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Radiomics in Oncology: A Practical 
Guide

Radiomics refers to the extraction of mineable data from medi-
cal imaging and has been applied within oncology to improve 
diagnosis, prognostication, and clinical decision support, with the 
goal of delivering precision medicine. The authors provide a practi-
cal approach for successfully implementing a radiomic workflow 
from planning and conceptualization through manuscript writing. 
Applications in oncology typically are either classification tasks 
that involve computing the probability of a sample belonging to a 
category, such as benign versus malignant, or prediction of clinical 
events with a time-to-event analysis, such as overall survival. The 
radiomic workflow is multidisciplinary, involving radiologists and 
data and imaging scientists, and follows a stepwise process involv-
ing tumor segmentation, image preprocessing, feature extraction, 
model development, and validation. Images are curated and pro-
cessed before segmentation, which can be performed on tumors, 
tumor subregions, or peritumoral zones. Extracted features typically 
describe the distribution of signal intensities and spatial relationship 
of pixels within a region of interest. To improve model performance 
and reduce overfitting, redundant and nonreproducible features are 
removed. Validation is essential to estimate model performance in 
new data and can be performed iteratively on samples of the dataset 
(cross-validation) or on a separate hold-out dataset by using inter-
nal or external data. A variety of noncommercial and commercial 
radiomic software applications can be used. Guidelines and artifi-
cial intelligence checklists are useful when planning and writing up 
radiomic studies. Although interest in the field continues to grow, 
radiologists should be familiar with potential pitfalls to ensure that 
meaningful conclusions can be drawn.
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After completing this journal-based SA-CME 
activity, participants will be able to:

	�List the main applications of radiomic 
studies in oncology.

	�Understand the use of image pre-
processing, segmentation, and validation 
in radiomic studies.

	�Describe the main radiomic feature 
classes and how they are calculated.

See www.rsna.org/education/search/RG.

SA-CME LEARNING OBJECTIVES

Introduction
Radiomics refers to the extraction of mineable high-dimensional data 
from radiologic images (1–3) and has been applied within oncol-
ogy to improve diagnosis and prognostication (4,5) with the aim 
of delivering precision medicine. The premise is that imaging data 
convey meaningful information about tumor biology, behavior, and 
pathophysiology (6) and may reveal information that is not otherwise 
apparent to current radiologic and clinical interpretation.

The radiomic workflow involves curation of clinical and imaging 
data and is a stepwise process involving image preprocessing, tumor 
segmentation, feature extraction, model development, and validation 
(7). It is a field that requires input from individuals in many disci-
plines, including radiologists, imaging scientists, and data scientists. 
Features are derived at single (usually pretreatment) or multiple (eg, 
δ radiomics) time points and can be applied to the whole spectrum 
of imaging data.
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noninvasive imaging that permits analysis of the 
whole tumor (rather than a focal sample) and can 
be applied more easily at multiple time points for 
disease monitoring, offering potentially important 
diagnostic information related to disease evolution.

Planning a Radiomic Study
When planning a radiomic study, it is worth 
asking basic questions (Table 2) to assess feasi-
bility and likelihood of success. At our institu-
tion, we find a radiomic study proforma useful 
when assessing proposed studies (Appendix E1). 
As with any research study, a radiomic study 
should have a testable hypothesis that should 
address a relevant clinical question, usually with 
the aim of meeting an unfulfilled need in cancer 
management.

A key consideration is to determine the avail-
ability of sufficient data to support the devel-
opment of a radiomic signature (defined as the 
learned model from a radiomic analysis used to 
predict a particular clinical outcome). As a rule 
of thumb for binary classification studies, one 
should aim to obtain 10–15 samples per feature 
in the final radiomic signature. This can vary be-
tween studies but is a useful guide when embark-
ing on a new study (11,12). If the class sizes are 
unequal, the rule should be applied to the smaller 
class (13). As radiomics is data driven, it may 
not be possible to know in advance how many 
features will be included in the final model, since 
feature selection methods are typically applied 
before or during the model fitting process. It is 
also important to be aware that data attrition is 
common. Common reasons include data that are 
missing or mislabeled, failure to satisfy inclusion 
criteria or lost to follow-up, and poor image qual-
ity. These highlight the importance of obtaining 
a realistic estimate of the final sample size before 
embarking on a new study.

Model validation consists of measuring the 
predictive performance of the model by using 
data that were not used in fitting the model. Suf-
ficient data should be available for validation of a 
radiomic model, typically around one-third of the 
training sample size. The one-third proportion 
represents a trade-off between having enough 
data in the training set to ensure the model has 
sufficient predictive power and having a large-
enough test dataset to ensure the predicted 
performance estimate is accurate. Values used 
in practice are in the range of 60:40 to 90:10. 
For example, using the “one-third” criteria and 
a 10-feature model, at least 133 samples are 
required, where 100 are used for training and 
33 for validation. Assuming an attrition rate of 
50% would require a total study population of 
266. This highlights the challenge required to 

Although many of the concepts of image 
feature extraction have been around for de-
cades (8), research output in the field has grown 
exponentially, with over 1500 publications in 
2020 containing the term radiomics (Fig 1). With 
increasing interest in the field, there is a need for 
an understanding of the radiomic workflow and 
its challenges and limitations so that robust con-
clusions may be drawn (9). The purpose of this 
article is to provide a practical hands-on guide for 
implementing radiomic studies in oncology and a 
glossary of terms for readers less familiar with the 
topic (Table 1).

Applications in Oncology
Radiomic studies in oncology are usually either 
(a) classification tasks or (b) prediction of clinical 
outcomes by using a time-to-event analysis. Clas-
sification involves dividing a population into cat-
egories. Examples include benign versus malig-
nant, genomic status, tumor stage, and presence 
of metastases, among many others. Predictive 
models use clinical outcomes to stratify patients 
into different risk groups on the basis of the risk 
of occurrence of clinical endpoints, such as over-
all or disease-free survival, and are assessed by 
using a time-to-event analysis.

These applications are guided by the notion 
that radiomic data convey information about 
tumor biology (1). For example, radiomic features 
may reflect temporal and spatial heterogeneity 
(Fig 2), which is known to be a key determinant 
of tumor behavior and resistance to therapy (10). 
Thus, radiomics has the potential to act as a “vir-
tual biopsy” and, unlike standard biopsies, uses 

TEACHING POINTS
	� Radiomics refers to the extraction of mineable high-dimen-
sional data from radiologic images and has been applied 
within oncology to improve diagnosis and prognostication 
with the aim of delivering precision medicine. 

	� Radiomic studies in oncology are usually either (a) classifica-
tion tasks or (b) prediction of clinical outcomes by using a 
time-to-event analysis. 

	� As with any research study, a radiomic study should have 
a testable hypothesis that should address a relevant clinical 
question, usually with the aim of meeting an unfulfilled need 
in cancer management.

	� Radiomic features are “handcrafted” in that the algorithms 
used to generate them are designed or chosen by the data 
scientist rather than being learned directly from the images, 
as is found with deep learning approaches.

	� To aid authors and to provide a framework for manuscript 
writing, there are various radiomic- and artifical intelligence–
specific checklists, reporting guides, and radiomic quality 
scores that can be referred to, in addition to artifical intel-
ligence extensions of familiar guidelines such as TRIPOD, 
CONSORT, and SPIRIT.
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data and rates of passing inclusion criteria can be 
estimated. For classification studies, a pilot sample 
size of 12 per class has been proposed (14), but 
in practice this is guided by available resources 
and the study population. Running pilot data 
through the radiomic processing pipeline as early 
as possible enables issues to be resolved quickly, 
and any preliminary results may be able to guide 
the final sample size. For example, if a signature is 
detected but is not statistically significant, then it 
may be possible to estimate the number of samples 
required to obtain a significant result.

