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Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell
cycle dysregulation is associated with many human diseases including renal fibrosis, a
common process of various chronic kidney diseases progressing to end-stage renal
disease. Under normal physiological conditions, most of the renal cells are post-mitotic
quiescent cells arrested in theG0phase of cell cycle and renal cells turnover is very low. Injuries
induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell
cycle, which is essential for kidney regeneration and renal function restoration. However, more
severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or
overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle
dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In
this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney,
discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better
understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the
development of therapeutics to halt renal fibrosis progression or promote regression.
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INTRODUCTION

Tight regulation of cell cycle is essential for mammalian tissue homeostasis and development,
whereas cell cycle dysregulation leads to many human diseases such as cancer, cardiovascular disease,
inflammation, and neurodegenerative diseases (Wiman and Zhivotovsky, 2017). Renal fibrosis is a
common process of almost all chronic kidney diseases (CKDs) progressing to end-stage renal disease
(ESRD). More than a decade of studies have found that cell cycle dysregulation of the renal tubular
epithelial cells (TECs) could promote injured kidneys caused by toxins, hypoxia, and metabolic
disorders to progress to CKD (Susnik et al., 2015; Moonen et al., 2018).

Under normal physiological conditions, adult mammalian renal cell turnover is very low; most of
the renal cells are arrested in G0 phase of the cell cycle (Thomasova and Anders, 2015). Injuries, such
as ischemic, toxic, and obstructive injuries, could promote the activation of cell cycle and initial cell
proliferation of renal cells, which is an important compensatory mechanism to restore renal function.
Mild injuries could be repaired through cell proliferation of renal cells; therefore, renal function
could be fully recovered andmost renal cells re-enter the G0 phase. However, when the injury is more
severe or repeated, cell cycle of renal cells is dysregulated, manifesting as cell cycle arrest or
overproliferation, both of which are closely related to renal fibrosis (Canaud and Bonventre, 2015;
Yan et al., 2016).
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To address the complex needs of kidney to keep homeostasis
and repair, a delicate system to regulate cell cycle progression of
renal cells is needed, that is, cell cycle control system (Harashima
et al., 2013; Pack et al., 2019). However, this system could be
disturbed by severe or repeated injuries, leading to cell cycle
dysregulation and renal fibrosis. Recent works have improved our
understanding of how cell cycle dysregulation of renal cells
regulates the progression of renal fibrosis (Lovisa et al., 2015;
Li et al., 2016; Liu et al., 2019b; Liu T. et al., 2019; Koyano et al.,
2019; Zhao et al., 2020; Hanai et al., 2021). In this review, we focus
on cell cycle regulation of renal cells in mammalian healthy and
fibrotic kidney, discussing the relationships between cell cycle
dysregulation of different renal cells and renal fibrosis, and finally
putting some open problems about cell cycle modulation in renal
fibrosis. The better understanding of the function of cell cycle
dysregulation of renal cells in renal fibrosis is essential for
developing strategies to halt or reverse renal fibrosis progression.

FEATURES OF THE MAMMALIAN CELL
CYCLE

Cell cycle begins from the completion of one division to the end of
the next, leading to the generation of two daughter cells.
Mammalian cell cycle is tightly regulated and can be
artificially divided into four distinct phases (G1, S, G2, and M)
according to their specific characteristics (Liu et al., 2019a;
Martínez-Alonso and Malumbres, 2020) (Figure 1). G1 phase
is the gap phase, which is characterized by cell growth in size and
the synthesis of RNAs and proteins required for DNA
duplication. S phase is the synthesis phase during which DNA
is synthesized. G2 phase is another gap phase, in which stage cells

are characterized by rapid growth in cell size, more protein
synthesis and preparation for division. M phase is the mitosis
phase, during which the replicated chromosomes are segregated
into separate nuclei and cytokinesis promoting the formation of
two daughter cells. At the end of the M phase, 1 cell divides into
two daughter cells, each of which contains one copy genomic
DNA of the mother cell, and a cell cycle is accomplished.

Besides G1, S, G2, and M phases, the term G0 phase is usually
used to describe cells that have exited the cell cycle and become
quiescent. For example, under normal physiological conditions,
most of the mammalian renal cells are arrested in G0 phase.
However, Vogetseder et al. have found that a large number of rat
epithelial cells in the proximal tubule were not in G0 phase but in
G1 phase of the cell cycle (Vogetseder et al., 2008;Witzgall, 2008).
Cells in G0 phase could be activated by internal or external
stimuli and then re-enter the G1 phase. Some highly
differentiated cells, such as neurons or cardiomyocytes, need
to exit from the cell cycle permanently so as to satisfy the
demands of functional requirements.

