
ORIGINAL RESEARCH
published: 27 May 2022

doi: 10.3389/fmed.2022.813117

Frontiers in Medicine | www.frontiersin.org 1 May 2022 | Volume 9 | Article 813117

Edited by:

Surasak Saokaew,

University of Phayao, Thailand

Reviewed by:

Khanita Duangchaemkarn,

University of Phayao, Thailand

Ekkarat Boonchieng,

Chiang Mai University, Thailand

*Correspondence:

Jing Yang

jingyang_0101@163.com

Fei Gao

gaofei9000@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 11 November 2021

Accepted: 22 April 2022

Published: 27 May 2022

Citation:

Zhang Q, Tian X, Chen G, Yu Z,

Zhang X, Lu J, Zhang J, Wang P,

Hao X, Huang Y, Wang Z, Gao F and

Yang J (2022) A Prediction Model for

Tacrolimus Daily Dose in Kidney

Transplant Recipients With Machine

Learning and Deep Learning

Techniques. Front. Med. 9:813117.

doi: 10.3389/fmed.2022.813117

A Prediction Model for Tacrolimus
Daily Dose in Kidney Transplant
Recipients With Machine Learning
and Deep Learning Techniques

Qiwen Zhang 1,2†, Xueke Tian 1,2†, Guang Chen 1,2, Ze Yu 3, Xiaojian Zhang 1,2, Jingli Lu 1,2,

Jinyuan Zhang 3, Peile Wang 1,2, Xin Hao 4, Yining Huang 5, Zeyuan Wang 3, Fei Gao 3* and

Jing Yang 1,2*

1Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2Henan Key Laboratory

of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China, 3 Beijing Medicinovo Technology Co. Ltd, Beijing,

China, 4Dalian Medicinovo Technology Co. Ltd, Dalian, China, 5McCormick School of Engineering, Northwestern University,

Evanston, IL, United States

Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney

transplant recipients. However, the narrow therapeutic index of tacrolimus and

considerable variability among individuals are challenges for therapeutic outcomes. The

aim of this study was to compare different machine learning and deep learning algorithms

and establish individualized dose prediction models by using the best performing

algorithm. Therefore, among the 10 commonly used algorithms we compared, the

TabNet algorithm outperformed other algorithms with the highest R2 (0.824), the lowest

prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558,

and root mean square error (RMSE) 0.745], and good performance of overestimated

(5.29%) or underestimated dose percentage (8.52%). In the final prediction model,

the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value,

time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase,

weight, CYP3A5, body mass index, and uric acid were the most influential variables on

tacrolimus daily dose. Our study provides a reference for the application of deep learning

technique in tacrolimus dose estimation, and the TabNet model with desirable predictive

performance is expected to be expanded and applied in future clinical practice.

Keywords: prediction model, tacrolimus, daily dose, kidney transplant, machine learning, genetic polymorphism

INTRODUCTION

Tacrolimus, a calcineurin inhibitor, is a widely acceptable used immunosuppressive drug in kidney
transplant recipients (KTRs). The narrow therapeutic index of tacrolimus leads to a very close edge
between therapeutic and toxic blood concentration (1). An inappropriate regimen of tacrolimus in
the early phase after transplantation is associated with acute rejections if the therapeutic range is
not achieved, or adverse events (nephrotoxicity, infections as well as the development of new-onset
diabetes or hypertension) if the therapeutic range is exceeded (2–9). Therefore, even small dose
adjustments should be carefully chosen, and an accurate estimation of the relationship between
tacrolimus dose and dose-response is important for postoperative outcomes.
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The predictable suitable dose of tacrolimus is critical for
the health status of postoperative KTRs. The Kidney Disease:
Improving Global Outcomes guidelines suggested that 5–
15 ng/ml of tacrolimus trough levels should be used during the
first 2–4 months post-transplantation, and reduced thereafter
in KTRs to minimize toxicity and adverse effects (10). More
effective immunosuppressive therapy protocol during the early
phase after solid organ transplantation would not only enhance
the quality and length of life but would also reduce the need for
transplantation (11). How to translate technological innovations
into a workable tacrolimus dosing tool for clinicians has been
explored in recent studies.

