12243 measured reflections

 $R_{\rm int} = 0.024$ 

2950 independent reflections

1981 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (2,4-Dipropoxyphenyl)boronic acid

#### Marek Dąbrowski, Krzysztof Durka,\* Sergiusz Luliński and Janusz Serwatowski

Physical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland Correspondence e-mail: kdurka@ch.pw.edu.pl

Received 17 November 2011; accepted 21 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.081; data-to-parameter ratio = 20.1.

In the crystal, the title compound, C<sub>12</sub>H<sub>19</sub>BO<sub>4</sub>, exists as a centrosymmetric O-H···O hydrogen-bonded dimer. Dimers are linked via  $C-H\cdots O$  hydrogen bonds, generating an infinite zigzag chain oriented parallel to  $[1\overline{1}1]$ . The chains are assembled, giving sheets aligned parallel to  $(21\overline{1})$  and interconnected by weak  $C-H \cdots \pi$  interactions, producing a threedimensional network.

#### **Related literature**

For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dabrowski et al. (2008, 2009); Yang et al. (2005).



#### **Experimental**

#### Crystal data

| $C_{12}H_{19}BO_4$                | $\gamma = 90.826 \ (10)^{\circ}$          |
|-----------------------------------|-------------------------------------------|
| $M_r = 238.08$                    | V = 639.26 (15) Å <sup>3</sup>            |
| Triclinic, P1                     | Z = 2                                     |
| a = 7.9630 (9)  Å                 | Mo $K\alpha$ radiation                    |
| b = 8.8014 (12) Å                 | $\mu = 0.09 \text{ mm}^{-1}$              |
| c = 9.3182 (13)  Å                | T = 100  K                                |
| $\alpha = 101.585 \ (11)^{\circ}$ | $0.15 \times 0.12 \times 0.10 \text{ mm}$ |
| $\beta = 91.924 \ (10)^{\circ}$   |                                           |

#### Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)  $T_{\min} = 0.986, T_{\max} = 0.992$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.033$ | 154 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.081$               | H-atom parameters constrained                              |
| S = 0.90                        | $\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$    |
| 2950 reflections                | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |

| Table 1                |     |   |
|------------------------|-----|---|
| Hydrogen-bond geometry | (Å. | 0 |

| D-H  | $H \cdot \cdot \cdot A$                     | $D \cdot \cdot \cdot A$                                               | $D - \mathbf{H} \cdots A$                                                                                          |
|------|---------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 0.84 | 1.96                                        | 2.794 (1)                                                             | 176                                                                                                                |
| 0.84 | 1.95                                        | 2.672 (1)                                                             | 144                                                                                                                |
| 0.95 | 2.50                                        | 3.445 (1)                                                             | 175                                                                                                                |
| 0.99 | 2.84                                        | 3.78 (1)                                                              | 158                                                                                                                |
| 0.99 | 2.83                                        | 3.671 (1)                                                             | 143                                                                                                                |
|      | <i>D</i> -H<br>0.84<br>0.95<br>0.99<br>0.99 | D−H H···A   0.84 1.96   0.84 1.95   0.95 2.50   0.99 2.84   0.99 2.83 | $D-H$ $H\cdots A$ $D\cdots A$ 0.841.962.794 (1)0.841.952.672 (1)0.952.503.445 (1)0.992.843.78 (1)0.992.833.671 (1) |

Symmetry codes: (i) -x + 1, -y + 1, -z - 1; (ii) -x + 2, -y, -z; (iii) x, y, z + 1; (iv) -x, -y, -z + 1

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2009).

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Co. through donation of chemicals and equipment, and by Warsaw University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2041).

#### References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, 0437.
- Dąbrowski, M., Luliński, S., Serwatowski, J. & Wilmowicz, A. (2009). Acta Cryst. E65, 01669.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.

Acta Cryst. (2011). E67, o3455 [doi:10.1107/S1600536811049737]

#### (2,4-Dipropoxyphenyl)boronic acid

#### M. Dabrowski, K. Durka, S. Lulinski and J. Serwatowski

#### Comment

The ability of arylboronic acids to form supramolecular assemblies due to intermolecular hydrogen bonding is well known. Our interest has focused on *ortho*-alkoxy derivatives and the influence of various factors (including the number and length of the alkoxy group) on their structural behaviour.