The progression of the mammalian cell cycle is tightly
regulated by cyclin-dependent kinases (CDKs), cyclins, and
cyclin-dependent kinase inhibitors (CKIs) (Morgan, 1997).
CDKs drive the events of the mammalian cell cycle and
control the rhythm of mammalian cell cycle procession;
besides, they also integrate extracellular and intracellular
signals to ensure the fine coordination of cell cycle events
(Morgan, 1997). CDKs function as cell cycle event drivers,
which are completely dependent on the association with
cyclins, being first found in sea urchin eggs by their cyclic
oscillations during the cleavage division in the early 1980s
(Evans et al., 1983). Oscillating synthesis of cyclins controls
the stage-specific timing of CDK activity. The association of

FIGURE 1 | Features of the mammalian cell cycle. Mammalian cell cycle is tightly regulated and can be artificially divided into four distinct phases (G1, S, G2, andM)
according to their specific characteristics. G0 phase is usually used to describe cells that have exited the cell cycle and become quiescent. The progression of the
mammalian cell cycle is precisely controlled by CDKs, cyclins, and CKIs. Checkpoints could ensure the processes at each phase of the cell cycle have been accurately
completed before entering into the next phase.
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cyclins is the primary determinant of CDK activity. Besides
cyclins, other additional regulatory subunits—CKIs—are
needed to modulate CDK activity, substrate recognition, and
subcellular location. CDKs, cyclins, and CKIs form a finely tuned
regulatory network to ensure precise progression of the cell cycle.
Besides their well-established function in cell cycle control,
increasing studies have found that mammalian cell cycle
regulators also play an essential role in other biological
processes such as transcription, epigenetic regulation,
metabolism, stem cell self-renewal, neuronal functions, and
spermatogenesis (Lim and Kaldis, 2013).

To ensure genomic integrity and the faithful transmission of
correct replicated DNA during cell division, mammals have
evolved a quality control system called checkpoint, which
presents in different phases of the cell cycle (Johnson and
Walker, 1999) (Figure 1). The presence of these checkpoints
ensures that the processes at each phase of the cell cycle are
accurately completed before entering the next phase. The first
checkpoint of the mammalian cell cycle is the G1/S checkpoint,
which checks for cell size, nutrients, growth factors, and DNA
damage, suspending cell cycle for DNA repair and maintaining
the integrity of the genome (Johnson andWalker, 1999). The next
checkpoint is the intra-S phase checkpoint, which can be
activated by the DNA damage escaping from the G1/S
checkpoint or occurring during the S phase, and halts the cell
cycle in S phase (Johnson and Walker, 1999). The third
checkpoint is G2/M checkpoint, which determines whether or
not the cell continues to complete mitosis. Specifically, G2/M
checkpoint ensures three important things: DNA has been well
replicated, all replication errors have been rectified, and the cell
size is big enough to divide (Johnson andWalker, 1999). The final
checkpoint is the metaphase or spindle checkpoint, which ensures
that the chromosomes have been well aligned on the spindle and
are sufficient for mitosis (Johnson and Walker, 1999). These four
checkpoints to some degree are redundant, but each of them has
somehow relative specificity. Checkpoints are activated by
incomplete DNA replication due to stalled replication forks,
and damaged DNA induced by both internal and external
sources such as UV light, ionizing radiation, reactive oxygen
species, or DNA-damaging chemotherapeutic agents (Reinhardt
and Yaffe, 2009). Checkpoint activation prevents further cell cycle
progression of the damaged cells. Besides implementing cell cycle
arrest, checkpoint signaling also triggers DNA repair pathways. If
the DNA damage exceeds repair capacity, additional signaling
cascades are triggered to eliminate these impaired cells.

CELL CYCLE REGULATION AFTER DNA
DAMAGE

After DNA damage, mammalian cells will activate two major
canonical kinase signaling pathways, that is, ataxia telangiectasia
mutated/checkpoint kinase 2 (ATM/Chk2) and Rad3-related
protein/checkpoint kinase1 (ATR/Chk1) signaling, to impede
mammalian cell cycle progression and start DNA repair
(Reinhardt and Yaffe, 2009). The ATM/Chk2 complex is
activated by the DNA double-strand fracture, whereas the

ATR/Chk1 pathway is activated primarily by DNA single-strand
breaks. The ATM/ATR kinases regulate the G1/S, intra-S, and G2/
M checkpoints by activating their downstream effector checkpoint
kinases Chk2 and Chk1, respectively (Reinhardt and Yaffe, 2009).
ATM/ATR could also phosphate p53 (Figure 2). In mammalian
cells, p53-dependent signaling regulates G1/S arrest mainly
through upregulation of p21 expression (Figure 2). p21 blocks
cell cycle progression by inhibiting the Cdk2/cyclin E complex and
therefore inhibiting the dissociation of Rb protein with
transcription factor E2F (Vogelstein et al., 2000). Moreover, p21
can also inhibit the cell cycle progression at G2/M phase by the G2/
M checkpoint after γ-irradiation or transforming growth factor
beta (TGF-β) stimulation in renal epithelial cells (Bunz et al., 1998;
Wu et al., 2013). In addition, p53-dependent pathway can also
promote the impaired cells to initiate cell death program when the
DNA damage is consistently accumulated (Vousden and Lu, 2002).

Both the ATM/Chk2 and the ATR/Chk1 pathways play their
roles mainly through inactivating Cdc25 phosphatases, the
positive regulators of cell cycle progression. The p38 (MAPK)/
MK2 is a novel cell cycle checkpoint kinase pathway that
integrates total stress responses with DNA damage (Reinhardt
and Yaffe, 2009). This pathway responds to various intracellular
and extracellular stimuli, including cytokines, hyperosmolarity,
and UV irradiation and halts the progression of cell cycle in G2/M
phase by inactivating Cdc25 (Roux and Blenis, 2004) (Figure 2).