Radiomic Workflow Overview
The radiomic workflow represents the combined 
effort of a multidisciplinary team, including data 
and imaging scientists and radiologists, and is 
subdivided into multiple tasks that are typically 
performed in sequence (Figs 3, 4).

Image Acquisition
Although the majority of studies to date have 
used data from CT examinations, radiomic 
analyses can be applied to the whole spectrum 
of imaging data, including those from CT, PET, 
MRI, and US examinations. One advantage 
of CT and PET data are that signal intensities 
(SIs) are inherently quantitative. CT may also 
be less prone to motion artifacts seen with PET 
and MRI. US is more user dependent than other 
modalities; however, along with MRI, assess-
ing feature stability in a test-retest experiment is 
feasible, as there is no radiation burden. Ulti-
mately the choice of modality is often determined 
by what is available and used in clinical practice. 

curate datasets of sufficient size for high-quality 
radiomic studies.

Finally, it is important to consider whether the 
data are balanced. For classification tasks, bal-
anced data are such that each class or outcome 
contains an approximately equal proportion of 
the data. When proportions are unequal, the data 
are unbalanced, and if they are very unbalanced 
then a larger sample size may be required for the 
model developed to be generalizable. For time-
to-event analyses, the proportion of events that 
are observed (event time known) and censored 
(eg, subject leaves the study before the event oc-
curs or the study ends before the event occurs) 
should be estimated.

Consideration should be given to data hetero-
geneity, including disease status, treatment, imag-
ing equipment, acquisition protocol, and method 
of measurement. There exists a trade-off between 
real-world heterogeneous datasets, in which noise 
may mask an underlying radiomic signature, 
and well-controlled homogeneous datasets that 
are less noisy but have lower generalizability. An 
assessment of data heterogeneity is performed 
by evaluating how similar the study design and 
inclusion criteria are compared with what is 
encountered in clinical practice. This will assist 
in assessing both the chance of success and also 
whether a follow-up real-world study would be 
required to establish a clinically useful signature.

Once the research question and study popula-
tion have been defined, one should consider col-
lecting pilot data to help identify and mitigate po-
tential problems before full data collection. With a 
representative sample of data, frequency of missing 

Figure 1. Graph shows the 
number of publications per year 
since 2000 that contain the terms 
radiomics and texture analysis in 
PubMed (www.pubmed.gov). Since 
first being coined in 2012, the term 
radiomics in the literature has dem-
onstrated an exponential increase, 
numbering over 1500 publications 
in 2020 alone. The term radiomics 
has overtaken texture analysis in 
publications in PubMed, indicat-
ing a shift toward radiomics as 
the preferred term in the research 
literature.
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Table 1: Glossary of Radiomics Terms

Term Definition

Algorithm See “model”
Balanced data Each class or outcome contains an approximately equal proportion of data or number 

of samples. When proportions in each class are unequal, then the data are unbal-
anced.

Censoring A patient is censored in a time-to-event analysis when the time-to-event is not known 
because of missing data (eg, patient is lost to follow-up).

Classification Classifying samples into groups or categories on the basis of a classification rule; binary 
classification refers to two classes

δ-radiomics Characterizing the change (δ) in feature values by applying radiomics to multiple time 
points (eg, before and after treatment)

Gaussian distribution Also known as the normal distribution
Heterogeneity (data) Differences in the data between patients, which may include aspects of the disease, 

treatment, imaging equipment used, acquisition protocol performed, or method of 
measurement used

Input feature Features that are used to train the model; these typically include radiomic features and 
clinical (nonradiomic) features

Labeled data Data that have been tagged with a label or class; for example, in a classification task, 
this label may specify the type of lesion (eg, cyst, hemangioma, metastasis)

Metadata Data that describe or give information about other data; examples with imaging data 
include date of acquisition or acquisition parameter

Model A mathematical function that can be used to predict the target features from the input 
features. Models have parameters, and the values of those parameters must be esti-
mated from the training data by using a learning algorithm. The learned model can 
then be used on test data for validation or deployed on new data for “live” prediction.

Multivariate Involving multiple variables or features
Observed In time-to-event analyses, these are the events that occur.
Overfitting The model performs well on the training data but poorly on the unseen validation data; 

this may occur if the number of features is large compared with the sample size and 
therefore captures “noise.”

Radiomic signature The learned model from a radiomic analysis used to predict a particular clinical outcome
Recursive In computer science, recursive refers to defining a problem in terms of itself and in-

volves repeatedly applying the same updating rule to something, usually with another 
rule for when to stop.

Redundancy Refers to features that do not add any additional information to the input data. Two 
features may be redundant if they are highly correlated with one another, so exclud-
ing one feature will not impact the prediction performance.

Regularization In machine learning, regularization is a technique for reducing the importance of some 
features within the statistical model to prevent overfitting.

Rule of 10 Widely used rule of thumb that suggests a minimum of 10 samples per feature included 
in the final radiomic model

Sample A data point is referred to as a sample. In radiomics, this usually refers to the patient.
Supervised learning Supervised learning uses labeled datasets (eg, benign vs malignant) to train computa-

tional models that classify data or predict outcomes on unseen data.
Target feature/data The data that the model is trying to predict (eg, benign vs malignant)
Training dataset The dataset used to train the learning algorithm or statistical model
Tuning parameters Model parameters that affect the model behavior but for which the value cannot be 

estimated from a single training set (number of selected features, amount of regular-
ization, tree depth, etc)

Underfitting The learned model fails to capture certain patterns in the input data that are informa-
tive, leading to suboptimal performance; usually due to insufficient features within 
the model.

Univariate Involving a single variable or feature
Unsupervised learning As opposed to supervised learning, unsupervised learning refers to the use of algo-

rithms to learn patterns in unlabeled datasets.
Validation dataset The dataset used to measure the performance of the learning algorithm or statistical 

model. With hold-out validation, the training and validation datasets are typically 
split between a 60:40 and 90:10 ratio. Often one-third is used as a rule of thumb.
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Figure 2. Variations in tumor heterogeneity from less to more heterogeneous are demonstrated in these 
abdominal masses. (A) Axial T2-weighted MR image in a 40-year-old woman shows a large unilocular 
cystic lesion in the pancreas that appears to have uniform high signal intensity (SI), with only minor non-
enhancing peripheral septa and a smooth border. This appearance is typical for a mucinous cystadenoma. 
After surgical resection, no invasive malignancy was found. (B) Axial CT image shows a partly heteroge-
neous mass in the left kidney, which appears well defined and contains predominantly homogeneous 
bland-appearing tissue with streaks of vascularity. This was found to be a spindle-cell sarcoma after surgical 
resection. (C, D) Axial nonenhanced (C) and contrast-enhanced (D) CT images of a fibrolamellar hepato-
cellular carcinoma clearly show the heterogeneous nature of this malignant tumor, with irregular vascular 
enhancing tissue surrounding a less-vascular central component. Contrast-enhanced imaging is often used 
in radiomic analyses and is useful to help highlight vascularity and spatial heterogeneity, a determinant of 
tumor behavior and resistance to therapy that is not readily apparent without contrast material.

Table 2: Questions for Planning a Radiomic Study

Question Action

What is the likely impact 
of the proposed study?

