic-
tors; and are often well-suited for hierarchically struc-
tured predictor variables (De’ath and Fabricius 2000,
Elith et al. 2008, Buston and Elith 2011). A key feature
of BRT is recursive partitioning, which splits the
response variable into groups that are as homogenous as
possible based on predictor variable values (Strobl et al.
2009). BRTs combine recursive partitioning with

boosting, a method for combining hundreds to thou-
sands of trees to improve model performance and pre-
dictive capacity (Prasad et al. 2006, De’ath 2007, Elith
et al. 2008).
We built three sets of BRT models with data collected

from 28 southern Rocky Mountain lakes in Colorado,
across a gradient of elevations, catchment types, land
cover, and lake sizes (Fig. 1). The first set of models,
referred to as the regional models, used the 28-lake data
set to compare patterns across lakes with varying char-
acteristics. We then narrowed our focus to examine dri-
vers of interannual and intraseasonal variability in
phytoplankton abundance using two different data sets:
the first used Green Lakes data collected approximately
biweekly from 2008 to 2016 (interannual model), and
the second used weekly Loch Vale data from 2015 to
2017 (intraseasonal model).
We implemented all BRT models in the gbm package

(Ridgeway 2006) of R version 3.5.0 (R Development
Core Team, 2018). Chlorophyll a concentration, the
response variable for all models, was natural log-trans-
formed to achieve normality. We removed the most
highly correlated predictor variables based on Pearson’s
coefficients (r ≥ |0.8|) and then used the methods

TABLE 1. Summary information for predictor variables that were candidates in the best regional climate, regional
climate + watershed, interannual, and intraseasonal models. Summer statistics include minimum, maximum, mean, median, and
standard deviation for each predictor variable. Randomly selected monthly observations from Loch Vale watershed and Green
Lakes Valley lakes are included in the model and data summary presented. Dashes indicate data were unavailable for all lakes or
summary statistics could not be computed on categorical variables. DIN:TP data were only available for Loch Vale lakes.
Twenty-two land-cover predictors were included in the original models but were dropped in the model selection procedure.
Methods for land cover and summary of parameters can be found in Appendix S1: Table S1.

Variable Description [units] Minimum Maximum Mean SD

Indexing variables
DOY Day of year 152 266 205 –
Year Year – – – –
Climate variables
Weekly precipitation Cumulative precipitation for week preceding sample date

[mm]
0.0 27.0 7.1 6.3

Monthly precipitation Cumulative precipitation for 30 d preceding sample date
[mm]

8.9 114.9 37.5 20.1

Precipitation % normal Monthly precipitation as a percent of normal [%] 23% 122% 56% 33%
Daily mean temperature Mean air temperature sample date [°C] 5.6 16.4 11.7 2.3
Monthly mean
temperature

Mean air temperature for the 30 d preceding sample date
[°C]

2.4 14.5 10.9 2.0

Temperature % normal Monthly average air temperature as a percent of normal [%] 86% 171% 123% 21%
Maximum SWE Maximum observed SWE for the preceding winter [in.] 4.5 21.8 14.9 7.1
Change snow (1992–2011) Change in perennial snow and ice cover 1992 to 2011 [%] �3.5% 0.0% �1.1% 0.9%
Environmental variables
NO3 Nitrate-N [mg/L N] 0.002 0.40 0.09 0.07
DIN:TDP Total dissolved N to total dissolved P molar ratio 18.1 1,287.4 167.4 153.5
DIN:TP Total dissolved N to total P molar ratio – – – –
Water temperature Water temperature of sample [°C] 2.6 19.0 9.4 3.3
Watershed variables
Maximum lake depth Maximum lake depth [m] 1.8 42.0 10.7 8.6
Drainage ratio Lake area as a percentage of watershed area [%] 0.5% 10.2% 3.1% 2.7%
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described by Bertani et al. (2017) to optimize BRT
parameters (Appendix S2). In all described models, we
used a backward-selection procedure to remove variables
of low importance iteratively, starting with variable
importance (VI) ≤ 1% and ending with VI ≤ 5%, select-
ing the model that produced the highest cross-validated
coefficient of variation (CV R2; Elith et al. 2008). The
CV R2 is a measure of the fitted models’ ability to pre-
dict a subset of observations, and the training R2 is a
measure of the overall fit to the data set (see
Appendix S2 for additional description). We first devel-
oped a regional BRT model for the data set that com-
bined environmental, climate, and watershed predictors
for all sample lakes, but this resulted in a low CV R2 of
0.29. Three separate regional models were subsequently
developed for (1) environmental, (2) climate, and (3)
watershed predictors (Waite and Metre 2017). Using the
backward-selection procedure described above, we
selected the models with the highest CV R2 values as the
top environmental, climate, and watershed models
(Appendix S2: Table S3). Because the CV R2 from the
regional environmental model was poor, we also created
a second combined regional model that included only
climate and watershed variables (regional cli-
mate + WS), with the rationale that watershed predic-
tors in turn influence water chemistry. Separate BRTs
were developed for the Green Lakes Valley (long-term
model) and Loch Vale Watershed (intraseasonal model)
data sets. We focused interpretations on variables
with ≥5% VI scores because they had the strongest influ-
ence on overall model fit (De’ath and Fabricius 2000,
Elith et al. 2008). VI is the number of times the variable
is used for splitting, weighted by the improvement to the
model that is made by including the split.
We explored linear mixed-effects models (LMMs) as a