CELL CYCLE DYSREGULATION IN KIDNEY
FIBROSIS

Renal fibrosis is a common process of almost all CKDs
progressing to ESRD and is a failure of wound healing process

FIGURE 2 |Cell cycle regulation after DNA damage. The figure illustrates
the pathways and molecules that regulate the cell cycle upon DNA damage.
Inhibition of Cdk4/6-cyclin D and CDK2-cyclin E is essential for G1/S arrest
and blocking CDK1-cyclin B is necessary for G2/M arrest. ATM, ataxia
telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related; Chk,
checkpoint kinase; Cdc25, cell division cycle 25; CDK, cyclin-dependent
kinase.
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initiated by all kinds of injuries, such as toxins, hypoxia, and
metabolic disorders (Liu, 2006; Wynn, 2008). Wound healing
process is an evolutionary conserved defense program by which
the injured tissue could be repaired and recovered. Leukocyte
recruitment, angiogenesis, vascular leak, and the appearance of
myofibroblasts are all involved in this process (Gabbiani and
Majno, 1972). Originally, myofibroblasts are believed to be
beneficial for the wound healing process, but more severe or
consistently persistent injury leads to persistent presence of
leukocytes and myofibroblasts, causing the maladaptive repair
and finally resulting in tissue fibrosis (Dulauroy et al., 2012).
Renal fibrosis is characterized by excessive deposition of
extracellular matrix, which disrupts and replaces the functional
parenchyma leading to organ failure. Besides, it affects all three
main compartments of kidney, glomerulosclerosis in glomeruli,
interstitial fibrosis in tubulointerstitium, and arteriosclerosis and
perivascular fibrosis in vasculature (Djudjaj and Boor, 2019).
During the process of renal fibrosis, almost all the cell types in the
kidney, including fibroblasts, tubular epithelial cells, mesangial
cells, and podocytes, are involved in this process, suggesting that
it is a very complicated process (Boor et al., 2010; Zeisberg and
Neilson, 2010). An increasing body of evidences have suggested
that cell cycle dysregulation of these renal cells is closely related to
renal fibrosis, especially the TECs (Canaud and Bonventre, 2015;
Thomasova and Anders, 2015). In ischemic, toxic, and
obstructive mice models of acute kidney injury (AKI), Yang
et al. first found that cell cycle G2/M arrest of TECs could
induce renal fibrosis through promoting profibrotic cytokine
production by TECs (Susnik et al., 2015). They also found
that administration p53 inhibitor or removal of the
contralateral kidney could promote TECs to bypass the G2/M
arrest, alleviating renal fibrosis in the unilateral ischemic injured
kidney, suggesting cell cycle dysregulation of renal cells is indeed
involved in renal fibrosis. Further studies showed that TECs in the
G2-M phase formed a special structure, target of rapamycin
(TOR)–autophagy spatial coupling compartments (TASCCs),
which could promote the production and secretion of
profibrotic cytokines (Canaud et al., 2019).

Cell Cycle Dysregulation of Podocytes and
Renal Fibrosis
Podocytes are the highly specialized cells whose foot processes
cover the basement membrane of the glomerulus and comprise
the filtration slit diaphragms, therefore regulating blood filtration
(Pavenstadt et al., 2003). Most human chronic kidney diseases
exist with podocyte injury or podocyte loss (Mundel and
Shankland, 2002; Nagata, 2016). The loss of podocytes and the
inability to renew a damaged glomerulus with functional
podocytes will ultimately result in glomerulosclerosis or
scarring of the glomerulus (Barisoni et al., 1999). Diabetes and
other systemic disease states can lead to podocyte injury and loss,
which in turn results in ESRD (Kriz, 2002; Welsh et al., 2010).

Podocytes express cyclin A, cyclin B1, and cyclin D1 and CDK
inhibitors (such as p21, p27, and p57). In the early stage of kidney
development, Ki-67, which is a marker of the proliferated cells,
was highly expressed in immature podocytes, whereas cyclin D1

and CKIs were dramatically downregulated; in the capillary loop
stage, CKIs and cyclin D1 were intensely increased, whereas Ki-
67, cyclin A, and cyclin B1 were not detectable (Nagata et al.,
1998; Barisoni et al., 2000b). The expression changes of cyclins,
CDKs, and CKIs were associated with podocytes exiting the cell
cycle and differentiate into mature podocytes expressing the
podocyte markers, such as WT-1 or podocalyxin (Nagata
et al., 1998; Barisoni et al., 2000b). Under normal
physiological conditions, mature podocytes are arrested in G0
quiescent phase and express high levels of CDK inhibitors. The
constitutive and intense production of CKIs is necessary to
maintain the function of the differentiated quiescent podocytes
(Nagata et al., 1998). The high level of CKIs probably leads to
mature podocytes lacking the ability to renew during adult life.