Look for an appropriate clinical question with the aim of addressing an unmet need 
in cancer imaging. A useful question to ask is, “What is the likely added value of a 
radiomic model above existing clinical models?”

Are there sufficient data? Aim for 10 samples per feature following feature reduction, although this is depen-
dent on the research hypothesis and study outcome. It may be more difficult to 
obtain a significant result with smaller sample sizes (ie, <100).

Is there sufficient data 
quality?

Measure the data attrition rate: 50% or greater is common. Then ask, “Are there 
sufficient data after attrition?”

Are the data balanced 
(time to event)?

Assess the proportion of events occurring and/or lost during follow-up.

Are the data balanced 
(classification)?

Assess the proportion of samples in each class. If data are very unbalanced, a larger 
sample size may be needed.

How heterogeneous are 
the data?

Evaluate differences in the tumor type, scanner used, imaging site, and acquisition 
protocol performed among the samples. Heterogeneity may introduce confound-
ers, which can be later evaluated after data collection by testing for differences 
between samples in each of the confounding groups (eg, using a t test or ANOVA 
(analysis of variance) for more than two groups).

Contrast-enhanced imaging yields information 
about tumor enhancement, vascularity, and het-
erogeneity (Fig 2) that may not be apparent with-
out the use of contrast material but may incur a 

cost burden and require particular expertise (eg, 
ability to perform contrast-enhanced US).

Suitable imaging data that meet the study 
inclusion and exclusion criteria should be 
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clearly defined. Standardized imaging protocols 
(ie, those that use the same vendor or scanner 
settings for all samples) can be used to reduce 
unwarranted confounders and noise (4), whereas 
less rigidly standardized protocols can be used to 
reflect real-world clinical scenarios.

Once a cohort has been identified, images 
should be anonymized to remove patient identifi-
able metadata. However, relevant nonidentifiable 
image data can be retained. Images should be 
exported as Digital Imaging and Communication 
in Medicine (DICOM) files by using a lossless-
compressed format to avoid losing potentially 
informative image features. It is worth speaking 
with the picture archiving and communication 
system (PACS) team to enlist help.

Data Curation
Nonimaging and clinical data are typically collated 
in a repository for analysis, and it is advisable to 
discuss with the institution’s or practice’s statisti-
cian or data scientist the desired format before 
data collection. Curation steps to identify missing 
or incomplete data can then be taken, along with 
correction of typographic errors or inconsistencies, 
before merging clinical and radiomic data.

Image Preprocessing
Before feature extraction, the raw image data 
can be enhanced through a variety of prepro-
cessing steps, which are summarized in Table 3. 
Although these may improve image quality, care 
should be taken as they can mask or degrade 
the radiomic signature and may be better miti-
gated against by optimizing and standardizing 
the image acquisition.

Unlike at CT, units of MRI SI are arbitrary, 
and hence normalization of SI is recommended. 
Although no consensus currently exists, the 
z-score is a simple method and is computed by 
subtracting the mean SI of the region of interest 
(ROI) from the pixel SI and dividing the result 
by the standard deviation (19). Bias field cor-
rection should also be applied to correct for the 
spatial field inhomogeneities encountered with 
MRI (17). Thresholding on voxel Hounsfield 
units can be applied to CT data to exclude vox-
els that are assumed to contain noninformative 
tissues. For example, very low values may cor-
respond to air within the lung and high values to 
bone or calcification.

As some radiomic feature values are de-
pendent on voxel size (20), images should be 
resam pled to a common spatial resolution for all 
samples (21). Linear interpolation is generally 
recommended (18,22).

Motion correction can be used to correct for 
misregistration, blurring, or motion artifacts 

and has been used in four-dimensional CT 
of lung tumors (23). However, this additional 
processing has the potential to impact potential 
radiomic information in the images. The use of 
motion- control techniques, such as breath hold-
ing, is advised as the effect of motion blurring 
on computed radiomic features is known to be 
feature dependent (24).

Image filtration can be used before the ex-
traction of features as a preprocessing step to 
highlight particular image properties. Nonspa-
tial filters increase or decrease the sensitivity of 
the radiomics features to high- or low-intensity 
values; examples include taking the square or 
exponential of the image intensities. Spatial filters 
increase or decrease the sensitivity of features to 
particular spatial properties of the image. Exam-
ples include Laplacian of Gaussian (LoG) filters, 
which emphasize areas of rapid change (eg, edge 
detection) (Fig 5) (25) and wavelet filters, which 
separate high- and low-spatial-frequency infor-
mation. The number of radiomics features (and 
hence datasets) generated with image filtration 
can become large, so it is typical to try using 
unfiltered images first.

Segmentation
Segmentation can be performed by drawing ROIs 
on the tumor, tumor subregions (“habitats”), 
or peritumoral zones, the choice guided by the 
research hypothesis. For example, habitat imaging 
aims to characterize intratumoral spatial heteroge-
neity by comparison of discreet functional tumor 
subregions (26), whereas the peritumoral zone 

Figure 3. As demonstrated in this diagram, the study design 
arises by considering the interaction of multiple criteria or ac-
tivities, including patient population, study endpoint, available 
imaging and/or clinical data, radiomic feature extraction meth-
odology, and appropriate modeling and validation strategy. 
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Figure 4. (A) Overview of a typical ra-
diomic workflow that embodies the study 
design and details the steps involved in tak-
ing clinical and imaging inputs all the way 
through to the study endpoint. (B) Details 
of each stage should be clearly reported to 
allow meaningful interpretation, discussion, 
and critique of the study findings. The work-
flow used in Doran et al (15) is illustrated. 
The authors investigated the utility of ra-
diomics from multivendor multi-parametric 
MRI in prediction of lymph node status in 
patients with breast cancer. AUC = area un-
der the curve, DICOM = Digital Imaging and 
Communication in Medicine, GLCM = gray-
level co-occurrence matrix, GLRLM = gray-
level run-length matrix, GTDM = gray-tone 
difference matrix, ICC = intra-class correla-
tion coefficient, OHIF = Open Health Imag-
ing Foundation, PACS = picture archiving 
and communication system, RIS = radiology 
information system, ROC = receiver operator 
characteristic, RFE = recursive feature elimina-
tion, SVM = support vector machine, 2D = 
two dimensional, XNAT = eXtensible Neuro-
imaging Archive Toolkit.
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may contain information about tumor invasion or 
host immune response (27). Radiation therapy tu-
mor volume data used for treatment planning can 
also be used, although these may differ from ROIs 
specifically drawn for a radiomic analysis.

ROIs can be delineated manually, automati-
cally, or semiautomatically in either two dimen-
sions (2D) (single section) or three dimensions 
(3D) (multiple sections) (Fig 5). The choice will 
be determined by available resources and tumor 
type. Three-dimensional ROIs will capture ad-
ditional information but can be time consuming 
to draw when manual delineation is used.

Automatic segmentation is potentially faster 
and more reproducible (28) and may be required 
for larger datasets for which manual segmenta-
tion is not feasible. However, segmentations 
should be checked by a radiologist to ensure 
accuracy. Features can be compared against those 
obtained after manual segmentation by using the 
Dice score.

When manual segmentation is used, fea-
ture stability should be assessed by performing 
multiple segmentations of the same tumor with 
either the same or a different reader performing 
the delineation.