way to account for correlations among observations that
were collected in the same lake or on the same date, but
the results did not yield any insight into drivers of
chlorophyll a in the regional data set (Appendix S3:
Table S1). The regional LMM had a very low R2

c of
0.024 (the variance explained by fixed effects) and mod-
erate R2

m of 0.451 (the variance explained by fixed and
random effects), and none of the fixed effects emerged
as significant predictors (all P > 0.05). The structure and
flexibility of BRT models, combined with their robust-
ness to nonindependent data sets, provided stronger
insight into the mechanistic drivers of chlorophyll a.
Thus, we report only the BRT model results below. All
code and data are publicly available; see Data Availabil-
ity section.

RESULTS

Climate and weather

Summers (June–August) during the regional survey
years of 2015–2016 were drier and warmer than the
1981–2010 average (6.3 cm/month and 9.2°C mean

precipitation and temperature, respectively); 69% of
observations occurred when monthly precipitation
was ≤50% of the 30-yr average, and 75% of the observa-
tions occurred when monthly air temperature
was ≥112% of the 30-yr average (Appendix S2: Fig. S9).
In contrast to summer precipitation, maximum SWE of
the preceding winter–spring indicate that 2015–2016
were near or above the 30-yr averages and ranged from
95 to 125% of normal SWE. However, snow-free dates
were earlier than the long-term average in this region
(Table 1, Appendix S2: Fig. S8).
The long-term data set spanned a wide range of maxi-

mum SWE values and monthly precipitation values
Appendix S2: Figs. S8, S9), but all of the driest summer
conditions (≤50% of normal) occurred in 2015 and 2016.
In the intraseasonal data set, 56% of observations
occurred when summer monthly precipitation was <50%
of the 30-yr average and the mean of 76% indicates these
summers were drier than normal (Appendix S2:
Table S1, Fig. S7). Most of the observations (67%)
occurred when the mean summer monthly air tempera-
ture was ≥100% of the 30-yr average (Appendix S2:
Table S1, Fig. S7).

Regional model

Lake chlorophyll a concentrations were variable
across regional surveys in 2015–2016 and ranged from
highly unproductive to mesotrophic (0.3–23.3 µg/L),
with a median of 3.7 µg/L (Table 1, Appendix S2:
Fig. S2). All model combinations of predictors per-
formed poorly across the regional survey. Regional
models that included all predictor variables, environ-
mental-only, or watershed-only variables could not pre-
dict lake chlorophyll a (Appendix S2: Table S3). The
climate-only model (hereafter regional climate model)
was the best-performing model for regional chlorophyll
a with a training R2 of 0.83 and CV R2 of 0.38
(Fig. 2a; Appendix S2: Fig. S1). Influential predictor
variables (VI ≥ 5%) included weekly precipitation (VI
= 25.1%), monthly mean air temperature (VI = 14.1%),
daily mean air temperature (VI = 13.9%), day of year
(DOY) of sample collection (VI = 10.6%), monthly air
temperature as a percent of 30-yr normals (VI =
10.5%), monthly precipitation as a percent of 30-yr
normals (VI = 8.6%), daily precipitation (VI = 8.1%),
and maximum SWE of the previous winter (VI =
5.1%). Although 2015 and 2016 were average snow
years, summer air temperatures were well above nor-
mal at all sites (Appendix S2: Figs. S6, S7), with high-
est chlorophyll concentrations during the driest weeks
(Appendix S2: Fig. S3). There were a few exceptions
to this finding, where increased chlorophyll concentra-
tions were seen with higher precipitation values in a
subset of observations (15%, n = 26) during a single
week that was wetter than normal.
The combined regional climate + WS model per-