Severe injuries induce cell death and promote the proliferation
of survival cells so as to compensate for the cell loss. As
postmitotic and quiescent cells, podocytes do not readily
proliferate after injuries; however, in some diseased situations,
such as collapsing focal segmental glomerulosclerosis (FSGS), the
podocytes were stained positive for proliferating cellular markers
and some podocytes even existed as binuclear (Barisoni et al.,
1999). Cyclins, CDKs, and CKI expression were also changed in
collapsing FSGS and human immunodeficiency virus-associated
nephropathy (HIVAN); in these diseased situations, p27, p57,
and cyclin D disappeared in podocytes, whereas the p21, cyclin A,
and Ki-67 were highly expressed (Barisoni et al., 2000a; Barisoni
et al., 2000b; Shankland et al., 2000). These podocytes bypassed
cell cycle restriction points and entered the cell cycle, but they
were unable to complete cell cycle and finally causing podocytes
loss via podocyte mitosis (mitotic catastrophe) (Liapis et al.,
2013). In the setting of adriamycin-induced podocyte injury,
the presence of p21 has a protective effect on the podocytes in
this model of toxic podocytopathy (Marshall et al., 2010). In other
glomerular diseases, such as membranous nephropathy,
immune-mediated injury led to cyclin A and Cdk2
upregulation in podocytes, mitosis entry, and DNA synthesis.
Although these podocytes entered mitosis, they were unable to
successfully complete it, and podocytes manifested as
multinucleated and absence of cytoplasmic division (cytokinesis).

Diabetic nephropathy is characterized by podocyte
hypertrophy. In various experimental models of diabetic
nephropathy, such as Zucker diabetic rats and db/db mice,
both models of type II diabetes, or type I model, induced by
streptozotocin administration, the increasing expression of p27
and p21 was identified (Kuan et al., 1998; Hoshi et al., 2002; Baba
et al., 2005). Although diabetic p21 or p27 knockout mice were
protected from glomerular hypertrophy and the development of
progressive renal failure, the specific mechanism of podocyte
hypertrophy and its role in renal fibrosis remain unknown (Kuan
et al., 1998; Awazu et al., 2003). As the terminal consequence of
podocyte injury, glomerulosclerosis is characterized by segmental
obliteration of glomerular capillaries with the extracellular matrix
and has been believed to be a process to the complete sclerosis
without regression (D’Agati, 2012). As a typical feature of kidney
disease, proteinuria is induced by the podocyte injury because slit
membrane molecules, the actin cytoskeleton, and cell adhesion
molecules have formed a tight network so as to maintain filtration
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barrier function, and defection of these components leads to
proteinuria (D’Agati et al., 2011). Persistent or severe podocyte
injuries lead to cell detachment, which is probably caused by
mitotic catastrophe (Kriz and Lehir, 2005). As normal function of
podocytes requires specific arrangement of the cellular actin
cytoskeleton, this may lead to podocytes unable to further
form the actin contractile ring required by cytokinesis,
resulting in mature podocytes that are unable to complete
cytokinesis. Binucleated podocytes are frequently seen in the
urine, suggesting podocyte loss caused by mitotic catastrophe
is involved in podocyte detachment (Liapis et al., 2013).
Moreover, podocyte loss in adriamycin-induced nephropathy
was alleviated through administration of an inhibitor of p53-
dependent cell cycle arrest, MDM-2, further strengthening the
hypothesis (Mulay et al., 2013).

In summary, under normal physiological conditions,
mammalian podocytes are arrested in G0 quiescent phase
and express high levels of CDK inhibitors. Injuries can
induce podocyte death, whereas the remaining podocytes
are unable to undergo regenerative proliferation to
compensate for the loss of podocytes. Although podocytes
can enter the cell cycle and can even undergo nuclear division
in a variety of glomerular diseases, they were unable to
complete normal cell division. The expression of CKIs, such
as p21, p27, and p57, could lead to podocyte G1/S phase arrest,
causing the abundant podocyte hypertrophy seen in
progressive renal failure (Figure 3). When mature
podocytes are forced to override cell cycle restriction point,
they fulfill an aberrant mitosis followed by detachment and
death through mitotic catastrophe (Figure 3). Such podocytes
appeared multinucleated with aberrant mitotic spindles or
micronuclei and were often found in several human and
experimental glomerular diseases, such as HIVAN, FSGS,
minimal change disease, immunoglobulin A (IgA)

nephropathy, or adriamycin-induced nephropathy (Liapis
et al., 2013; Mulay et al., 2013); all of these diseases exist
with different degree of renal fibrosis.

Cell Cycle Dysregulation of Renal Tubular
Epithelial Cells and Renal Fibrosis
Under normal physiological conditions, mammalian mature
TECs proliferate at a very low rate, which could be proved by
PCNA and Ki-67 immunostaining (Nadasdy et al., 1994; Witzgall
et al., 1994). Through this low rate proliferation, kidney can
remedy the loss of TECs into the urine, which is few under
normal conditions, probably one TEC per human nephron daily
(Prescott, 1966). However, the rate of dividing cells remarkably
increases after AKI so as to remedy TEC loss (Humphreys et al.,
2008). If the injury is mild, the surviving TECs could cover the
exposed basal membrane and restore cell number by proliferation
(Prescott, 1966; Witzgall et al., 1994; Lin et al., 2005). In addition
to proliferation, surviving TECs can also differentiate and express
the embryologic markers such as vimentin (Witzgall et al., 1994;
Lin et al., 2005), and then redifferentiate into specialized TECs
resulting in the recovery of the nephron (Humphreys et al., 2011).