The molecular structure of (I) shows the boronic groups possesses an *exo-endo* conformation. The entire molecule including both propoxy groups remains essentially planar. The *endo*-oriented OH group is engaged in an intramolecular O—H···O hydrogen bond (Table 1) with the 2-propoxy O atom, resulting in the formation of a six-membered ring. This motif is generally typical for structures of all *ortho*-alkoxyarylboronic acids (Yang *et al.*, 2005; Dąbrowski *et al.*, 2008; Luliński, 2008).

Centrosymmetric O—H···O hydrogen-bonded dimers of (I) are linked by weaker C—H···O hydrogen bonds connecting the H5 atom attached to aromatic ring with the O atom of the 4-propoxy group in the adjacent molecule. Thus, another centrosymmetric dimeric motif can be distinguished. These two alternating dimeric motifs generate a zig-zag chain which runs along the [1T1] direction. Adjacent chains are ordered due to van der Waals interactions of propoxy groups which leads to the formation of a 2D layer aligned parallel to the (21T) plane. The supramolecular architecture extends further due to weak C—H···O contacts between  $\alpha$ -methylene units of 4-propoxy groups and one of O atoms of the boronic group. Finally, C—H··· $\pi$  interactions occur between the  $\beta$ -methylene units of the 2-propoxy group and the aromatic ring of a molecule in the adjacent layer. As a result, a three-dimensional network is formed.

#### **Experimental**

The title compound was received from Aldrich. Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.2 g) in acetone/water (10 ml, 1:1).

#### Refinement

All hydrogen atoms were placed in calculated positions with C—H distance of 0.95Å (phenyl), 0.98Å (methyl), 0.99Å (methylene) and O—H distance of 0.84 Å. They were visible in difference maps and they were included in the refinement in riding-motion approximation with  $U_{iso}$  (phenyl H)=1.2 $U_{eq}$ (C),  $U_{iso}$  (methyl H)=1.5 $U_{eq}$ (C) and  $U_{iso}$ (OH H)=1.5 $U_{eq}$ (O).

**Figures** 





Fig. 1. The molecular structure of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2. Formation of two-dimensional layer constructed from one-dimensional chains, which are generated through O—H…O and C—H…O interactions (red and blue colours, respectively).



Fig. 3. The three-dimensional supramolecular structure of (I). Intermolecular C—H···O and C—H·· $\pi$  interactions formed between two-dimensional layers are depicted as blue and green lines, respectively.

#### (2,4-Dipropoxyphenyl)boronic acid

| Crystal data                                    |                                                       |
|-------------------------------------------------|-------------------------------------------------------|
| C <sub>12</sub> H <sub>19</sub> BO <sub>4</sub> | Z = 2                                                 |
| $M_r = 238.08$                                  | F(000) = 256                                          |
| Triclinic, PT                                   | $D_{\rm x} = 1.237 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -P 1                               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.9630 (9)  Å                               | Cell parameters from 1540 reflections                 |
| b = 8.8014 (12)  Å                              | $\theta = 2.7 - 28.4^{\circ}$                         |
| c = 9.3182 (13)  Å                              | $\mu = 0.09 \text{ mm}^{-1}$                          |
| $\alpha = 101.585 \ (11)^{\circ}$               | T = 100  K                                            |
| $\beta = 91.924 \ (10)^{\circ}$                 | Unshaped, colourless                                  |
| $\gamma = 90.826 \ (10)^{\circ}$                | $0.15\times0.12\times0.10~mm$                         |
| $V = 639.26 (15) \text{ Å}^3$                   |                                                       |
|                                                 |                                                       |

#### Data collection

| Bruker APEXII<br>diffractometer                            | 2950 independent reflections                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: TXS rotating anode                       | 1981 reflections with $I > 2\sigma(I)$                                    |
| multi-layer optics                                         | $R_{\rm int} = 0.024$                                                     |
| ω scans                                                    | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ |
| Absorption correction: multi-scan (SORTAV; Blessing, 1995) | $h = -10 \rightarrow 10$                                                  |

| $T_{\min} = 0.986, \ T_{\max} = 0.992$ | $k = -11 \rightarrow 11$ |
|----------------------------------------|--------------------------|
| 12243 measured reflections             | $l = -12 \rightarrow 12$ |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods            |
|---------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                      |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ | Hydrogen site location: inferred from neighbouring sites                  |
| $wR(F^2) = 0.081$               | H-atom parameters constrained                                             |
| <i>S</i> = 0.90                 | $w = 1/[\sigma^2(F_o^2) + (0.0487P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 2950 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 154 parameters                  | $\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$                       |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$                |

#### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| 01  | 0.62433 (10) | 0.32104 (9)  | -0.46474 (8)  | 0.0260 (3)                |
| O2  | 0.54695 (10) | 0.55834 (9)  | -0.31800 (8)  | 0.0243 (3)                |
| O3  | 0.67310 (10) | 0.60724 (8)  | -0.04282 (8)  | 0.0209 (2)                |
| O4  | 0.96656 (9)  | 0.20013 (9)  | 0.13916 (8)   | 0.0211 (2)                |
| C1  | 0.72028 (13) | 0.36735 (12) | -0.19957 (11) | 0.0169 (3)                |
| C2  | 0.73803 (13) | 0.46070 (12) | -0.05836 (11) | 0.0174 (3)                |
| C3  | 0.81690 (13) | 0.40958 (12) | 0.05908 (11)  | 0.0176 (3)                |
| C4  | 0.88240 (13) | 0.26147 (13) | 0.03411 (11)  | 0.0173 (3)                |
| C5  | 0.86780 (13) | 0.16440 (12) | -0.10371 (11) | 0.0181 (3)                |
| C6  | 0.78780 (13) | 0.21836 (13) | -0.21711 (11) | 0.0187 (3)                |
| C7  | 0.69286 (13) | 0.71279 (12) | 0.09706 (11)  | 0.0177 (3)                |
| C8  | 0.61739 (14) | 0.86468 (12) | 0.08068 (12)  | 0.0215 (3)                |
| C9  | 0.62471 (15) | 0.98129 (13) | 0.22669 (12)  | 0.0282 (4)                |
| C10 | 0.99022 (14) | 0.29466 (12) | 0.28420 (11)  | 0.0192 (3)                |
| C11 | 1.09520 (15) | 0.20257 (13) | 0.37344 (11)  | 0.0227 (3)                |
| C12 | 1.13065 (15) | 0.29436 (14) | 0.52911 (12)  | 0.0274 (4)                |
| B1  | 0.62724 (15) | 0.41844 (14) | -0.33306 (13) | 0.0179 (3)                |
|     |              |              |               |                           |