Table 3: Image Preprocessing Steps That Can Be Used before Feature Extraction

Preprocessing Step Note

SI normalization Recommended for MRI as SI values are arbitrary, although no consensus for this method 
exists currently

De-noising Recommended for MRI, which contains Gaussian and Rician noise (16)
Bias field correction Recommended for MRI to correct unwarranted spatial signal variation due to inherent 

field inhomogeneities (17)
Image interpolation 

and resampling
May be necessary to produce imaging data of uniform spatial resolution; interpolation 

method may impact feature values (18)
Motion correction May be useful for PET data or dynamic contrast-enhanced (DCE) MRI parametric map 

data to correct for misregistration or motion artifacts; has potential to impact feature 
values

Image thresholding Can be used with CT data to exclude pixels with Hounsfield units outside of a specified 
range; this may reduce effect of noise, while highlighting desired attenuation values

Figure 5. Pictorial overview of the feature 
classes used in most radiomic studies. Shape 
or morphologic features can be computed 
in 2D or 3D views, with 3D analysis being 
the recommended approach for most stud-
ies. First-order features are computed from 
the distribution of SIs within the ROI and in-
clude features such as the mean, median, and 
mode, which describe the central tendency of 
the data, and other features such as percen-
tiles, skewness, kurtosis, and entropy, which 
describe the symmetry and heterogeneity 
of the distribution. Texture or second-order 
features consider the joint statistics of two or 
more voxels, so that in the coarse texture ex-
ample, neighboring pairs of pixels are likely to 
have similar gray levels, whereas in the fine 
texture example, neighboring pixel values are 
independent. In radiologic images, the statis-
tical dependencies between neighbors can be 
more complex than in these simple examples, 
and so features derived from the GLCM, gray-
level run-length matrix (GLRLM), and other 
metrics can be effective for quantifying image 
texture. Filtering the images to emphasize 
edges, different length scales, or different gray 
levels can be used before computing texture 
features with the aim of sensitizing the fea-
tures to a wider range of biologic correlates.
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Feature Extraction
Feature extraction is the final step before model 
building and validation and involves computing 
radiomic features from each ROI that will be 
used in the model. Radiomic features are “hand-
crafted” in that the algorithms used to generate 
them are designed or chosen by the data scientist 
rather than being learned directly from the im-
ages, as is found with deep learning approaches. 
Consequently, it may be possible to interpret the 
radiomic signature obtained with handcrafted 
features, whereas deep learned features can suffer 
from limited explainability.

A wide variety of feature classes exist and are 
summarized in Table 4. The set of quantitative 
imaging features is large and is being continually 
updated and refined. Efforts have been made in 
standardization such as with the Image Bio-
marker Standardization Initiative (IBSI) (21), 
and we recommend that readers refer to this 
resource for an up-to-date description of features 
and their properties.

Morphologic features describe geometric 
properties of the lesion such as volume, diameter, 
surface area, and elongation. Intensity-based fea-
tures, also known as first-order features, describe 
properties of the distribution of intensities within 
an ROI, where the spatial location of each voxel 
is ignored. First-order features can be broadly 
grouped into those that measure the location 
of the distribution (mean, median, mode, etc), 
those that measure the spread of the distribution 
(variance, interquartile range, etc), those that 
measure the shape of the distribution (skewness, 

kurtosis, etc), and other features linked to less 
specific properties of the voxel intensity hetero-
geneity (entropy, energy, etc). Imaging modalities 
such as MRI and US typically generate images 
with arbitrary intensity scaling, and if this is not 
consistent for all subjects it will be necessary to 
apply image standardization before calculating 
first-order features. Features such as skewness 
are unaffected by image standardization, as they 
are dependent on the shape of the distribution of 
intensities rather than their absolute values.

Second-order features, also known as texture 
features, go beyond first-order features so that the 
spatial locations as well as the SIs of two or more 
pixels are used when computing the features. 
For example, gray-level co-occurrence matrix 
(GLCM) features consider the SIs of pairs of 
pixels separated by a given distance and direc-
tion, while gray-level size-zone matrix (GLSZM) 
features consider the sizes of contiguous regions 
that share the same SI after discretization.

Intensity discretization involves assigning pixels 
within a given intensity range to a single value or 
“bin” and is used before calculation of second-
order features. Either the bin width or the total 
number of bins can be specified. Reducing the 
number of bins (or increasing the bin width) will 
lead to a loss of image detail but will remove noise 
(Fig 6). Conversely, increasing the number of bins 
(or decreasing the bin width) will retain more im-
age detail but will also preserve image noise. Using 
a fixed bin size maintains the relationship of the 
“binned” data to the original intensity scale and 
can be used when the intensity scale is quantitative 

Table 4: Summary of Radiomic Feature Classes

Feature Class Examples Note

Morphologic Diameter, area, sphericity Semantic features may represent descriptive scores (eg, small, 
medium, large). However, there are corresponding morphologic 
radiomic features that are purely quantitative.

Intensity Minimum, maximum, 
mean 10th and 90th 
percentiles, skewness, 
kurtosis

First-order features describe properties of the distribution of SIs 
within an ROI (eg, the minimum, maximum, mean, median, 
range, standard deviation, and 10th and 90th percentiles of the 
intensities). Skewness refers to asymmetry of the distribution of 
values about the mean and can be positive or negative. Kurto-
sis refers to the tail behavior of the SI distribution, with higher 
values implying a higher proportion of SI values concentrated 
toward the tails and a lower proportion toward the mean.

Texture features Contrast, correlation,  
entropy, run emphasis, 
gray-level nonunifor-
mity

Second-order features describe spatial complexity and relationships 
of SIs between neighboring pixels; often computed from the 
co-occurrence matrix (GLCM) described by Haralick (8) or the 
run-length matrix (GLRLM) described by Galloway (29). Other 
classes include those derived from the gray-level size-zone matrix 
(GLSZM) (30), gray-level distance-zone matrix (GLDZM) (30), 
neighborhood gray-tone difference matrix (NGTDM) (31), and 
neighborhood gray-level dependence matrix (NGLDM) (32).
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(such as CT and PET data). When image intensity 
units are arbitrary (such as with MRI data), fixing 
the number of bins (rather than the bin size) is 
recommended (21). Whichever method is used, it 
should be the same for all patients.

In addition to the agnostic or quantitative 
feature classes described, semantic features such 
as “spiculated” or “enhancing” can also be used 
as input features to a radiomics model and will be 
determined by visual inspection. These features 
will typically be categorical (eg, small, large, hy-
perenhancing) rather than numerical.

Model Building
Once clinical and radiomic data are collected and 
curated, statistical models are fitted to predict 
study endpoints, such as tumor type or survival 
time. A typical model uses input features (includ-
ing the radiomic features described previously 
and clinical features such as tumor markers or 
lymph node status) in addition to target data that 
the model aims to predict, such as benign versus 
malignant or risk of recurrence. The final perfor-
mance and generalizability of models discovered 
from a radiomic analysis is determined by vali-
dating the model on new test data (33,34).

The hold-out method uses a training set to 
develop the model, and a validation set to esti-
mate future performance on new data. To avoid 
biasing the model performance, the validation 
data should be shielded from the model training 
process, and the final validation only performed 
once. Ideally, validation data should be obtained 
from another institution, but this is not always 
possible. Splitting single-institution data into 
training and validation sets is often more practi-
cal and can be done randomly, temporally (by 
using the most recent cases as validation data), or 
by choosing a similar class proportion (eg, benign 
versus malignant) in the training and validation 
datasets, known as stratified sampling.

Once training and validation datasets have 
been established, it is important to verify that the 
feature distributions between the two datasets 
are similar. This is to ensure that any informative 
patterns obtained in the training data will also be 
present in the validation data. Independent univar-
iate testing of each feature is typically performed, 
and useful tests include the Mann-Whitney U test 
(equality of the medians in the two datasets), and 
the Komogorov-Smirnov or Shapiro-Wilk test 
(equality of the distributions of the two datasets). 
These tests do not use the outcome data (they are 
referred to as unsupervised) and therefore do not 
violate the rule that the validation data should only 
be used for model testing.