However, when the damage is more severe or repeated, the
repair process can be maladaptive, which will lead to incomplete
structural and functional recovery of kidney tissue with persistent
inflammation, activation, and proliferation of myofibroblasts,
vascular rarefaction, increased production of interstitial matrix,
and finally resulting in the progression of fibrosis (Grgic et al.,
2012). Upon severe injuries, some TECs will arrest in the G2/M

FIGURE 3 | Cell cycle dysregulation of podocytes causes renal fibrosis.
Injury could activate podocyte cell cycle entry and results in cell cycle
dysregulation of podocytes, causing podocyte hypertrophy or mitotic
catastrophe, which will result in podocytopenia and finally result in
glomerulosclerosis.

FIGURE 4 | G2/M phase arrest of TECs mediates renal fibrosis by
secreting profibrotic cytokines. Injuries result in the activation of ATM/ATR,
which could promote the activation of Chk1/Chk2 and p53. p53 and Chk1/
Chk2 could induce downregulation of Cdk1/cyclin B kinase activity by
affecting p21 and Cdc25, respectively. The downregulation of Cdk1/cyclin B
kinase activity results in TECs G2/M phase arrest; the arrested cells undergo
senescence and manifest senescence-associated secretory phenotype
(SASP), causing renal fibrosis by secreting profibrotic cytokines, such as TGF-
β1 and CTGF.
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phase of cell cycle and mediate renal fibrosis by secreting
profibrotic cytokines such as CTGF and TGF-β1 (Yang et al.,
2010; Cosentino et al., 2013; Tang et al., 2013; Zhao et al., 2020)
(Figure 4). Drug intervention causing an increasing TECs G2/M
phase arrest after AKI could aggravate kidney fibrosis, whereas
interventions which reduce TECs G2/M phase arrest result in less
renal fibrosis (Yang et al., 2010; Cosentino et al., 2013;
Gasparitsch et al., 2013; Tang et al., 2013; Zhao et al., 2020).
Hence, TECs G2/M phase arrest properly is a novel histologic
biomarker of renal fibrosis.

Many factors could influence TECs G2/M phase arrest and
therefore affect renal fibrosis outcome. During the process of
renal fibrosis, TECs undergo a partial EMT program; during this
process, TECs still keep associated with their basement
membrane but can express cellular markers of both epithelial
and mesenchymal cells (Lovisa et al., 2015). During fibrotic
injury, the partial EMT program led to a TEC G2/M phase arrest
of the cell cycle; inhibition of partial EMT program can alleviate
TEC G2/M phase arrest and attenuate interstitial fibrosis
(Lovisa et al., 2015). Specific knockout of Atg5 gene in
mouse TECs can destroy TEC autophagy and aggravate the
TEC G2/M phase arrest, leading to aggravation of renal fibrosis
upon kidney injury (Li et al., 2016). Specific knockout Numb in
mouse TECs can alleviate TEC G2/M phase arrest and renal
fibrosis induced by unilateral ureteral obstruction or unilateral
ischemic renal injury (Zhu et al., 2016). Conventional knockout
of Cyclin G1 can alleviate TEC G2/M phase arrest and renal
fibrosis induced by severe kidney injury in mice (Canaud et al.,
2019). Inhibition phosphorylation of 4E-BP1, a downstream
effector molecule of mTORC1 pathway, can alleviate the TECs
G2/M phase arrest and renal fibrosis (Sun et al., 2019).
Therefore, TECs G2/M phase arrest is a common
characteristic of renal fibrosis induced by various injures;
however, the specific mechanism causing TECs G2/M phase
arrest is still unclear.

Cell cycle regulators probably involve in the process of TECs
G2/M phase arrest. Injuries can induce DNA damage of TECs,
causing the activation of ATM/ATR (Kishi et al., 2019), which
can further activate their downstream target genes Chk1/Chk2
and p53 (Reinhardt and Yaffe, 2009). Chk1/Chk2 inhibits Cdc25,
the activator of Cdk1/cyclin B, causing G2/M phase arrest by
downregulating the Cdk1/cyclin B kinase activity (Figure 4). p53
could activate its downstream target gene p21, causing G2/M
phase arrest by downregulating the Cdk1/cyclin B kinase activity
(Vogelstein et al., 2000) (Figure 4). Roscovitine, an inhibitor of
Cdks, have been found to have the anti-fibrosis function
(Steinman et al., 2012). In high glucose cultured HK-2 cells, a
human proximal renal tubular epithelial cell line, roscovitine, can
successfully reduce α-SMA expression and increase E-cadherin
expression, suggesting that it can inhibit the EMT process of
TECs (Wang et al., 2019). Further studies showed that roscovitine
inhibited TECs EMT by inhibiting the upregulation of TGF-β1/
p38MAPK pathway in HK-2 cells cultured with high glucose
(Wang et al., 2019). In diabetic mice, administration of
roscovitine can remarkably alleviate renal functional and
histological injuries through inhibiting the expression of
collagen, α-SMA, and TGF-β1 (Wang et al., 2019).