| 0.57125 | 0.36132                                                                                                                                                                                                       | -0.52650                                                                                                                                                                                                                                                                   | 0.0390*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.56001 | 0.60749                                                                                                                                                                                                       | -0.23113                                                                                                                                                                                                                                                                   | 0.0363*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.82554 | 0.47458                                                                                                                                                                                                       | 0.15376                                                                                                                                                                                                                                                                    | 0.0212*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.91199 | 0.06295                                                                                                                                                                                                       | -0.11955                                                                                                                                                                                                                                                                   | 0.0218*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.77807 | 0.15181                                                                                                                                                                                                       | -0.31097                                                                                                                                                                                                                                                                   | 0.0224*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.63476 | 0.67028                                                                                                                                                                                                       | 0.17313                                                                                                                                                                                                                                                                    | 0.0212*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.81346 | 0.72820                                                                                                                                                                                                       | 0.12665                                                                                                                                                                                                                                                                    | 0.0212*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.67939 | 0.90801                                                                                                                                                                                                       | 0.00721                                                                                                                                                                                                                                                                    | 0.0258*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.49893 | 0.84662                                                                                                                                                                                                       | 0.04476                                                                                                                                                                                                                                                                    | 0.0258*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.57467 | 1.07872                                                                                                                                                                                                       | 0.21307                                                                                                                                                                                                                                                                    | 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.56207 | 0.93909                                                                                                                                                                                                       | 0.29913                                                                                                                                                                                                                                                                    | 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.74208 | 1.00076                                                                                                                                                                                                       | 0.26141                                                                                                                                                                                                                                                                    | 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.04869 | 0.39351                                                                                                                                                                                                       | 0.27963                                                                                                                                                                                                                                                                    | 0.0231*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.88032 | 0.31853                                                                                                                                                                                                       | 0.32916                                                                                                                                                                                                                                                                    | 0.0231*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.03500 | 0.10437                                                                                                                                                                                                       | 0.37739                                                                                                                                                                                                                                                                    | 0.0272*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.20288 | 0.17630                                                                                                                                                                                                       | 0.32526                                                                                                                                                                                                                                                                    | 0.0272*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.19865 | 0.23225                                                                                                                                                                                                       | 0.58440                                                                                                                                                                                                                                                                    | 0.0411*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.19187 | 0.39080                                                                                                                                                                                                       | 0.52538                                                                                                                                                                                                                                                                    | 0.0411*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.02418 | 0.31895                                                                                                                                                                                                       | 0.57745                                                                                                                                                                                                                                                                    | 0.0411*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0.57125<br>0.56001<br>0.82554<br>0.91199<br>0.77807<br>0.63476<br>0.81346<br>0.67939<br>0.49893<br>0.57467<br>0.56207<br>0.74208<br>1.04869<br>0.88032<br>1.03500<br>1.20288<br>1.19865<br>1.19187<br>1.02418 | 0.571250.361320.560010.607490.825540.474580.911990.062950.778070.151810.634760.670280.813460.728200.679390.908010.498930.846620.574671.078720.562070.939090.742081.000761.048690.393510.880320.318531.035000.104371.202880.176301.198650.232251.191870.390801.024180.31895 | 0.57125 $0.36132$ $-0.52650$ $0.56001$ $0.60749$ $-0.23113$ $0.82554$ $0.47458$ $0.15376$ $0.91199$ $0.06295$ $-0.11955$ $0.77807$ $0.15181$ $-0.31097$ $0.63476$ $0.67028$ $0.17313$ $0.81346$ $0.72820$ $0.12665$ $0.67939$ $0.90801$ $0.00721$ $0.49893$ $0.84662$ $0.04476$ $0.57467$ $1.07872$ $0.21307$ $0.56207$ $0.93909$ $0.29913$ $0.74208$ $1.00076$ $0.26141$ $1.04869$ $0.39351$ $0.27963$ $0.88032$ $0.31853$ $0.32916$ $1.03500$ $0.10437$ $0.37739$ $1.20288$ $0.17630$ $0.32526$ $1.19187$ $0.39080$ $0.52538$ $1.02418$ $0.31895$ $0.57745$ |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$   |
|-----|------------|------------|------------|------------|-------------|------------|
| 01  | 0.0343 (5) | 0.0274 (5) | 0.0162 (4) | 0.0093 (4) | -0.0060 (3) | 0.0047 (3) |
| O2  | 0.0343 (5) | 0.0246 (4) | 0.0133 (4) | 0.0074 (3) | -0.0056 (3) | 0.0031 (3) |
| O3  | 0.0294 (4) | 0.0171 (4) | 0.0156 (4) | 0.0066 (3) | -0.0050 (3) | 0.0026 (3) |
| O4  | 0.0283 (4) | 0.0201 (4) | 0.0146 (4) | 0.0076 (3) | -0.0057 (3) | 0.0031 (3) |
| C1  | 0.0165 (5) | 0.0199 (5) | 0.0150 (5) | 0.0004 (4) | -0.0009 (4) | 0.0056 (4) |
| C2  | 0.0173 (5) | 0.0176 (5) | 0.0182 (5) | 0.0023 (4) | -0.0004 (4) | 0.0061 (4) |
| C3  | 0.0204 (5) | 0.0186 (5) | 0.0132 (5) | 0.0019 (4) | -0.0014 (4) | 0.0017 (4) |
| C4  | 0.0163 (5) | 0.0208 (5) | 0.0160 (5) | 0.0011 (4) | -0.0016 (4) | 0.0072 (4) |
| C5  | 0.0200 (6) | 0.0149 (5) | 0.0194 (6) | 0.0038 (4) | 0.0004 (4)  | 0.0031 (4) |
| C6  | 0.0193 (5) | 0.0221 (6) | 0.0142 (5) | 0.0000 (4) | -0.0009 (4) | 0.0027 (4) |
| C7  | 0.0200 (5) | 0.0190 (6) | 0.0134 (5) | 0.0013 (4) | -0.0021 (4) | 0.0021 (4) |
| C8  | 0.0257 (6) | 0.0189 (6) | 0.0201 (6) | 0.0038 (5) | -0.0012 (4) | 0.0048 (5) |
| C9  | 0.0351 (7) | 0.0210 (6) | 0.0269 (6) | 0.0047 (5) | -0.0034 (5) | 0.0016 (5) |
| C10 | 0.0240 (6) | 0.0182 (5) | 0.0149 (5) | 0.0032 (4) | -0.0030 (4) | 0.0023 (4) |
| C11 | 0.0288 (6) | 0.0225 (6) | 0.0167 (5) | 0.0046 (5) | -0.0049 (4) | 0.0041 (5) |
| C12 | 0.0357 (7) | 0.0281 (7) | 0.0182 (6) | 0.0041 (5) | -0.0063 (5) | 0.0051 (5) |
| B1  | 0.0167 (6) | 0.0206 (6) | 0.0175 (6) | 0.0000 (5) | -0.0010 (5) | 0.0067 (5) |