While hold-out validation is the most straight-
forward approach, it works less well with small 

datasets (<100–200 samples) because uncertainty 
of the performance in the validation dataset will 
be large, and the diversity of the training data 
may be insufficient to discover a robust model. If 
obtaining more data is unfeasible, and in the case 
of smaller studies, cross-validation can be used to 
estimate performance.

With K-fold cross-validation, data are parti-
tioned into K folds (typically 3–10), then K-1 
folds are used to train the model, and the remain-
ing fold is reserved to test the model. In this way, 
K separate models are trained, in which each fold 
plays the role of the test set. The final perfor-
mance estimate is the average over all the folds, 
and the standard error of the performance can be 
estimated by using the standard deviation over 
the folds. This is useful when comparing different 
models and reflects the robustness of the model.

Many models have tuning parameters, and 
optimizing these parameters can be crucial for 
good performance. Unlike the model parameters, 
tuning parameters cannot be learned directly from 
training data. Poorly tuned parameters can lead to 
over- or underfitting of the training data—overfit-
ting leads to poor performance in the validation 
data compared with the training data, and under-
fitting occurs when the model is unable to capture 
important features in the training data (Fig 7). 
Split-validation (equivalent to hold-out validation) 
and cross-validation can be used for optimizing 
the tuning parameters, and this enables tuning 
parameters to be found that balance between over- 
and underfitting. Similar validation approaches 
can be used to select between candidate models.

Feature Stability
When manual segmentation is performed, it is 
important to reject radiomic features that are 
particularly sensitive to interreader variations in 
the ROI. This is evaluated by repeating tumor 
segmentations for a subset of patients by one or 
more readers. The intraclass correlation coef-
ficient (ICC) can be used to reject nonreproduc-
ible features (35,36) below a threshold ICC.

While patients used for measuring reproduc-
ibility can be selected from the whole dataset, 
when hold-out testing is used it is convenient to 
select patients who are in the training data. In 
this case, the ICC threshold for feature rejec-
tion can be treated as a model parameter and 
optimized as a tuning parameter, but when this 
is not performed, ICC thresholds in the range 
of 0.75–0.9 are typical. Feature stability is also 
influenced by fluctuations in patient factors, 
including positioning; if possible, test-retest im-
ages on a subset of patients should be obtained. 
This is often feasible with MRI studies but can 
be more difficult for images obtained involving 
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ionizing radiation and is usually not possible in 
retrospective studies.

Univariate Feature Discovery
In radiomic studies, it is uncommon for a single 
feature to perform well enough to be used on its 
own, but univariate models (those that contain 
only one feature) are nevertheless useful as a 
benchmark baseline performance for comparison 
with more complex multivariate models (those 
that contain multiple features). For binary clas-
sification tasks (in which data are categorized into 
two groups [eg, benign vs malignant]) the area 
under the receiver operating characteristic curve is 
a suitable metric to rank the classification perfor-

mance of each feature when used alone, and the 
Mann-Whitney U test can be used to test whether 
the model performs better than chance alone. As 
classification performance will be measured for 
each feature, multiple comparisons correction of 
the P values should be performed by using Bonfer-
roni correction or false–discovery rate methods 
such as Benjamini-Hochberg and Benjamini-Ye-
kutieli corrections (37,38).

Feature Selection and  
Dimensionality Reduction

Multivariate models often perform better when 
feature selection or dimensionality reduction is 
applied because this tends to remove noise and 

Figure 6. SI discretization involves assigning pixels within a given SI range to a single value or bin and is used 
before calculation of second-order features. In this diagram, the SI histogram is derived from an ROI encompass-
ing a hepatic tumor with varying bin size (or bin width). Increasing the bin size or decreasing the number of bins 
may cause loss of image detail but reduces noise, whereas decreasing the bin size or increasing the number of 
bins preserves image detail at the expense of image noise. The choice of image modality and SI range will define 
the method of discretization.

Figure 7. Example 2D classification tasks show the impact of under- and overfitting. In the case of underfitting, 
the linear model fits a straight line and does not have the capacity to capture the nonlinear (curved) nature of the 
decision boundary, and so its classification performance on both the training and the test data will be subopti-
mal. In the case of overfitting, the model is insufficiently constrained and tends to generate a complex decision 
boundary that is overly influenced by noise. In this case, the performance in the training data will be good but 
will worsen when evaluated on independent test data. Many machine learning models have tuning parameters 
that can be adjusted to give models at both ends of this spectrum, and so optimizing the tuning parameters 
(typically using cross-validation techniques) is necessary to produce a well-fitted model.
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reduces redundancy (the number of features that 
do not add any additional information to the 
model). A range of approaches are outlined in 
Table 5 and described in more detail in this sec-
tion. A key consideration when choosing a feature 
selection technique is the impact on interpretabil-
ity of the final model.

Correlated features can be reduced by using 
pairwise correlation statistics (such as Pearson 
correlation) to remove features that are correlated 
above a threshold (eg, 0.8). This is performed 
without knowledge of the outcome data and is 
done iteratively starting with the pair with the 
highest correlation. For each pair, the feature 
with the highest average correlation with the 
remaining features is rejected. To improve inter-
pretability in addition to stability, we have devel-
oped an extension to this technique in which the 
classes of highly correlated features (ie, shape, 
first order, and texture) are used to determine 
which feature should be removed (15). For exam-
ple, if a first-order and a texture feature are corre-
lated, then the first-order feature is retained, and 
if a shape and a first-order feature are correlated, 
then the shape feature is retained. This results in 
a set of features with reduced redundancy and 
tends toward simpler interpretations.

Dimensionality reduction techniques aim to 
retain the informative components of features 
with a smaller overall number of variables. For 
example, the majority of “useful” information 
contained in 100 features is represented in one 
or two new variables that comprise combinations 
of the features. In this case, the dimensions have 
been reduced from 100 to one or two. Widely 
used examples include principle component 
analysis (PCA), independent component analy-
sis, kernel PCA (39), and autoencoders (40). A 
key limitation is that variables obtained following 
feature reduction suffer from limited explainabil-
ity since they are influenced by a combination of 
many or all of the input features.

Feature selection methods make use of the 
target data, and these can be divided into three 
types: filter, wrapper, and embedded methods.

Filter methods use statistics derived from 
each input feature and the target data to rank 
and select the input features and are applied 
to the training data before the model fitting. 
They are supervised (as they make use of the 
target data), and care should be taken to avoid 
data leakage from the validation data. Possible 
statistics include the t-statistic, Mann-Whitney 
U test, Fisher score, joint mutual information, 
maximum relevancy minimum redundancy, and 
mutual information (41).

Wrapper methods combine the chosen multi-
variate model with a feature ranking function that 

is used iteratively to remove low-ranking features. 
To avoid overfitting, the ranking should be com-
puted by using cross-validation or split validation 
on the training data. Recursive feature elimina-
tion is a popular wrapper method and is available 
in most statistical packages.

Embedded methods take an existing statistical 
model (eg, logistic regression) and add a term 
(known as the regularization term) that has the 
effect of shrinking model parameters that are as-
sociated with noninformative features to values at 
or near zero. This simplifying property is advan-
tageous when attempting to interpret the final 
model. Examples include Least Absolute Shrink-
age and Selection Operator (LASSO) (42), ridge, 
and elastic net regularization (43). Embedded 
methods have one or more tuning parameters, 
and these should be optimized in the training 
data by using cross-validation or split-validation.