A consensus report on therapeutic drug monitoring (TDM)
of tacrolimus-personalized therapy was updated in 2019. The
report considered the most relevant advances in tacrolimus
pharmacokinetics, pharmacogenetics, pharmacodynamics,
and immunologic biomarkers to assist professionals to
individualize tacrolimus treatment (12). Clinicians usually
made dosage adjustments based on TDM in the early post-
transplantation phase, until it reached long-term maintenance
immunosuppression levels. However, the dose required
to achieve the targeted whole blood concentrations of
tacrolimus varies among individuals (13, 14). Numerous
factors have been reported that are associated with the
expression of metabolic enzyme and transporter to affect the
pharmacokinetics of tacrolimus, including patient demographics,
gene polymorphisms, time after transplantation, concomitant
medications, comorbidities, hematocrit, hepatic function, and
so forth (15). Thus, how to synthesize these potential factors
and translate them into the tacrolimus dose adjustment strategy
for immunosuppressive therapy in KTRs is still necessary to be
explored and confirmed.

To evaluate the relevance of individual factors to influencing
tacrolimus effect, researchers attempted to develop clinically
practicable dosing models for tacrolimus stable dose.
Methods of multiple linear regression (MLR) and population
pharmacokinetics (PPK) have been utilized in tacrolimus dosing
models (12, 16–19). With the development of machine learning
and deep learning techniques, more studies applied these
techniques to enhance the model expression of the complicated
relationship between individual factors and medication dose.
Tang et al. first applied multiple machine learning algorithms
to establish a stable dosing prediction model of tacrolimus in
Chinese KTRs, and proved the method was superior to the MLR
(20, 21). In addition to the algorithms used in Tang’s research,
some algorithms with more sophisticated principles were
developed, such as eXtreme Gradient Boosting (XGBoost), light
gradient boosting machine (LightGBM), Categorical Boosting
(CatBoost), random forest (RF), and TabNet (a deep learning
technique), which were highly recognized in the algorithm
competitions (22–26). For dose prediction of continuous data,
these algorithms based on the principle of decision trees and
deep neural networks might be more suitable. Herein, we
conducted this study to investigate the individualized factors
that markedly affect tacrolimus stable dose as well as to identify
the most workable algorithm for prediction of the dose regimen
of Chinese KTRs.

Taking the tacrolimus dose prediction model in this study
as an example, with the increasing data amount of input
subjects, the machine learning model could constantly optimize
the parameters to achieve better accuracy and practicality. It
is prospective to revolutionize the prescription and promote
individualized medication in the future.

METHODS

Study Population
A retrospective analysis of recipients who received kidney
allografts between April 2012 and June 2019 was performed.
Clinical and demographic data were collected from the
medical records in the First Affiliated Hospital of Zhengzhou
University, China. The study protocol was approved by
the Ethics Committee of the First Affiliated Hospital of
Zhengzhou University (2020-KY-147). Eligible for enrollment
were patients aged younger than 75 years and were treated with
tacrolimus as part of their immune-suppressive regimen within
3 months post-transplantation. All recipients went through
kidney transplantation for the first time and the donors were
relatives and non-relatives. Patients who did not meet the
criteria aforementioned and those with more missing values
(missing rate over 20%) were excluded. Some variables showing
the remarkable influence on tacrolimus dose even with a
high percentage of missing values were not deleted and were
interpolated subsequently (such as CYP3A5 and ABCB1). In
the end, 584 patients with 5,439 cases of tacrolimus daily
dose were included. The enrollment of patients is displayed in
Figure 1.

Data Collection and Processing
The workflow of collecting and processing data is shown in
Figure 2. Data of laboratory tests, medication, and diagnosis were
collected from the patients who met the criteria. We collected the
same type of drug combinations, including glucocorticoid (GC),
calcium channel blockers (CCB), PPI (proton pump inhibitor),
Wuzhi softgel, enzyme inducer, and mycophenolic acid (MPA)
(Supplementary Table S1). The pathological status included a
diagnosis of diarrhea, abdominal pain, abdominal distension,
belching, anorexia, and gastrointestinal motility recovery. The
daily tacrolimus dose equaled the sum of the doses prescribed
by each order on that day. All results of successive TDM
tests were retained because the order of tacrolimus that was
closest to these tests was a long-term order, which considered
that the corresponding medication conditions of these TDM
tests were the same. For initial medication cases, days after
transplantation = time of tacrolimus administration - time of
kidney transplantation. For adjusting medication cases, days
after transplantation = time of the last TDM test - time
of kidney transplantation. The laboratory data were taken
from the closest test results before the first administration of
tacrolimus after kidney transplant surgery. The concomitant
medication data were taken from results of 3 days before the
first administration of tacrolimus to the time before the first
TDM test.
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FIGURE 1 | Enrollment of patients.