### Geometric parameters (Å, °)

| O1—B1  | 1.3476 (14) | C11—C12 | 1.5270 (15) |
|--------|-------------|---------|-------------|
| O2—B1  | 1.3798 (15) | С3—Н3   | 0.9500      |
| O3—C2  | 1.3788 (13) | С5—Н5   | 0.9500      |
| O3—C7  | 1.4431 (13) | С6—Н6   | 0.9500      |
| O4—C4  | 1.3702 (13) | С7—Н7А  | 0.9900      |
| O4—C10 | 1.4426 (13) | С7—Н7В  | 0.9900      |
|        |             |         |             |

| O1—H1                   | 0.8400      | C8—H8A                   | 0.9900 |
|-------------------------|-------------|--------------------------|--------|
| O2—H2                   | 0.8400      | C8—H8B                   | 0.9900 |
| C1—C2                   | 1.4058 (14) | С9—Н9А                   | 0.9800 |
| C1—C6                   | 1.4055 (16) | С9—Н9В                   | 0.9800 |
| C1—B1                   | 1.5719 (16) | С9—Н9С                   | 0.9800 |
| C2—C3                   | 1.3979 (15) | C10—H10A                 | 0.9900 |
| C3—C4                   | 1.3898 (16) | C10—H10B                 | 0.9900 |
| C4—C5                   | 1.3925 (15) | C11—H11A                 | 0.9900 |
| C5—C6                   | 1.3831 (15) | C11—H11B                 | 0.9900 |
| C7—C8                   | 1.5068 (15) | C12—H12A                 | 0.9800 |
| C8—C9                   | 1.5297 (16) | C12—H12B                 | 0.9800 |
| C10—C11                 | 1.5135 (16) | C12—H12C                 | 0.9800 |
| O1···O2 <sup>i</sup>    | 2.7938 (12) | H3…C10                   | 2.5400 |
| 02…03                   | 2.6722 (11) | НЗ…Н7А                   | 2.3000 |
| O2…O1 <sup>i</sup>      | 2.7938 (12) | H3…H7B                   | 2.3000 |
| O3…O2                   | 2.6722 (11) | H3…H10A                  | 2.3000 |
| O1…H10B <sup>ii</sup>   | 2.8400      | H3…H10B                  | 2.3700 |
| O1…H6                   | 2.5600      | H5…O4 <sup>iv</sup>      | 2.5000 |
| O2…H1 <sup>i</sup>      | 1.9600      | H5…C11 <sup>iv</sup>     | 2.9700 |
| O3…H2                   | 1.9500      | H6…O1                    | 2.5600 |
| O4…H9C <sup>iii</sup>   | 2.9000      | Н7А…С3                   | 2.7800 |
| O4…H5 <sup>iv</sup>     | 2.5000      | Н7А…Н3                   | 2.3000 |
| C1···C7 <sup>v</sup>    | 3.5564 (15) | Н7А…Н9В                  | 2.5100 |
| C7···C1 <sup>v</sup>    | 3.5564 (15) | H7A····C1 <sup>v</sup>   | 2.8700 |
| C8···C8 <sup>vi</sup>   | 3.5788 (16) | H7A···B1 <sup>v</sup>    | 2.8000 |
| C1…H10A <sup>vii</sup>  | 3.0000      | H7A…H12A <sup>viii</sup> | 2.5700 |
| C1···H7A <sup>v</sup>   | 2.8700      | H7B…C3                   | 2.7500 |
| С2…Н2                   | 2.6500      | Н7В…Н3                   | 2.3000 |
| С3…Н7В                  | 2.7500      | Н7В…Н9С                  | 2.5600 |
| C3…H10B                 | 2.8200      | H7B…C4 <sup>vii</sup>    | 2.9000 |
| С3…Н7А                  | 2.7800      | H7B····C5 <sup>vii</sup> | 2.7300 |
| C3…H10A                 | 2.7400      | H8A····C5 <sup>ix</sup>  | 3.0600 |
| C4…H7B <sup>vii</sup>   | 2.9000      | H8B···C5 <sup>v</sup>    | 2.9900 |
| C5…H7B <sup>vii</sup>   | 2.7300      | H8B···C6 <sup>v</sup>    | 2.9500 |
| C5···H8B <sup>v</sup>   | 2.9900      | Н9В…Н7А                  | 2.5100 |
| C5…H8A <sup>iii</sup>   | 3.0600      | H9B···C6 <sup>v</sup>    | 3.1000 |
| C6···H9B <sup>v</sup>   | 3.1000      | H9C…O4 <sup>ix</sup>     | 2.9000 |
| C6…H12C <sup>ii</sup>   | 2.9800      | Н9С…Н7В                  | 2.5600 |
| C6···H8B <sup>v</sup>   | 2.9500      | H10A…C3                  | 2.7400 |
| C7…H12A <sup>viii</sup> | 3.0000      | H10A…H3                  | 2.3000 |
| С7…Н3                   | 2.5000      | H10A…H12B                | 2.5300 |
| С10…Н3                  | 2.5400      | H10A…C1 <sup>vii</sup>   | 3.0000 |
| C11···H5 <sup>iv</sup>  | 2.9700      | H10A…B1 <sup>vii</sup>   | 3.0200 |