Multivariate Models
Multivariate models refer to those that use 
multiple input variables and are frequently used 
in radiomic studies. The workhorse models for 
radiomics studies are classification and time-to-
event (survival) models (Table 6).

Classification models generate boundaries 
between the data to separate them into discrete 
groups (Fig 7). These are referred to as decision 
boundaries, and data are classified on the basis 
of which side of the boundary they are located. A 
widely used group of classification models gener-
ate linear boundaries (ie, a straight line) or qua-
dratic boundaries (a curve). These include linear 
discriminant analysis (LDA) and Gaussian naïve 
Bayes and quadratic discriminant analysis. Logistic 
regression is a related technique that (like LDA) 
generates a linear decision boundary, but unlike 
LDA, data points that are far from the boundary 
have a reduced effect on the location of the bound-
ary. These classification models have the advantage 
that they do not have any tuning parameters but 
the disadvantage that they can only generate linear 
(or quadratic) decision boundaries, which may 
result in underfitting if the true boundary separat-
ing classes is not simply a straight line or quadratic 
function. These techniques can be used in combi-
nation with all three feature selection methods de-
scribed previously. Logistic regression with LASSO 
regularization is a widely used example of this and 
has the advantage that the model parameters can 
be interpreted as odds-ratios, and the regulariza-
tion tends to remove noninformative features, 
which aids model interpretation.

When the data require a more complex deci-
sion boundary, nonlinear classifiers such as sup-
port vector machines, relevance vector machines, 
random forests, and neural network classifiers 
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may be appropriate (33,44). These algorithms can 
generate more complex boundaries between classes 
(compared with those of a linear or quadratic func-
tion) and have tuning parameters that can have 
a dramatic effect on performance, and so cross-
validation or split-validation on the training data 
should be used for tuning parameter optimization.

Evaluating the performance of classification 
models learned from data is a crucial aspect of 
the development of a radiomic signature. Some of 

the more widely used metrics and their uses are 
outlined in Appendix E2.

Time-to-event models widely used in radiomics 
studies include Cox regression and random forest 
survival models. Both models account for data 
censoring. In radiomic studies with a large num-
ber of input features, Cox regression with LASSO 
regularization can be effective at generating a risk 
signature with a small number of nonzero features 
(45). Performance assessment of time-to-event 

Table 5: Methods for Feature Selection and Reduction

Technique Description Advantages Disadvantages

Manually remove 
features

Selecting a feature or features to 
remove on the basis of priori con-
siderations (eg, if a study involves 
very small tumors, texture features 
are unlikely to be informative)

Simple to apply
Does not use the target 

features

Introduces selection 
bias that is not vali-
dated

Feature  
correlation

Removes features on the basis of 
their individual correlation with 
each other (known as pair-wise 
correlation) above a chosen thresh-
old (eg, 0.8); usually performed 
iteratively

Simple to apply
Does not use target features

Correlation threshold 
needs careful selec-
tion and will influ-
ence performance

Feature stability Assess temporal stability in the 
test-retest setting or segmentation 
stability following repeat segmenta-
tions

More likely that the perfor-
mance estimate will remain 
true when the model is 
deployed in a real-world 
scenario

Unstable features could 
be informative if 
efforts were made to 
improve stability

Dimensionality  
reduction

Examples include principle compo-
nent analysis (PCA) and indepen-
dent component analysis (which 
use linear transformations of the 
input features), kernel PCA, and 
autoencoders (which use nonlinear 
transformations); informative com-
ponents of features are retained 
with fewer overall variables

Interactions (eg, correla-
tions) between features are 
automatically accounted 
for; high capacity to reject 
noise and retain informa-
tive signal

Lack of interpretabil-
ity of features after 
dimensionality reduc-
tion

Filter methods Select relevant features on the 
basis of statistical testing by using 
outcome variable; top-performing 
features are retained

Applied as a preprocessing 
step before model building

Parameter selection is 
not influenced by the 
model used, so it may 
reject features that 
would be informative 
for a given model

Wrapper  
methods

Recursively select or reject features 
on the basis of model performance

Combines selection and mod-
el fitting so that features 
that are relevant for a par-
ticular model are retained; 
features are not modified, 
so interpretation of the 
final model is feasible

The number of retained 
features should be 
determined by using 
cross-validation, 
leading to slower 
and more complex 
algorithms

Embedded  
methods

Augment the model with a regular-
ization term that leads to sparse 
models (ie, that have coefficients 
that are close to zero)

Combines selection and 
model fitting so that 
features that are relevant 
for a particular model are 
retained; features are not 
modified, so interpretation 
of final model is feasible

Regularization includes 
a tuning parameter 
that should be deter-
mined by using cross-
validation, leading to 
slower more complex 
algorithms
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models broadly falls into two types: prediction 
accuracy at a given time point or accuracy at 
predicting risk for the whole survival curve (46). 
Common metrics for assessing these are outlined 
in Appendix E2.

Software
The main initial consideration when choosing 
radiomic software is whether to use commercial or 
noncommercial software. Noncommercial applica-
tions tend to be free, rapidly evolving, and reflective 
of the latest research trends. Commercial applica-
tions are not free but may be more stable, come 
with technical support, and are potentially a “black 
box.” As with all scientific software, users should 
consider the maturity level of the chosen package, 
documentation available, previous use in the litera-
ture, and potential for support from the individual 
or organization developing it. Additional radiomic-
specific considerations include picture archiving 
and communication system (PACS) integration, 
segmentation tools, radiomic features supported, 

preprocessing, and model building. If local exper-
tise is available, consider implementing an in-house 
pipeline that may be optimized to local systems. A 
large number of noncommercial software applica-
tions (Appendix E3) have been developed, and 
many are freely available for public download.

At present, there is limited choice of commer-
cial software in this rapidly developing field. This 
likely represents a combination of the low potential 
for revenue where many open-source solutions al-
ready exist and the high barrier for developing soft-
ware as a medical device for sale to the health care 
market. It is important to note that reproducibility 
is not guaranteed simply by using IBSI-tested soft-
ware but also relies on harmonizing certain settings 
(which do not necessarily correspond to the de-
faults of the software) and maintaining consistency 
in versions of each software platform (47).

Manuscript Writing
The interpretation of findings from radiomic 
studies requires detailed knowledge of the vari-

Table 6: Advantages and Disadvantages of Widely Used Classification and Time-to-Event Models

Model Advantages Disadvantages

Classification
 Linear/quadrat-

ic discrimi-
nant analysis

Simple model directly estimated from 
the data, no tuning parameters; 
probabilistic output available

Decision boundary constrained to be a straight line 
(or quadratic curve); suboptimal for non-Gaussian 
class distributions and data with extreme values

 Gaussian Naïve 
Bayes

Simple model directly estimated from 
the data, no tuning parameters; 
probabilistic output available

Assumes features are independent

 Logistic regres-
sion

Directly gives probabilistic output; less 
affected by extreme values not near 
the decision boundary; regularization 
can be used for embedded feature 
selection, which aids interpretation

Decision boundary constrained to be a straight line; 
can overfit when the number of features (input 
dimensionality) is high

 Support (and 
relevance) 
vector ma-
chines

Can learn nonlinear decision boundar-
ies; work well in problems with high-
dimensional input data

More complex algorithms with slower run-times; 
involve tuning parameters that almost always 
require optimizing to give good performance; 
interpreting the final model can be difficult