formed similarly to the regional climate model but was
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less parsimonious (CV R2 = 0.37; Fig. 2; Appendix S2:
Table S3, Fig. S4). This model identified eight key
explanatory variables (VI > 5%); there was some overlap
with top predictors in the regional climate model, but
the following also emerged as important predictors: lake
area as a percentage of watershed area (drainage ratio;
VI = 10.3%), maximum lake depth (VI = 7.9%), change
in perennial snow and ice cover between 1992 and 2011
(VI = 6.3%), and perennial snow and ice cover (VI =
5.0%).

Long-term model

Chlorophyll a of lakes in the long-term data set
spanned a similar range as the regional data set, from
0.01 to 19.9 µg/L with a median value of 2.1 µg/L
(Appendix S2: Table S1, Fig. S2). Using the long-term
model to explore drivers of interannual variability in
lake chlorophyll a from 2008 to 2016, maximum
observed SWE of the preceding winter (VI = 30.1%) and
water column NO3 (VI = 22.2%) had the biggest influ-
ence on chlorophyll a (Fig. 2, Appendix S2: Fig. S5).
Dissolved inorganic N to total dissolved P molar ratios
(DIN:TDP; VI = 15.8%), water temperature (VI =
10.5%), TDP (VI = 9.4%), and mean monthly air tem-
perature (VI = 4.5%) also influenced chlorophyll a val-
ues. The long-term model had a training R2 of 0.96 and
CV R2 of 0.72 (Appendix S2: Fig. S1), and it uncovered
three interaction terms (Appendix S2: Fig. S7). The
strongest interaction occurred between NO3 and maxi-
mum SWE, with lower SWE leading to higher NO3 and
consequently highest predicted chlorophyll a. Interac-
tions between low N:P and lake water temperature and
earlier snow-free date also predicted high chlorophyll
concentrations (Appendix S2: Fig. S7).

Intraseasonal model

Chlorophyll a in the intraseasonal data set ranged
between 0.3 and 11.3 µg/L (Appendix S2: Table S1,
Fig. S2). The intraseasonal model had better predictive
capabilities than either of the regional models (training
R2 = 0.93, CV R2 = 0.64; Fig. 2, Appendix S2: Fig. S6).
Dissolved inorganic N to total P ratios (DIN:TP; VI =
25.4%) and water temperature (VI = 18.6%) were the
most important variables, followed by DOY (VI =
14.8%), monthly precipitation (VI = 9.4%), weekly mean
temperature (VI = 6.9%), monthly precipitation as a per-
centage of 30-yr normal values (VI = 6.3%), dissolved
inorganic N to dissolved P molar ratios (VI = 5.6%), and
weekly precipitation (VI = 5.3%).

DISCUSSION

Phytoplankton in southern Rocky Mountain lakes
was responsive to both winter and summer precipita-
tion and summer air temperature, though the dominant
drivers were dependent on spatial and temporal con-
text. For instance, at interannual timescales, snowpack
controlled the magnitude of phytoplankton biomass by
regulating nutrient concentrations and water tempera-
ture, and summer meteorology explained the most vari-
ation across space. Inferring broad-scale spatial
patterns in conjunction with temporal dynamics is often
difficult; Lottig et al. (2017) found that drivers of spa-
tial patterns in water clarity could not explain the same
temporal dynamics within lakes. Similarly, Leach et al.
(2019) found spatial correlations between DOC and TP
but no relationship between the two parameters within

FIG. 2. Bar plots listing the top predictor variables (VI >
5%) in (a) the best regional climate, (b) regional climate + wa-
tershed (WS), (c) long-term (Green Lakes Valley), and (d)
intraseasonal (Loch Vale watershed) models. The x-axis refers
to the percent variance explained by each of the top predictors.
Color references to variable type (climate, environment, or
index). No watershed predictors emerged as significant predic-
tors in any of the best-performing models. Refer to Table 1 for
predictor variable explanations. [Color figure can be viewed at
wileyonlinelibrary.com]
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lakes over time. Both these studies, as well as ours,
highlight that the drivers of lake processes at large spa-
tial scales are often fundamentally different from tem-
poral drivers.
When we looked across the 28 lakes in our study, the