| B1…H1 <sup>i</sup>                                   | 2.9900      | H10B····O1 <sup>x</sup>              | 2.8400       |
|------------------------------------------------------|-------------|--------------------------------------|--------------|
| B1···H7A <sup>v</sup>                                | 2.8000      | H10B…C3                              | 2.8200       |
| B1…H10A <sup>vii</sup>                               | 3.0200      | H10B…H3                              | 2.3700       |
| H1···O2 <sup>i</sup>                                 | 1.9600      | H10B…H12C                            | 2.5500       |
| H1···B1 <sup>i</sup>                                 | 2.9900      | H12A…C7 <sup>viii</sup>              | 3.0000       |
| H1…H2 <sup>i</sup>                                   | 2.5200      | H12A…H7A <sup>viii</sup>             | 2.5700       |
| H2…O3                                                | 1.9500      | H12B…H10A                            | 2.5300       |
| H2…C2                                                | 2.6500      | H12C···C6 <sup>x</sup>               | 2.9800       |
| H2H1 <sup>i</sup>                                    | 2 5200      | H12C···H10B                          | 2 5500       |
| H3C7                                                 | 2 5000      |                                      | 2.0000       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 110.07 (8)  | C7 C8 H8B                            | 100.00       |
| $C_2 = 0_3 = C_7$                                    | 119.07 (8)  | C7_C8_H8A                            | 109.00       |
| B1_01_H1                                             | 109.00      | $C_{1} = C_{2} = H_{2} \wedge C_{2}$ | 109.00       |
| B1_02_H2                                             | 109.00      | C9-C8-H8B                            | 109.00       |
| $C_{2}$ $C_{1}$ $C_{6}$                              | 116 11 (9)  | H8A = C8 = H8B                       | 109.00       |
| $C_2 = C_1 = B_1$                                    | 124 11 (10) | C8-C9-H9B                            | 100.00       |
| $C_{6}$ $C_{1}$ $B_{1}$                              | 119 76 (9)  | C8 - C9 - H9C                        | 109.00       |
| 03-C2-C1                                             | 115.62 (9)  | H9A - C9 - H9B                       | 109.00       |
| C1 - C2 - C3                                         | 12257(10)   | C8—C9—H9A                            | 109.00       |
| 03 - 02 - 03                                         | 121.81 (9)  | H9A_C9_H9C                           | 109.00       |
| C2-C3-C4                                             | 118.46 (9)  | H9B—C9—H9C                           | 109.00       |
| 04                                                   | 114.96 (10) | 04-C10-H10A                          | 110.00       |
| 04                                                   | 123.87 (9)  | H10A—C10—H10B                        | 109.00       |
| C3—C4—C5                                             | 121.17 (10) | C11—C10—H10B                         | 110.00       |
| C4—C5—C6                                             | 118.80 (10) | O4—C10—H10B                          | 110.00       |
| C1—C6—C5                                             | 122.88 (10) | C11—C10—H10A                         | 110.00       |
| O3—C7—C8                                             | 107.64 (8)  | C10—C11—H11B                         | 109.00       |
| C7—C8—C9                                             | 111.13 (9)  | C10-C11-H11A                         | 109.00       |
| O4—C10—C11                                           | 106.96 (8)  | C12—C11—H11A                         | 109.00       |
| C10-C11-C12                                          | 111.14 (9)  | C12—C11—H11B                         | 109.00       |
| С2—С3—Н3                                             | 121.00      | H11A—C11—H11B                        | 108.00       |
| С4—С3—Н3                                             | 121.00      | C11—C12—H12B                         | 109.00       |
| С6—С5—Н5                                             | 121.00      | C11—C12—H12C                         | 109.00       |
| С4—С5—Н5                                             | 121.00      | H12A—C12—H12B                        | 109.00       |
| С1—С6—Н6                                             | 119.00      | C11—C12—H12A                         | 109.00       |
| С5—С6—Н6                                             | 119.00      | H12A—C12—H12C                        | 109.00       |
| O3—C7—H7A                                            | 110.00      | H12B-C12-H12C                        | 109.00       |
| O3—C7—H7B                                            | 110.00      | O2—B1—C1                             | 121.77 (10)  |
| H7A—C7—H7B                                           | 108.00      | O1—B1—O2                             | 119.62 (10)  |
| C8—C7—H7B                                            | 110.00      | O1—B1—C1                             | 118.60 (10)  |
| С8—С7—Н7А                                            | 110.00      |                                      |              |
| C7—O3—C2—C1                                          | -177.25 (9) | C2-C1-B1-O1                          | 177.34 (10)  |
| C7—O3—C2—C3                                          | 2.44 (14)   | B1—C1—C2—O3                          | -2.44 (15)   |
| C2—O3—C7—C8                                          | 177.61 (9)  | C6—C1—B1—O1                          | -4.42 (15)   |
| C10—O4—C4—C5                                         | 178.70 (9)  | O3—C2—C3—C4                          | -178.64 (10) |
| C10—O4—C4—C3                                         | -0.52 (15)  | C1—C2—C3—C4                          | 1.03 (16)    |
| C4—O4—C10—C11                                        | -176.48 (9) | C2—C3—C4—C5                          | -1.12 (16)   |