FIGURE 2 | Workflow of data processing and modeling.

Variables Selection
A univariate correlation testing procedure was implemented to
remove all variables that were not directly related to tacrolimus

daily dose. The Pearson Correlation test was applied for
continuous variables by investigating the association between the
variable and outcome. In addition, theMann–Whitney U test was
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used for binary variables, and Analysis of Variance (ANOVA) was
used for multiclass variables. This screening procedure adopted
the criteria of p-value ≤ 0.05 to recruit impact variables in
the following stages. Subsequently, the univariates were further
screened by machine learning, and their importance scores were
calculated and ranked. Those ranked at the top of the list were
selected as the important variables to construct the model.

Before the machine learning algorithms, RF was applied
to interpolate missing data (27). The missing values were
then imputed using multiple regression sequentially based on
different types of missing covariates. After imputation of RF,
the remaining data set was used for the modeling stage, and
the missing percentages after interpolation are summarized in
Supplementary Table S2.

Model Construction
The workflow of modeling is shown in Figure 2. A total of
10 frequently used algorithms including deep learning method
and machine learning methods were selected for generating
the predictive models using the processed feature set. These
algorithms were XGBoost, LightGBM, CatBoost, Gradient
Boosted Decision Tree (GBDT), RF, support vector regression
(SVR), K-nearest neighbor (KNN), Least Absolute Shrinkage and
Selection Operator (LASSO) regression, ridge regression (RR),
linear regression, and TabNet (22–26, 28–34). The data set was
randomly allocated to the training cohort used to train the
model and the testing cohort used to verify the model according
to 8:2 ratio. The predictive performance of these algorithms
is compared in this study. To minimize overfitting and obtain
reliable results, 5-fold cross-validation was used to refine model
prediction performance. The final model was constructed using
the algorithm with the best predictive capacity based on the
selected important variables.

Model Evaluation
To evaluate and compare the predictability of models, we
primarily assessed the R-square (R2), mean absolute error
(MAE), mean square error (MSE), root mean square error
(RMSE), and percentage of overestimated or underestimated
dose in the testing cohort. More specifically, R2 is the squared
correlation between predicted and actual dose value (square root
of tacrolimus dose). The MAE is the average of the absolute
difference between the actual and the predicted dose values in
this case. The RMSE is the square root of the mean square error
between the predicted dose and actual dose, and MSE is the
average value of the distance between each predicted dose and
the average actual dose.

RESULTS

Baseline Information
Based on the whole data set, a total of 584 KTRs with 5,439
cases of dose data were identified in this study. The baseline
information of the study population is shown in Table 1,
including information regarding tacrolimus treatments, patient
demographic information, combinations, genetic polymorphism,
assay index, kidney transplantation information, and some

TABLE 1 | Baseline characteristic of study population.

Variables Total cohort

(Cases = 5,439)

Missing

rate (%)

Age (yrs), median (IQR) 32 (26–41) 2.89

Sex, n (%) 3.44

Female 1456 (26.8%)

Male 3796 (69.8%)

Height (cm), median (IQR) 170 (160–173) 3.05

Weight (kg), median (IQR) 59 (50–65) 3.05

BMI (kg/m2), median (IQR) 20.6 (18.7–22.4) 3.05

Tacrolimus dose (mg/d), median (IQR) 5.0 (3.5–6.0) 0

Last tacrolimus dose (mg/d), median (IQR) 4.5 (3.5–6.0) 0

Last tacrolimus TDM (ng/mL), median (IQR) 9.5 (7.5–12.0) 0

GC dose (mg/d), median (IQR) 18.8 (12.0–25.0) 0

Nifedipine, n (%) 1,548 (28.46%) 0

Levamlodipine besylate, n (%) 868 (15.96%) 0

Valsartan amlodipine, n (%) 1,413 (25.98%) 0

Nikadine, n (%) 147 (2.70%) 0

Felodipine, n (%) 367 (6.75%) 0

PPI, n (%) 5,347 (98.31%) 0

Wuzhi softgel, n (%) 5,065 (90.5%) 0

Enzyme inducer, n (%) 11 (0.2%) 0

MPA, n (%) 3,905 (71.8%) 0

CYP3A5*3, n (%) 52.07

A/A 231 (4.2%)