 Random forest 
classifier

Can learn nonlinear decision boundar-
ies; naturally robust, as each tree is 
trained by using a subset of the data

May require more data than support (and rel-
evance) vector machines to learn complex 
decision boundaries; involves tuning parameters 
that should be optimized for good performance; 
results can be difficult to interpret if the tree 
depths are >3

Time-to-event
 Cox regression Widely used and understood; ease of 

interpretation, as the model gives 
hazard ratios for each input param-
eter; regularization can be used for 
embedded feature selection; ac-
counts for data censoring

Assumes proportional hazards and linear relation-
ship between input features and hazard

 Random forest 
survival

Can model nonlinear and nonpropor-
tional survival effects; accounts for 
data censoring

Contains tuning parameters that require optimiza-
tion; may require more data than the Cox regres-
sion
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ous steps performed during the study design, 
and it is crucial that these are clearly outlined 
when preparing a manuscript. To aid authors 
and to provide a framework for manuscript writ-
ing, there are various radiomic- and artificial 
intelligence–specific checklists, reporting guides, 
and radiomic quality scores that can be referred 
to (4,21,48,49), in addition to artificial intel-
ligence extensions of familiar guidelines such as 
TRIPOD (Transparent Reporting of a multi-
variable prediction model for Individual Prog-
nosis Or Diagnosis) (50), CONSORT (Consoli-
dated Standards of Reporting Trials) (51), and 
SPIRIT (The Standard Protocol Items: Recom-
mendations for Interventional Trials) (52).These 
can help assist with manuscript preparation, 
with insights into how manuscripts will be as-
sessed at peer review. To address the challenge of 
standardization in radiomics, it is important to 
observe recognized nomenclature, for example, 
that collated by the IBSI (21).

Processing and acquisition parameters should 
be specified for all stages of the study, in addition 
to software details and version numbers. It has 
been proposed that liberal use of supplementary 
materials to include imaging protocols, exam-
ined images, segmentations, formulas for feature 
extraction, and code of radiomic models is en-
couraged (4). Where it is not possible to present 
patient-specific data, computed values from a 
digital phantom (53) can be used and compared 
with validated tolerance levels (54).

Future Directions and Challenges
Although there has been an exponential increase 
in the number of radiomic publications, routine 
clinical implementation is yet to occur (55,56).

Key obstacles include noncompliance with 
machine learning best practices, standardization 
of the radiomic workflow, and clear reporting of 
study methodology. Only then can models be 
validated, preferably prospectively on external 
real-world data, including multivendor images 
and a variety of acquisition protocols.

Data curation and quality and adequate sam-
ple sizes are crucial in meeting these challenges. 
However, curation of large datasets is resource 
intensive, and accrual of sufficient data from mul-
tiple institutions can be challenging. Data sharing 
can help address these challenges. However, 
hurdles remain (57), including but not limited to 
ethical and legal considerations, data value, intel-
lectual property, and resource availability.

Finally, although radiomics is largely a data-
driven exercise, a deeper understanding of 
the biologic meaning of any derived radiomic 
signatures is required before results gain wider 
acceptance (6).

Conclusion
Radiomic applications in oncology include 
diagnosis, prognostication, and prediction of 
clinical outcomes. It is a multidisciplinary field, 
encompassing radiologists and data and imaging 
scientists. A variety of challenges exist, including 
a need for standardization across all stages of 
the workflow and prospective validation across 
multiple sites using real-world heterogeneous 
datasets. This article provides multiple learning 
points to improve study design and execution 
and to enhance translation of radiomics into 
clinical practice.

Acknowledgment.—The authors would like to thank Naami 
Mcaddy, MBBS, for their assistance with reviewing the 
manuscript.

Disclosures of Conflicts of Interest.—S.J.D. Activities related to 
the present article: post funded via a grant from Cancer Research 
UK. Activities not related to the present article: post funded via a 
grant from Cancer Research UK. Other activities: disclosed no 
relevant relationships. N.P. Activities related to the present article: 
disclosed no relevant relationships. Activities not related to the 
present article: stock/stock options in MRIcons. Other activities: 
disclosed no relevant relationships. D.M.K. Activities related to 
the present article: disclosed no relevant relationships. Activities 
not related to the present article: institutional support from NIHR 
Challenge Award and payment for lectures from Bayer Health-
care. Other activities: disclosed no relevant relationships.

References
1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images 

Are More than Pictures, They Are Data. Radiology 
2016;278(2):563–577.

2. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: 
extracting more information from medical images using ad-
vanced feature analysis. Eur J Cancer 2012;48(4):441–446.

3. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the 
challenges. Magn Reson Imaging 2012;30(9):1234–1248.

4. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the 
bridge between medical imaging and personalized medicine. 
Nat Rev Clin Oncol 2017;14(12):749–762.

5. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding 
tumour phenotype by noninvasive imaging using a quantita-
tive radiomics approach. Nat Commun 2014;5(1):4006.

6. Tomaszewski MR, Gillies RJ. The Biological Meaning of 
Radiomic Features. Radiology 2021;298(3):505–516 [Pub-
lished correction appears in Radiology 2021;299(2):E256.]

7. Larue RTHM, Defraene G, De Ruysscher D, Lambin P, 
van Elmpt W. Quantitative radiomics studies for tissue 
characterization: a review of technology and methodological 
procedures. Br J Radiol 2017;90(1070):20160665.

8. Haralick RM, Shanmugam K, Dinstein I. Textural Features 
for Image Classification. IEEE Trans Syst Man Cybern 
1973;SMC-3(6):610–621.

9. O’Connor JPB. Rethinking the role of clinical imaging. 
Elife 2017;6:e30563.

10. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and 
resistance to cancer therapies. Nat Rev Clin Oncol 
2018;15(2):81–94.

11. Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance 
of events per independent variable in proportional hazards 
analysis: I—Background, goals, and general strategy. J Clin 
Epidemiol 1995;48(12):1495–1501.

12. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance 
of events per independent variable in proportional hazards 
regression analysis: II—Accuracy and precision of regres-
sion estimates. J Clin Epidemiol 1995;48(12):1503–1510.

13. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein 
AR. A simulation study of the number of events per 



1732 October Special Issue 2021 radiographics.rsna.org

variable in logistic regression analysis. J Clin Epidemiol 
1996;49(12):1373–1379.

14. Julious SA. Sample size of 12 per group rule of thumb for 
a pilot study. Pharm Stat 2005;4(4):287–291.

15. Doran SJ, Kumar S, Orton M, et al. “Real-world” radiomics 
from multi-vendor MRI: an original retrospective study on 
the prediction of nodal status and disease survival in breast 
cancer, as an exemplar to promote discussion of the wider 
issues. Cancer Imaging 2021;21(1):37.

16. Gudbjartsson H, Patz S. The Rician distribution of noisy 
MRI data. Magn Reson Med 1995;34(6):910–914.

17. Vovk U, Pernuš F, Likar B. A review of methods for correc-
tion of intensity inhomogeneity in MRI. IEEE Trans Med 
Imaging 2007;26(3):405–421.

18. Larue RTHM, van Timmeren JE, de Jong EEC, et al. 
Influence of gray level discretization on radiomic feature 
stability for different CT scanners, tube currents and slice 
thicknesses: a comprehensive phantom study. Acta Oncol 
2017;56(11):1544–1553.

19. Ellingson BM, Zaw T, Cloughesy TF, et al. Comparison 
between intensity normalization techniques for dynamic 
susceptibility contrast (DSC)-MRI estimates of cerebral 
blood volume (CBV) in human gliomas. J Magn Reson 
Imaging 2012;35(6):1472–1477.

20. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic 
dependencies of CT radiomic features on voxel size and 
number of gray levels. Med Phys 2017;44(3):1050–1062.

21. Zwanenburg A, Leger S, Vallières M, Löck S. Image 
biomarker standardisation initiative. http://arxiv.org/
abs/1612.07003. Published 2016. Accessed June 27, 2021.

22. Lehmann TM, Gönner C, Spitzer K. Survey: interpolation 
methods in medical image processing. IEEE Trans Med 
Imaging 1999;18(11):1049–1075.

23. Du Q, Baine M, Bavitz K, et al. Radiomic feature stability 
across 4D respiratory phases and its impact on lung tumor 
prognosis prediction. PLoS One 2019;14(5):e0216480.

24. Yip S, McCall K, Aristophanous M, Chen AB, Aerts HJWL, 
Berbeco R. Comparison of texture features derived from 
static and respiratory-gated PET images in non-small cell 
lung cancer. PLoS One 2014;9(12):e115510.

25. Ganeshan B, Miles KA. Quantifying tumour heterogeneity 
with CT. Cancer Imaging 2013;13(1):140–149.

26. Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies 
RJ. Quantitative imaging of cancer in the postgenomic 
era: Radio(geno)mics, deep learning, and habitats. Cancer 
2018;124(24):4633–4649.

27. Colleoni M, Rotmensz N, Maisonneuve P, et al. Prognostic 
role of the extent of peritumoral vascular invasion in oper-
able breast cancer. Ann Oncol 2007;18(10):1632–1640.

28. Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust 
Radiomics feature quantification using semiautomatic 
volumetric segmentation. PLoS One 2014;9(7):e102107.

29. Galloway MM. Texture analysis using gray level run lengths. 
Comput Graph Image Process 1975;4(2):172–179.

30. Thibault G, Angulo J, Meyer F. Advanced statistical matrices 
for texture characterization: application to cell classification. 
IEEE Trans Biomed Eng 2014;61(3):630–637.

31. Amadasun M, King R. Textural features corresponding 
to textural properties. IEEE Trans Syst Man Cybern 
1989;19(5):1264–1274.

32. Sun C, Wee WG. Neighboring gray level dependence matrix 
for texture classification. Comput Vis Graph Image Process 
1983;23(3):341–352.

33. Hastie T, Tibshirani R, Friedman J. The Elements of Sta-
tistical Learning. New York, NY: Springer, 2001.

34. Cawley GC, Talbot NLC. On over-fitting in model selection 
and subsequent selection bias in performance evaluation. J 
Mach Learn Res 2010;11:2079–2107.

35. Zwanenburg A, Leger S, Agolli L, et al. Assessing robust-
ness of radiomic features by image perturbation. Sci Rep 
2019;9(1):614.

36. McHugh DJ, Porta N, Little RA, et al. Image Contrast, Im-
age Pre-Processing, and T1 Mapping Affect MRI Radiomic 

Feature Repeatability in Patients with Colorectal Cancer 
Liver Metastases. Cancers (Basel) 2021;13(2):240.

37. Benjamini Y, Hochberg Y. Controlling the False Discovery 
Rate: A Practical and Powerful Approach to Multiple Test-
ing. J R Stat Soc Ser B Methodol 1995;57(1):289–300.

38. Benjamini Y, Yekutieli D. The control of the false discov-
ery rate in multiple testing under dependency. Ann Stat 
2001;29(4):1165–1188.

39. Schölkopf B, Smola A, Müller KR. Nonlinear Component 
Analysis as a Kernel Eigenvalue Problem. Neural Comput 
1998;10(5):1299–1319.

40. Hinton G, Zemel R. Autoencoders, minimum description 
length, and Helmholtz free energy. In: Proc 6th Int Conf 
Neural Inf Process Syst. San Francisco, CA: Morgan 
Kaufmann Publishers, 1993; 3–10.

41. Papanikolaou N, Matos C, Koh DM. How to develop a 
meaningful radiomic signature for clinical use in oncologic 
patients. Cancer Imaging 2020;20(1):33.

42. Tibshirani R. Regression Shrinkage and Selection Via the 
Lasso. J R Stat Soc Ser B Methodol 1996;58(1):267–288.

43. Zou H, Hastie T. Regularization and variable selection via the 
elastic net. J R Stat Soc Ser B Methodol 2005;67(2):301–320.

44. Tipping M. Sparse Bayesian Learning and the Relevance 
Vector Machine. J Mach Learn Res 2001;1:211–244.

45. Tibshirani R. The lasso method for variable selection in the 
Cox model. Stat Med 1997;16(4):385–395.

46. Rahman MS, Ambler G, Choodari-Oskooei B, Omar RZ. 
Review and evaluation of performance measures for survival 
prediction models in external validation settings. BMC Med 
Res Methodol 2017;17(1):60.

47. Fornacon-Wood I, Mistry H, Ackermann CJ, et al. Reli-
ability and prognostic value of radiomic features are highly 
dependent on choice of feature extraction platform. Eur 
Radiol 2020;30(11):6241–6250.

48. Mongan J, Moy L, Kahn CE Jr. Checklist for Artificial Intel-
ligence in Medical Imaging (CLAIM): A Guide for Authors 
and Reviewers. Radiol Artif Intell 2020;2(2):e200029.

49. Bluemke DA, Moy L, Bredella MA, et al. Assessing radiology 
research on artificial intelligence: A brief guide for authors, 
reviewers, and readers-from the Radiology Editorial Board. 
Radiology 2020;294(3):487–489.

50. Park JE, Kim D, Kim HS, et al. Quality of science and re-
porting of radiomics in oncologic studies: room for improve-
ment according to radiomics quality score and TRIPOD 
statement. Eur Radiol 2020;30(1):523–536.

51. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; 
SPIRIT-AI and CONSORT-AI Working Group. Reporting 
guidelines for clinical trial reports for interventions involving 
artificial intelligence: the CONSORT-AI extension. Nat 
Med 2020;26(9):1364–1374.

52. Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ; 
SPIRIT-AI and CONSORT-AI Working Group. Guide-
lines for clinical trial protocols for interventions involving 
artificial intelligence: the SPIRIT-AI Extension. BMJ 
2020;370:m3210.

53. Lambin P. Radiomics Digital Phantom. CancerData 2016. 
https://doi.org/10.17195/candat.2016.08.1. Published 2016. 
Accessed June 27, 2021. 

54. Zwanenburg A, Vallières M, Abdalah MA, et al. The Im-
age Biomarker Standardization Initiative: Standardized 
Quantitative Radiomics for High-Throughput Image-based 
Phenotyping. Radiology 2020;295(2):328–338.

55. Pinto Dos Santos D, Dietzel M, Baessler B. A decade of 
radiomics research: are images really data or just patterns 
in the noise?. Eur Radiol 2021;31(1):1–4.

56. Langlotz CP, Allen B, Erickson BJ, et al. A Roadmap for 
Foundational Research on Artificial Intelligence in Medical 
Imaging: From the 2018 NIH/RSNA/ACR/The Academy 
Workshop. Radiology 2019;291(3):781–791.

57. Budin-Ljøsne I, Burton P, Isaeva J, et al. DataSHIELD: 
an ethically robust solution to multiple-site individual-level 
data analysis. Public Health Genomics 2015;18(2):87–96.

This journal-based SA-CME activity has been approved for AMA PRA Category 1 CreditTM. See rsna.org/learning-center-rg.