| C6—C1—C2—O3 | 179.27 (9)   | C2—C3—C4—O4    | 178.05 (10) |
|-------------|--------------|----------------|-------------|
| C2-C1-B1-O2 | -3.72 (17)   | C3—C4—C5—C6    | 0.62 (16)   |
| B1—C1—C6—C5 | -178.48 (10) | O4—C4—C5—C6    | -178.62 (9) |
| C6—C1—B1—O2 | 174.52 (10)  | C4—C5—C6—C1    | 0.00 (17)   |
| B1—C1—C2—C3 | 177.87 (10)  | O3—C7—C8—C9    | 177.03 (9)  |
| C2-C1-C6-C5 | -0.11 (16)   | O4—C10—C11—C12 | 178.86 (9)  |
| C6—C1—C2—C3 | -0.42 (15)   |                |             |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*-1; (ii) *x*, *y*, *z*-1; (iii) *x*, *y*-1, *z*; (iv) -*x*+2, -*y*, -*z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*+2, -*z*; (vii) -*x*+2, -*y*+1, -*z*; (viii) -*x*+2, -*y*+1, -

*Hydrogen-bond geometry* (Å, °)

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------|-------------|--------------|--------------|---------|
| O1—H1···O2 <sup>i</sup>  | 0.840       | 1.960        | 2.794 (1)    | 176.0   |
| O2—H2···O3               | 0.840       | 1.950        | 2.672 (1)    | 144.0   |
| C5—H5···O4 <sup>iv</sup> | 0.950       | 2.500        | 3.445 (1)    | 175.0   |
| C10—H10B…O1 <sup>x</sup> | 0.990       | 2.844        | 3.778 (1)    | 157.5   |
| C8—H8B…Cg1 <sup>xi</sup> | 0.990       | 2.829        | 3.671 (1)    | 143.4   |

Symmetry codes: (i) -x+1, -y+1, -z-1; (iv) -x+2, -y, -z; (x) x, y, z+1; (xi) -x, -y, -z+1.

Fig. 1





Fig. 2

Fig. 3