Consequently, although the TECs do not abundantly
transdifferentiate into myofibroblasts, the G2/M phase arrested
TECs could mediate renal fibrosis through paracrine pathway
that is reinforced by a state of senescence characterized by the
production of profibrotic cellular factors (Canaud et al., 2019)
(Figure 4). In addition, p21 overexpression could induce the
senescence of TECs which is involved in early stage of diabetic
nephropathy in streptozotocin-induced diabetes 1 model (Kitada
et al., 2014). In contrast to protective effect of p21 in AKI, the
continued p21 activation may result in renal fibrosis, as the p21
knockout mice did not develop chronic kidney failure after 5/6
nephrectomy (Megyesi et al., 1999). It has been suggested that
deletion of p21 allows hyperplastic compensatory proliferation of
residual kidney tissue and prevents maladaptive hypertrophy
(Megyesi et al., 1999).

Cell Cycle Dysregulation of Mesangial Cells
and Renal Fibrosis
Mesangial cells (MCs) offer structural support for the glomerular
tuft partially through the secretion and maintenance of the
extracellular matrix. There is less MC proliferation in the adult
mammalian healthy kidney, probably because under normal
conditions MCs are either not exposed to mitogens or
protected from them by inhibitory factors. Mature MCs
remain in the G0 quiescent state by upregulation of the cell
cycle inhibitor p27 (Combs et al., 1998). The initial of MC
division could be stimulated by mitogen of injuries
accompanied by a decrease in the expression of p27 (Figure 5).

In response to all kinds of injury stimulation, the quiescent
MCs were stimulated to proliferation, resulting in an increasing

FIGURE 5 | Cell cycle dysregulation of MCs results in renal fibrosis.
Injuries result in G0 arrested MC entry into cell cycle. p27 downregulation and
Cdks/cyclin upregulation induce overproliferation of MCs, accumulation of
ECM, and finally causing renal fibrosis.
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number of MCs and persistent cellular matrix accumulation, and
finally causing glomerulosclerosis. These characteristics could be
found in diseases such as IgA nephropathy, lupus nephritis,
membranoproliferative glomerulonephritis, and diabetic
nephropathy. In the model of mesangial proliferative
glomerulonephritis, Thy1 nephritis, the expression of cyclin D,
cyclin E, cyclin A, CDK2, and CDK4 were increased during the
phase of marked mesangial proliferation (Schöcklmann et al.,
1999).

MC proliferation and the resulting matrix formation are the
major characteristics of glomerular injury and fibrosis (Johnson,
1994; Shankland et al., 1996). Roscovitine, which can block the
activity of CDK2, has been studied in experimental
glomerulonephritis (Pippin et al., 1997b). It can decrease MC
proliferation and the resulting matrix production (such as
collagen type IV, laminin, and fibronectin), leading to
alleviated renal fibrosis and improved renal function,
suggesting that inhibiting MC overproliferation may be a
useful therapeutic targeting for renal fibrosis (Pippin et al.,
1997a). In the Thy1 model, accompanied by the onset of MC
proliferation, the expression of p27 strikingly decreased. If
experimental nephritis is induced in p27 knockout mice, the
MC proliferation initial earlier and the proliferative response is
bigger, accompanied by prominent extracellular matrix (ECM)
accumulation (Marshall and Shankland, 2006). T-type calcium
channels play an essential role in MC proliferation by targeting
the G1/S checkpoint. Blocking of these channels by
pharmacological drugs could inhibit MC proliferation by
arresting them in G1 phase and alleviates glomerular damage
in Thy1 model (Cove-Smith et al., 2013).

Statins, the cornerstone hormone drugs to manage
dyslipidemia, have been found to have lipid-independent
benefits against renal injury and fibrosis (Kostapanos et al.,
2009; Chen et al., 2019). For example, statins can inhibit
mesangial expansion, and the resulting extracellular matrix
accumulation in the glomeruli of diabetic animal kidneys,
and therefore attenuate renal fibrosis (KIM et al., 2000; Fujii
et al., 2007). Moreover, in vitro studies had found that statins
can inhibit the proliferation of cultured MC, which focal or
diffuse proliferation is a typical characteristic of glomerular
pathology (O’Donnell et al., 1993; Terada et al., 1998; Danesh
et al., 2002). Lovastatin can dose-dependently inhibit DNA
replication and proliferation of rat MCs, which can be
reversible by added mevalonate (O’Donnell et al., 1993).
Further study showed that the effect of lovastatin to inhibit
MC proliferation through upregulation of a CDK inhibitor,
p27Kip1, protein levels, as knockdown of p27Kip1 showed
strikingly decreasing lovastatin-induced cell cycle arrest
(Terada et al., 1998). Another study found that the
proliferation of MCs induced by high glucose was
accompanied by the decrease in p21 protein expression and
the increase in CDK4 and CDK2 kinase activities. Simvastatin
can increase p21 protein expression and downregulate CDK4
and CDK2 kinase activities (Danesh et al., 2002). These studies
suggest that statins can inhibit renal injury and renal fibrosis
independently of their cholesterol-lowering effect, such as
inhibition of MC proliferation.