most important drivers of phytoplankton biomass were
summer meteorological conditions, especially weekly
precipitation amounts throughout the open-water sea-
son. Snowpack, nutrients, or landscape features did not
emerge as the most important drivers of phytoplankton
biomass when lakes across the region were compared
with each other, contrary to our expectations. Instead,
we found that in years with average SWE, summer pre-
cipitation extremes and warming enhanced phytoplank-
ton biomass.
In North American lakes located in regions with less

topographic complexity, heterogeneity in factors like
landscape cover, lake morphometry, and nutrient load-
ing can lead to large variation in responses to the same
climatic drivers (Rose et al. 2016, McCullough et al.
2019). In the southern Rocky Mountains, lake locations
in small headwater basins with low vegetation cover,
short open-water seasons, and extreme topographic
relief seems to simplify the drivers of lake phytoplankton
down to weekly precipitation (or lack thereof), monthly
and daily temperatures, and a few morphometric charac-
teristics. Although variation in phytoplankton responses
to summer weather was high across the region, the size
of the lake relative to the watershed, lake depth, and
perennial snow and ice cover were important in modu-
lating lake-to-lake responses. Specifically, lakes with
smaller lake area–to–watershed ratios and deeper lakes
generally had higher phytoplankton biomass. Lake-to-
lake phytoplankton variability in response to summer
meteorology was likely high because internal lake pro-
cesses ameliorate responses to external drivers on differ-
ent time scales (Baron and Caine 2000).
The modest CV R2 of the regional model indicates

there are likely missing variables that could predict land-
scape variation in chlorophyll a such as mixed layer
depth, stratification, light profiles, and biological com-
munity structure. Furthermore, 1–2 samples per lake
may not be enough samples to capture the average con-
ditions in a given lake. Variation in watershed and lake
morphometry can also drive large differences in algal
community structure (Heil et al. 2007, Muylaert et al.
2009), algal traits (Litchman and Klausmeier 2008), and
food web structure (Post et al. 2000), all of which influ-
ence phytoplankton abundance, but we could not explic-
itly account for these ecological processes in the models.
Furthermore, point estimates of phytoplankton biomass
and the land cover predictors are static measures that
may not be able to fully integrate spatiotemporal inter-
actions, a limitation that has been pointed out in other
macroscale studies of lakes (Lottig et al. 2017).
Climatic patterns emerged at the interannual and sea-

sonal scales, and illustrate the importance of direct and
climate-mediated effects on nutrients at both timescales.

Similar to other studies of mountain lake ecosystems, we
found that snowpack was the dominant control on inter-
annual variability in lake phytoplankton and nutrient
concentrations, with an inverse relationship between
chlorophyll a and maximum SWE of the previous winter.
Snowpack and duration of ice cover influence limnologi-
cal properties that govern phytoplankton biomass, such
as water residence time, stratification, and nutrient con-
centrations in mountain ecosystems (Thompson et al.
2005, Adrian et al. 2009, Preston et al. 2016, Sadro et al.
2018). In the SRM, high N deposition for over 70 yr
(Baron 2006) has led to P limitation of phytoplankton,
high N:P in lakes, and generally higher chlorophyll a than
SRM lakes in lower deposition areas (Elser et al. 2009b).
In these lakes, chlorophyll a was explained by water tem-
perature and the relative availability of DIN to TP. These,
in turn, were most influenced by snowpack, as described
by others (Preston et al. 2016), glacier coverage, but also
by summer weather patterns (Fig. 2). Nitrate and N:P
ratios strongly affected phytoplankton biomass, where
high NO3 and low N:P ratios were positively related to
chlorophyll a. Peak seasonal phytoplankton biomass con-
sistently coincided with the warmest water temperatures
and lowest N:P ratios within a season.
Like other studies, we found it difficult to infer broad-

scale spatial patterns in conjunction with temporal
dynamics (Lottig et al. 2017, Leach et al. 2019).
Nonetheless, the contrasting, but complimentary, results
from our investigations at regional, seasonal, and inter-
annual scales illuminate various controls on SRM phy-
toplankton dynamics, which we expand upon below.