A/G 1,161 (21.3%)

G/G 1,215 (22.3%)

ABCB1, n (%) 52.07

C/C 1,016 (18.7%)

C/T 1,129 (20.8%)

T/T 462 (8.5%)

UA (umol/L), median (IQR) 343 (261–429) 3.92

SCr (umol/L), median (IQR) 262 (145–571) 3.92

AST (U/L), median (IQR) 13 (10–18) 4.04

TBIL (umol/L), median (IQR) 8.2 (5.9–11.7) 4.03

RBC (1012/L), median (IQR) 3.27 (2.87–3.76) 1.62

Hb (g/L), median (IQR) 99 (87.9–111) 1.47

HCT (L/L), median (IQR) 0.30 (0.27–0.35) 1.47

NEU (%), median (IQR) 89.1 (76.6–95.3) 1.47

LYM (%), median (IQR) 4.9 (1.7–13.7) 1.47

Time after transplantation (d), median (IQR) 10 (5–20) 0

Living relative’s organ transplantation, n (%) 788 (14.5%) 0

Hypertension, n (%) 3,783 (69.6%) 0

Diabetes, n (%) 23 (0.4%) 0

Other pathological status, n (%) 515 (9.5%) 0

BMI, body mass index; GC, glucocorticoid; PPI, proton pump inhibitor; MPA,

mycophenolic acid; UA, uric acid; SCr, serum creatinine; AST, aspartate aminotransferase;

TBIL, total bilirubin; RBC, red blood cells; Hb, hemoglobin; HCT, hematocrit; NEU,

neutrophil; LYM, lymphocyte.

other body conditions. The continuous variables were described
by “median (interquartile range, IQR)”, and the classification
variables were described by “frequency (%)”. The median
age of patients in this study was 32 (IQR 26–41), and
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TABLE 2 | Univariate analysis results.

Variable Statistic (r/U/F) p–value

Last tacrolimus TDM −0.146 <0.001

Last tacrolimus daily dose 0.542 <0.001

Time after transplantation −0.352 <0.001

Age 0.143 <0.001

Sex 1870835.5 <0.001

Height 0.397 <0.001

Weight 0.406 <0.001

BMI 0.296 <0.001

GC dose 0.127 <0.001

PPI 1,91,491 <0.001

Wuzhi softgel 7,06,284 <0.001

Levamlodipine besylate 19,64,818 0.651

Valsartan amlodipine 2789975.5 0.28

Nifedipine 2908343.5 0.046

Nikadine 4,48,043 0.002

Felodipine 857026 0.01

Enzyme inducer 27028.5 0.584

MPA 2568291.5 <0.001

CYP3A5*3 359811.5 <0.001

ABCB1 1.464 0.232

UA −0.065 <0.001

SCr 0.180 <0.001

AST −0.110 <0.001

TBIL −0.027 0.05

RBC 0.020 0.142

Hb −0.020 0.146

HCT 0.051 <0.001

NEU% 0.182 <0.001

LYM% −0.171 <0.001

Hypertension 28,87,309 <0.001

Diabetes 51,447 0.146

Living donor kidney transplantation from relatives 15,86,384 <0.001

Pathological status 11,80,315 0.009

BMI, body mass index; GC, glucocorticoid; PPI, proton pump inhibitor; MPA,

mycophenolic acid; UA, uric acid; SCr, serum creatinine; AST, aspartate aminotransferase;

TBIL, total bilirubin; RBC, red blood cells; Hb, hemoglobin; HCT, hematocrit; NEU,

neutrophil; LYM, lymphocyte.

the proportion of female patients was 26.8%. In terms of
drug combinations, nifedipine occupied the highest proportion
of CCB (28.46 %), a median daily dose of GC was 18.8
(IQR 12.0–25.0) mg, and PPI (98.31 %), Wuzhi softgel (90.5
%), and MPA (71.8 %) had very high proportion in the
study population.

Univariate Analysis
We determined the significant associations between univariate
and tacrolimus daily dose (p-value ≤ 0.05). Through this
screening procedure, 25 variables were found significant,
and entered the subsequent processing and modeling stages
(Table 2).