Therefore, MC overproliferation after injuries can contribute
to renal fibrosis through persistent accumulation of ECM. Under
normal physiological conditions, mammalian mature MCs are
arrested in the G0 phase of cell cycle through upregulation of the
CDK inhibitor p27 (Figure 5). However, upon injuries, the
quiescent MCs are stimulated to overproliferation causing
persistent cellular matrix accumulation, and finally causing
renal fibrosis (Figure 5).

Cell Cycle Dysregulation of Fibroblasts and
Renal Fibrosis
Renal fibrosis is characterized by deposition of extracellular
matrix in the potential space between tubules and peritubular
capillaries. It is generally believed that myofibroblasts are the
primary extracellular matrix-producing cells that produce a fair
amount of interstitial matrix components, such as fibronectin and
type I and type III collagens. Considering this, one of the key
problems in the field is to study the origin of these matrix-
producing myofibroblasts (Grande and Lopez-Novoa, 2009;
Meran and Steadman, 2011; Schrimpf and Duffield, 2011).

It has been supposed that myofibroblasts have at least five
different sources in mammalian fibrotic kidney, including
activation of interstitial fibroblasts, differentiation of pericytes,
translation of tubular epithelial cells and endothelial cells and
recruitment of circulating fibrocytes (Barnes and Gorin, 2011). It
has been believed that matrix-producing myofibroblasts mostly
derive from resident fibroblasts through activation after kidney
injury (Hewitson, 2009). Although this perception has recently
been challenged, it is generally accurate (Strutz and Zeisberg,
2006; Grande and Lopez-Novoa, 2009). Recently, Kuppe et al.
have found that distinct subpopulations of pericytes and
fibroblasts were the main sources of myofibroblasts during
human kidney fibrosis through the single-cell RNA sequencing
technology (Kuppe et al., 2021). Moreover, they also showed that
NKD2 may be a myofibroblast-specific target in human kidney
fibrosis, as overexpression of NKD2 in human fibroblast cell line
promoted the expression of ECMmolecules, whereas knockout of
NKD2 markedly downregulated the expression of ECM
molecules (Kuppe et al., 2021). Blocking fibroblast to
myofibroblast transformation can effectively inhibit renal
fibrosis (Gerarduzzi et al., 2017; Li N. et al., 2020), suggesting
that fibroblast is the major source of myofibroblast.

Under normal physiological conditions, renal fibroblasts are
located in the interstitial space between the capillaries and the
tubular epithelia and take shape a network in the whole renal
parenchyma, so as to stabilize tissue structure (Kaissling and Le
Hir, 2008). These cells are stellate shaped and contain abundant
rough endoplasmic reticulum, collagen-secreting granules and
actin filaments. They involve multiple cell processes, which keep
them in contact with the tubular and capillary basement
membranes (Kaissling and Le Hir, 2008). Under normal
physiological conditions, renal fibroblasts stay in quiescent G0
phase of cell cycle and express CD73 (also known as ecto-5′-
nucleotidase) in their plasma membrane and produce
erythropoietin (Kaissling and Le Hir, 2008; Paliege et al.,
2010). PDGFRβ and FSP1 were also expressed in fibroblasts
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(Floege et al., 2008; Grigorian et al., 2008; Boye and Mælandsmo,
2010; Boor and Floege, 2011). Fibroblasts control interstitial
matrix physiological homeostasis by producing a few ECM
components in normal conditions. However, after injury,
fibroblasts are activated and acquiring the ability to proliferate
and translating to myofibroblast that expressing α-SMA,
generating a huge amount of ECM components.
Myofibroblasts also retain FSP1 and PDGFRβ expression and
express vimentin de novo.

Activated fibroblasts possess two typical characteristics, that is,
proliferation and myofibroblastic activation. The latter manifests
as the expression of α-SMA and the production of extracellular
matrix. Fibroblasts and myofibroblasts are overproliferated under
the stimulus of cytokines, which results in the increasing number
of myofibroblasts and accumulation of ECM in injured kidney.
Growth factors such as PDGF, TGF-β, FGF2, and CTGF are well-
known mitogens promoting fibroblast overproliferation (Strutz
et al., 2000; Böttinger, 2007; Phanish et al., 2010; Ostendorf et al.,
2012) (Figure 6). Besides these well-known cytokines, tissue-type
plasminogen activator can also promote fibroblast
overproliferation and myofibroblastic activation by recruitment
of β1 integrin (Hu et al., 2007; Hu et al., 2008; Hao et al., 2010; Lin
et al., 2010).

Therefore, fibroblasts are themain source of matrix-producing
myofibroblasts. Under normal physiological condition,
fibroblasts stay in quiescent state of G0 phase. Upon injuries,
fibroblasts are activated and overproliferated, translating to
myofibroblasts, causing renal fibrosis by consistent
accumulation of ECM (Figure 6). However, the specific
mechanism as to how the fibroblast is activated and
overproliferated upon injuries remains unclear, and other
types of renal cells, such as TECs, play an essential role during

this process (Li X. et al., 2020). For example, tubule-derived
exosomes can promote renal fibrosis through promoting
fibroblast activation and proliferation (Liu et al., 2020).