The role of snowpack

In the Sierra Nevada of California, which is character-
ized by large seasonal snowpack, lower spring SWE
leads to warmer lake temperatures, higher nutrient con-
centrations, and, in turn, enhanced phytoplankton bio-
mass (Sadro et al. 2018a, Sadro et al. 2018b). Similarly,
in the southern Rocky Mountains, low spring SWE
results in higher summer temperatures and nutrient con-
centrations (Preston et al. 2016). Our results provide
additional support for these mechanistic links between
snowpack, nutrient concentrations, water temperature,
and phytoplankton biomass as we observed higher
chlorophyll a with lower maximum SWE across our 8-yr
study period (Fig. 2C). As the season progressed toward
baseflow conditions, the relative availability of N to P
decreased and temperature increased, and was associ-
ated with higher chlorophyll a (Appendix S2: Fig. S6).
The combination of warmer temperature and lower N:P
may have alleviated nutrient and energy limitation, stim-
ulating algal productivity (Cross et al. 2015). Although
not supported by data from these lakes prior to 1995
(Baron and Caine 2000), our results, and those of Pre-
ston et al. (2016), suggest that lake responses from 2008
to 2016 responded to external influences, in this case
winter snowpack.
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The interplay between timing of snowmelt, water
chemistry, and algal biomass is partially dependent on
glaciers and rock glaciers, which are present in both
watersheds investigated with the long-term and intrasea-
sonal models, but not in all watersheds in the data set
used for the regional models (Appendix S1: Table S1).
Glacial inputs alter the biogeochemistry and phyto-
plankton ecology of headwater lakes with N-rich melt-
water (Saros et al. 2010). Both glaciers and rock glaciers
in the SRM are important sources of NO3 to headwater
aquatic ecosystems (Baron et al. 2009, Fegel et al. 2016).
Nitrate release may result from a combination of micro-
bial nitrification and stored atmospheric N deposition
(Slemmons et al. 2013). Glacial-fed GL4 has signifi-
cantly higher NO3 concentrations than GL1, a snow-
melt-only fed lake; this resulted in strong negative
correlations between lake NO3 concentrations and
increasing snowpack (i.e., dilution) in nonglacial GL1
but not in glacial GL4. Glacier meltwater provides N as
well as P, fueling phytoplankton growth in headwater
lakes, particularly during dry and warmer-than-average
summers, like 2015 and 2016. However, even in moun-
tain watersheds without glaciers, low-snow years can
result in increased water column nutrient concentrations
because they are not diluted by snowmelt (Park et al.
2004, Parker et al. 2008, Sadro et al. 2018b).

The role of summer weather

Some of the highest chlorophyll a concentrations we
observed in the long-term data set occurred in years that
had average snowpack. Several mechanisms could
explain why. Although maximum SWE was average in
2015 and 2016, this metric does not capture variability
in the timing of snowmelt onset or duration of snow-
melt, which can be shortened by warmer, drier summer
conditions (Fassnacht et al. 2018), ultimately affecting
lake thermal and chemical properties that are important
controls on lake productivity (e.g., NO3 concentrations,
Appendix S2: Fig. S7). Dry summers may also increase
the amount of lake evaporation relative to inflow, which
concentrates nutrients in the water column (Webster
et al. 1996, Lewis et al. 2015) and increases water resi-
dence times (Schindler et al. 1996). Our regional model
revealed that both the driest and wettest weeks led to
high chlorophyll a concentrations (Appendix S2:
Fig. S4a), suggesting that episodic, convective thunder-
storms may have also played a role in increasing phyto-
plankton biomass by replenishing epilimnetic nutrients
through wind-driven mixing (Sadro and Melack 2012,
Perga et al. 2018). Intense storms may additionally
decrease water transparency, providing protection to
UV-B–stressed phytoplankton (Sommaruga and Psenner
1997, Parker et al. 2008). Given that summer precipita-
tion represents a relatively minor fraction of annual pre-
cipitation budget in the southern Rocky Mountains
(Baron and Denning 1993), most likely a combination of
both anomalously dry and warm summer conditions

resulted in overall higher water temperature and higher
nutrient concentrations because of longer residence
times and less snowmelt influence, enhancing phyto-
plankton growth.
Air temperature influences lake temperature and

nutrient concentrations either directly via sensible heat
flux or indirectly by modifying stratification dynamics
(Michelutti et al. 2016). In shallow, mixed lakes, warm
air temperatures alone increase water temperatures and
stimulate primary production by increasing metabolic
rates (Kraemer et al. 2016). Warm temperatures can also
concentrate chlorophyll a in the upper mixed layer of
stratified lakes (Kelly et al. 2018). In other mountainous
systems, increased phytoplankton biomass is also a con-
sequence of heat waves (Lepori et al. 2018). As winter
snows diminish and summer temperatures continue to
warm, the role of summer weather will become more
important to mountain lake temperatures, chemistry,
and phytoplankton dynamics.