Comparison of Predictive Algorithms
In this subsection, 10 machine learning methods were compared
in terms of R2, MAE, MSE, and RMSE in the testing cohort. A
large R2 indicated that the established model had a good fitting,
and small errors (i.e., MAE, MSE, and RMSE) indicated higher
predictive accuracy overall. Strikingly, the TabNet algorithm
outperformed all other methods in R2 (0.813), MAE (0.464
mg/d), MSE (0.615 mg/d), and RMSE (0.784 mg/d). The
percentage of the overestimated dose (5.29 %) ranked in the
top 4 and the percentage of underestimated dose (8.52 %) in
the testing cohort of TabNet ranked in the top 1, demonstrating
a robust predictive performance. The specific results of the
model evaluation are listed in Table 3. The model prediction
performance after the 5-fold cross-validation is displayed in
Figure 3. It could be seen that after 5-fold cross-validation,
TabNet had the highest R2 and 20% accuracy value in the
testing cohort, indicating its best fitness and accuracy among 10
algorithms. Regarding the prediction accuracy of 10 models, a
boxplot is illustrated in Figure 4, indicating that TabNet had the
highest prediction accuracy among 10 models.

Dose Prediction Model Using TabNet
Based on the comparison of algorithms, the TabNet model was
verified as the best model for predicting the dose of tacrolimus
in KTRs. As shown in Table 4, the accuracy of the predicted
dose within ±20, ±30, and ±40% of the actual dose was 86.19,
91.33, and 93.48%, respectively. It automatically recruited the
most influential variables referring to the sum of their importance
scores. Table 5 lists the top 10 important variables to predict
tacrolimus dose and their importance scores in the TabNet
model, including the last tacrolimus daily dose (0.316), the
last tacrolimus TDM (0.219), time after transplantation (0.083),
hematocrit (HCT; 0.079), SCr (0.068), aspartate aminotransferase
(AST; 0.058), weight (0.037), CYP3A5 (0.037), BMI (0.036), and
uric acid (UA; 0.021).

DISCUSSION

Tacrolimus dose adjustment is generally reactive administration,
which has a wide variability in the early phase after
transplantation (10, 35). Our research was designed based on the
data of appropriate tacrolimus administration among Chinese,
which comprehensively analyzed the widely varying multivariate
and provided an accurately predicted dose during the early
postoperative period. Overall, we found different performances
of the 10 algorithms that were used to predict tacrolimus dosing
in the Chinese KTRs. When all the cases were investigated, the
TabNet algorithm achieved the best performance.

As a novel deep learning technique, whether it is unsupervised
learning for filling missing features or supervised learning for
actual decision-making, the TabNet encoder is used to encode
the input features first; then the missing features are filled
separately with decoder connections according to different uses,
or connected with the full connection layer to achieve the final
decision. The TabNet encoder architecture is mainly composed
of a feature transformer, an attentive transformer, and feature
masking. The decoder uses the feature transformer layer to
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TABLE 3 | R2, MAE, MSE, RMSE results, and percentage of overestimated or underestimated dose in the testing cohort of each predictive algorithms.

Predictive algorithm R2 MAE (mg/d) MSE (mg/d) RMSE (mg/d) Underestimated dose (%) Overestimated

dose (%)

XGBoost 0.786 0.488 0.681 0.821 4.60 11.51

LightGBM 0.760 0.523 0.761 0.868 7.21 10.97

GBDT 0.569 0.923 1.368 1.169 7.75 25.28

RF 0.782 0.461 0.693 0.829 4.91 11.09

SVR 0.419 1.010 1.829 1.343 31.34 14.12

KNN 0.253 1.241 2.365 1.537 20.56 31.68

Linear regression 0.650 0.756 1.110 1.050 12.28 19.64

LASSO regression 0.651 0.756 1.108 1.050 12.50 20.02

Ridge regression 0.650 0.756 1.110 1.050 12.28 19.64

TabNet 0.824 0.468 0.558 0.745 5.29 8.52

GBDT, Gradient Boosted Decision Tree; RF, random forest; SVR, support vector regression; KNN, K-nearest neighbor; LASSO, Least Absolute Shrinkage and Selection Operator.