CONCLUSIONS AND PERSPECTIVES

Mammalian cell cycle is tightly regulated by cell cycle regulators,
such as CDKs, cyclins, and CKIs. These cell cycle regulators make
sure that cell cycle is regulated precisely, which is essential for
mammalian renal cell homeostasis and keeping normal renal
function. However, severe or repeated injuries could induce
dysregulation of cell cycle manifesting as cell cycle arrest or
overproliferation, both of which are closely related to renal fibrosis.

Under normal physiological conditions, most of the renal cells
are quiescent cells, arresting in G0 stage; the turnover of renal
cells is very low. On one hand, mild injuries could stimulate the
proliferation of renal cells so as to compensate the renal cells loss
and restore renal function; on the other hand, more severe or
repeated injuries lead to cell cycle dysregulation of renal cells,
promoting renal fibrosis (Figure 7). Cell cycle dysregulation of
podocytes manifests as cell cycle entry but could not finish mitosis;
cells may be arrested inM phase of cell cycle, causing podocyte loss
through mitosis catastrophe, and finally resulting in renal fibrosis.
Cell cycle dysregulation of TECs manifests as TECs G2/M phase
arrest; the arrested cell undergoes senescence, promoting renal
fibrosis by secreting profibrotic cytokines. Cell cycle dysregulation
of MCs manifests as overproliferation resulting in persistent
cellular matrix accumulation, and finally causing
glomerulosclerosis. Cell cycle dysregulation of fibroblasts
manifests as overproliferation and activation resulting in renal
fibrosis by increasing the number of myofibroblasts and
accumulation of ECM. Therefore, cell cycle dysregulation of
renal cells may be a perfect target for the treatment of renal fibrosis.

Although cell cycle regulators play essential roles in renal
fibrosis, very few cell cycle regulators have been researched in
renal fibrosis. Indeed, most of the researched regulators were
CKIs, such as p53 and its target protein p21. p21 was upregulated
in the kidney after injury (Megyesi et al., 1996). Compared with
wild-type mice, p21 knockout mice manifested as more severe
kidney dysfunction, more severe kidney damage, and higher rate
of mortality rate after AKI (Megyesi et al., 1998; Nowak et al.,
2003). In contrast, p21 knockout mice had less histologic lesions
after sub-total nephrectomy with enhanced tubular proliferation
compared with wild-type mice (Megyesi et al., 1999). p53 was also
found to be upregulated in the kidney after injury and its
inhibition or gene deletion reduced kidney lesions and renal
fibrosis (Wei et al., 2007; Molitoris et al., 2009; Yang et al., 2010;
Zhou et al., 2010; Ying et al., 2014; Liu et al., 2019c; Tang et al.,
2019). Besides the p53 and p21, there is very little information
available about other cell cycle regulators in renal fibrosis. The
precise role of each CDK, cyclin, and CKI in different renal cells
during renal fibrosis deserves a good deal more investigation.

ACE inhibitors, statins, anticoagulants, glucocorticoids,
cyclophosphamide, azathioprine, and mTOR inhibitors are the
common medicines used in kidney diseases; most of them can
affect cell proliferation in some way. However, the role of these

FIGURE 6 | Cell cycle dysregulation of fibroblasts induces renal fibrosis.
Injuries result in G0 arrested fibroblast activation and entry into cell cycle.
Growth factors (PDGF, TGF-β, FGF2, and CTGF) promote fibroblast
overproliferation and translate to myofibroblasts, causing renal fibrosis
by consistent accumulation of ECM.
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medicines in cell cycle progression of specific renal cells is largely
unknown. Statins can inhibit MC proliferation by suppression of
the Rho and Ras pathway (Kostapanos et al., 2009). Rapamycin,
the inhibitor of mTOR, can mitigate the hypertrophy in diabetes
model through downregulation of p70S6 kinase pathway
(Sakaguchi et al., 2006). ACE inhibitors can decrease abnormal
division of renal progenitor cells by deactivation of NCAM+ and
thus alleviate lesions of hyperplastic in podocytopathies; however,
this drug can also promote regeneration of glomeruli by the
transcription factor C/EBPδ (Benigni et al., 2011; Rizzo et al.,
2016). Upon severe injuries, MCs and fibroblast overproliferation
promote renal fibrosis; therefore, inhibiting MCs and fibroblast
proliferation by drugs is beneficial for the prevention of renal
fibrosis. However, these drugs can also inhibit TECs’ appropriate
proliferation, therefore inhibiting the kidney function restoration.
In other words, drugs that inhibit cell proliferation could be
harmful for some type of renal cells and aggravate renal fibrosis.
Therefore, more additional researches should be conducted to
elucidate the function of these drugs in cell cycle progression of
specific renal cells and in renal fibrosis.

In conclusion, recent progression in the pathophysiology of
renal fibrosis has emphasized the important roles of cell cycle
dysregulation of renal cells in renal fibrosis. Although there are a
lot of questions to be clarified, these findings open new avenues to
better understand, prevent, and slow down renal fibrosis.
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