FIG. 3. A conceptual framework depicting pathways of
physical and chemical drivers of phytoplankton biomass in
mountain lakes. Blue boxes represent model-identified variables
significantly influencing lake dynamics and predicting patterns
in phytoplankton dynamics. White boxes represent processes
not directly measured in our study that are known to influence
drivers that influence phytoplankton. Black arrows depict direct
relationships; dashed arrows depict indirect relationships. Con-
trol valves depict lake- or watershed-specific filters that modify
the influence of specific predictors. Precipitation and air tem-
perature have direct and indirect effects on water temperature
(TempWATER). Snow water equivalent influences water retention
time (e.g., flushing) and nutrient concentrations. Nitrogen depo-
sition influences nutrient concentrations, but lake-specific con-
centrations are moderated by lake and watershed filters (land
cover, lake morphometry and depth, glaciers), landscape posi-
tion, and nutrient uptake. [Color figure can be viewed at wile
yonlinelibrary.com]
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The importance of watershed context

Although our models do not demonstrate mechanisti-
cally how phytoplankton respond to deviations in cli-
mate at the regional scale, summer precipitation and air
temperature interact with local watershed characteristics
and landscape position to regulate the nutrient concen-
trations that ultimately govern phytoplankton abun-
dance. Land cover can influence the quantity of P
delivery to lakes (Wagner et al. 2011), and hydrologic
connectivity can influence how much N is processed or
exported downstream (Sadro et al. 2012). Landscape
position and lake morphometry explain interlake vari-
ability in chlorophyll a. Chlorophyll a in Sky Pond, the
larger alpine lake below a glacier deeper, was less directly
affected by variations in precipitation compared to The
Loch, the shallower downstream subalpine lake due to
the moderating influence of cold, glacial meltwater on
headwater lakes and the differences in catchment size, as
also described by Baron and Caine (2000). Similar con-
trasts were observed over many years in the Green Lakes
Valley, where glacial-fed GL4 was consistently colder
than snow-fed GL1.

Conceptualizing cross-scale drivers of mountain lake
phytoplankton

Our combined results allowed us to examine how pro-
cesses at multiple spatial and temporal scales influence
mountain lake phytoplankton. We drew on these results
to propose a conceptual framework linking the chemical
and thermal limnological properties that give rise to
variation in phytoplankton biomass (Fig. 3). In years
with summers characterized by anomalously dry and
warm weather (2015 and 2016), weekly precipitation and
mean monthly air temperatures controlled chlorophyll a
concentrations, and by inference, lake primary produc-
tivity. Dry and warm summer periods enhance evapo-
transpiration and evaporation, which concentrates
nutrients, resulting in higher phytoplankton biomass.
Episodic heavy precipitation may also deliver nutrients,
colored dissolved organic matter, glacial flour, or other
particles that potentially alleviate UV-B radiation stress
and enhance phytoplankton growth. SWE influences
lake residence time, with high SWE years typically hav-
ing high flushing rates and lower nutrient concentrations
resulting in lower phytoplankton biomass, but low or
average SWE years having less influence than summer
weather (Preston et al. 2016, Sadro et al. 2018b). Lake
and watershed filters, such as lake depth, catchment
position, and presence of perennial ice and snow moder-
ate lake temperatures and nutrients, influencing lake-
specific phytoplankton responses.
Summers in the southern Rocky Mountains have

been trending warmer and drier and are changing fas-
ter than winter climatic conditions (Fassnacht et al.
2018). Because of this, the influence of summer
drought and warmer-than-average temperatures will

increase in importance in regulating algal growth. We
anticipate that continued warming of air and water
temperatures in combination with earlier snowmelt
and longer ice-free seasons may lead to increased phy-
toplankton biomass in high-elevation lakes (Stewart
2009, Clow 2010, Christianson et al. 2019). Nutrient
inputs from atmospheric deposition and the cryosphere
coupled with a changing climate could have complex
implications for lake stoichiometry and ultimately pri-
mary production (Ren et al. 2019). More thoroughly
assessing the role of watershed factors in moderating
or amplifying lake responses will help us quantify
which lakes are more resistant or resilient to environ-
mental change. Our study did not model biological
interactions, but future investigators should consider
the role of top-down influences and trophic interac-
tions (McIntire et al. 2007, Ellis et al. 2011).
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