FIGURE 3 | Model prediction performance after the 5-fold cross-validation.

reconstruct the encoded features to the raw data table features
(26). Moreover, TabNet uses a sequential attention mechanism to
choose a subset of meaningful features to process at each decision
step, enabling interpretability and more efficient learning as the
learning capacity used for the most salient features. TabNet
employs a single deep learning architecture for feature selection
and reasoning (26). Additionally, based on retaining the end-
to-end and representation learning characteristics of deep
neural networks, TabNet also has the advantages of tree model
interpretability and sparse feature selection (36). Other studies
based on real-world data showed that TabNet outperformed
ensemble tree-based algorithms since it could process highly
non-linear relationships with its depth, without overfitting due
to instance-wise feature selection (26). However, there are some
limitations of implementing or translating TabNet compared to
other machine learning algorithms, including (i) TabNet runs
slowly, consumes more time and resources, and even runs several
times longer than XGBoost; (ii) TabNet could not give full play to
its advantages when the amount of data was not very large.

Furthermore, compared with conventional modeling
methods, machine learning and deep learning techniques have
indubitable advantages in dealing with real-world data, such
as (i) machine learning and deep learning can deal with more
complex, high-dimensional, and interactive variables from the
clinical environment, which is lacking in conventional models;
(ii) machine learning and deep learning models have a stronger
generalization and better accuracy than conventional models
(37–39). Recently, the application of machine learning and
deep learning techniques on individualized dose prediction
models has been approbatory, such as a novel vancomycin dose
prediction model through XGBoost and warfarin maintenance
dose prediction through LightGBM (40, 41). With the increasing
number of input subject data, machine learning and deep
learning models can continually optimize parameters to achieve
better performance and practicality. Herein, we calculated
and compared model predictive performance among all
algorithms. The R2 of the testing cohort of our tacrolimus dose
prediction model using TabNet reached 0.824 in the overall
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FIGURE 4 | Prediction accuracy of 10 models.

TABLE 4 | The prediction accuracy of the predicted value in different confidence

intervals.

Model Accuracy of

the predicted

dose within

±20% of the

actual dose

Accuracy of

the predicted

dose within

±30% of the

actual dose

Accuracy of

the predicted

dose within

±40% of the

actual dose

XGBoost 83.89% 89.37% 92.41%

LightGBM 81.82% 88.61% 91.87%

GBDT 66.97% 75.87% 81.24%

RF 84.01% 89.49% 92.36%

SVR 54.54% 71.11% 83.35%

KNN 47.76% 64.87% 75.18%

Linear regression 68.08% 80.51% 86.07%

Lasso regression 67.47% 80.59% 86.03%

Ridge regression 68.08% 80.51% 86.07%

TabNet 86.19% 91.33% 93.48%

comparison. Compared to the results of Tang et al., which
applied eight machine learning algorithms, including multiple
linear regression, artificial neural network, regression tree,
multivariate adaptive regression splines, boosted regression tree,
SVR, RF, LASSO regression, and Bayesian additive regression
trees (RF achieved the lowest MAE of 0.73 in the validation
cohort), our prediction model could achieve a better outcome
(TabNet achieved the MAE of 0.464) (20).

After estimating the importance of variables through TabNet,
the last tacrolimus daily dose, the last tacrolimus TDM, time after

TABLE 5 | Ranking of importance scores.

Variable Importance score

Last tacrolimus daily dose 0.316

Last tacrolimus TDM 0.219

Time after transplantation 0.083

HCT 0.079

SCr 0.068

AST 0.058

Weight 0.037

CYP3A5 0.037

BMI 0.036

UA 0.021

HCT, hematocrit; SCr, serum creatinine; AST, aspartate aminotransferase; BMI, body

mass index; UA, uric acid.

transplantation, HCT, SCr, AST, weight, CYP3A5, BMI, and UA
were identified as the most influential factors in dose prediction.
In the previous PPK models, among the transplant recipients,
the factors most associated with whole blood apparent clearance
variation for tacrolimus included cytochrome CYP3A5, weight,
HCT, postoperative days, and hepatic function (e.g., AST),
SCr, and the CYP3A5 polymorphism was the most frequently
included variable (12, 17–19, 42). In our deduction, the important
variables were consistent with the result of previous studies.
Due to the extensibility of the machine learning model, the
model could be further improved after the addition of learnable
data and more unrecognized novel influencing variables could
be mined. Additionally, the machine learning model had more
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flexibility in that the recommended dose varies with the updated
influencing variables, thus it was useful for the next medication
prediction. Nevertheless, the PPK model generally just predicts
the initial medication. Third, according to the second consensus
report about TDM of tacrolimus-personalized therapy issued
by the Immunosuppressive Drugs Scientific Committee of the
International Association of Therapeutic Drug Monitoring and
Clinical Toxicity in 2019, the range of R2 was unstable varying
from 0.27 to 0.99 in the PPK models, whereas our model had a
good performance of R2 = 0.813 (12).

The last tacrolimus daily dose and TDM value were closely
related to the prediction of the next tacrolimus dose, and the time
after transplantation had been chosen which was beneficial for
considering relevant factors that change with time (19). In this
study, the height, weight, and gender of patients were regarded
as control factors, since we considered the integrity of their data
in our study population and their fixed effects. Above all, the
physiology existed a wide discrepancy between obese and non-
obese individuals (43). Multiple studies verified in humans and
rodents, that obesity changes the mRNA or protein expression
levels of hepatic CYP3A in the liver and intestine, which was a
major oxidatively metabolizing enzyme of tacrolimus (43–45).
Sawamoto et al. reported that obese patients could maintain
tacrolimus concentration well at lower doses compared with non-
obese patients (46). Hence, weight and BMI were important
in predicting tacrolimus dose. Patients expressing at least one
CYP3A5∗1 allele need a higher tacrolimus dose than those not
carrying this allele (CYP3A5∗3/∗3) to reach the same blood
concentration (12).

As mentioned above, tacrolimus is mainly metabolized in the
liver and intestinal wall through isoforms of CYP3A enzymes
(CYP3A4 and CYP3A5). The major enzyme involved in its
biological transformation is CYP3A5, and the catalytic efficiency
of CYP3A4 is lower (41). The association between CYP3A5 and
tacrolimus dose has been observed in KTRs (16, 18). Asberg A
et al. found that the CYP3A5 genotype led to higher clearance
and lower bioavailability of tacrolimus, and its inclusion in
the model could improve dose prediction (16). The marked
pharmacokinetic variability of tacrolimus was partly due to the
CYP3A5 genotype, therefore, CYP3A5 was important for our
predictive results. According to the consensus report, the ABCB1
rs1045642 (3435C>T) was reported to affect the transporter
activity which could influence the concentration of tacrolimus
(12). However, this factor was excluded due to the univariate
analysis results in this research.

In terms of biochemical parameters affecting the tacrolimus
dose, a PPK model proved that lower SCr and lower HCT
levels were identified as important factors to enhance tacrolimus
clearance (36). The remarkable impact of SCr on tacrolimus dose
herein was consistent with the results of previous research, which
illustrated that decreased SCr has a significant association with
tacrolimus dose (47). Furthermore, HCT explained 4∼14% of the
variability in tacrolimus dose requirements and clearance in vivo
(48). A high percentage of tacrolimus in blood was binding to
erythrocytes, which could be influenced by HCT and red blood
cell count significantly (49). Multiple studies point out that HCT

varied hugely in transplant recipients and increased widely after
transplantation, and the concentration of tacrolimus associated
with erythrocytes tended to increase along with the augment of
HCT in post-transplant patients (49, 50). Additionally, UA, as an
indicator of kidney function, was demonstrated to be increased
after tacrolimus therapy in kidney or liver transplant recipients
(51, 52). The increasing UA level may imply a decline in kidney
function, which may need a change in the tacrolimus regimen,
hence, UA could be regarded as a posterior factor that affects the
tacrolimus dose.

Additionally, drug–drug interactions with tacrolimus dose-
response were also considered in the study. We included several
kinds of concomitant medications, such as GC, CCB, PPI, Wuzhi
softgel, enzyme inducer, and MPA. Of which, GC, Wuzhi softgel,
and MPA were administered in the majority of KTRs, and
unbalanced between positive and negative samples, hence, there
was no significant difference among the participants. However,
based on clinical experience, these drugs could influence
tacrolimus concentration. For instance, according to Yan et al.
and Wang et al., Wuzhi softgel could influence tacrolimus
elimination and noticeably increase its drug concentration in
Chinese organ transplant patients (53, 54). The effect of these
concomitant drugs on tacrolimus might be further investigated
based on balanced clinical data in the future.

In conclusion, this study was rigorously designed to
mine in-depth the clinical and genetic influencing factors in
KTRs treated with tacrolimus after kidney transplantation.
In our study, a deep learning technique, TabNet, was
utilized based on the multidimensional database to
select the important factors relating to tacrolimus dose,
which contributed to the practicable prediction accuracy
of tacrolimus dosage in KTRs. The application of our
proposed model for estimating the appropriate dose of
tacrolimus provides recommendations for a clinically required
therapeutic regimen.
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