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Abstract

Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs com-
prise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only
been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a
method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs
that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs,
Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent
in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR
similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events oc-
curred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of
genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were
tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that po-
tentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides
a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors
that contribute to this variation.
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Introduction
Transposable elements (TEs) are present in all eukaryotic
genomes (Bennetzen 2000; Wicker et al. 2007). In maize, 65% of
the genome is made up of intact TEs (Jiao et al. 2017), and another
20% is comprised of fragmented TEs (Schnable et al. 2009). There
are many examples of phenotypic effects of TEs from null muta-
tions, such as maize kernel color (Selinger and Chandler 2001),
white wine grapes (Cadle-Davidson and Owens 2008), and color
variation in the common morning glory (Clegg and Durbin 2000).
TE insertions can also positively or negatively affect gene regula-
tory functions, such as insertion of a long terminal repeat LTR
retrotransposon into the promoter region of the Ruby gene in
oranges that leads to red fruit flesh of blood oranges (Butelli et al.
2012), and an LTR retrotransposon that is associated with red
skin color in apples (Zhang et al. 2019). TE insertions in maize
have also been associated with genes that are upregulated in re-
sponse to abiotic stress (Makarevitch et al. 2015).

TEs are classified into two classes depending on how they rep-
licate and from there into superfamilies and families by sequence
similarity (Wicker et al. 2007). Class I elements, or retrotranspo-
sons, replicate via an RNA intermediate (Bennetzen 2000; Lisch
2013). Long terminal repeat retrotransposons (LTR) are the most
abundant type of retrotransposons in maize (Bennetzen 2000)
and intact elements account for over half of the maize genome
by sequence length (Anderson et al. 2019; Stitzer et al. 2019). Class
II elements, or DNA TEs, replicate via a DNA intermediate, and
the two largest orders are terminal inverted repeat (TIR) and
Helitron elements. TIRs are defined by TIR sequences at both
ends of the TE (Wicker et al. 2007) and intact TIRs make up
around 3% of the maize genome (Anderson et al. 2019). Helitrons
are defined by their “rolling circle” replication mechanism (Lisch
2013) and intact Helitrons make up around 4% of the maize ge-
nome (Anderson et al. 2019). TEs are found throughout the maize
genome, they can be found near and even within genes, can be
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anywhere from a few hundred base pairs to >10 kb in length
(Bennetzen 2000), and range in age from very recent insertions to
>2 million years old insertions (Stitzer et al. 2019).

Studies done on TEs in maize have shown extensive varia-
tion in TE insertion presence/absence patterns at specific loci
across maize inbred lines (SanMiguel et al. 1996; Fu and Dooner
2002; Morgante et al. 2005; Dooner et al. 2019). Early work on the
bronze locus in multiple maize lines found that different lines
differed in not only the gene order and content but also in TE
content (Fu and Dooner 2002). More recent work on mutations
in the same region found that not only were high mutation
rates due to TE insertions, but also that different TEs were
inserting in different maize lines (Dooner et al. 2019). Whole-ge-
nome analysis of four maize genomes with de novo TE annota-
tions revealed extensive TE polymorphism between maize lines
on a whole-genome scale (Anderson et al. 2019). On average,
about 500 Mb of TE sequence, or �20% of the maize genome,
was variable between the four inbred lines (B73, Mo17, PH207,
and W22). Another 1.6 Gb of TE sequence was only shared be-
tween two or three of the lines.

Genome-wide TE presence/absence polymorphism at a popu-
lation scale has recently been investigated using short reads
whole-genome resequencing data in a number of species. For
example, by sequencing 602 cultivated and wild tomato acces-
sions, Domı́nguez et al. identified at least 40 TE polymorphism
that wes not tagged by SNPs, and were associated with traits
such as fruit color (Dominguez et al. 2020). Another example is
the resequencing of 3000 Asian rice varieties, which identified
polymorphic TEs at a low frequency that were associated with
rice domestication (Carpentier et al. 2019). Despite the wide-
spread prevalence and polymorphism of TEs in the maize pan-
genome, as well as many examples connecting TE insertions to
functional phenotypic variation, there have been very few scans
of specific TE insertion frequencies in divergent maize popula-
tions. The analysis of the frequency of TE insertions can provide
insights into the level of variability for TEs and help understand
the presence/absence of common and rare TE variants. To un-
derstand patterns of TE polymorphism on a genome-wide scale,
we utilized short-read sequencing of 509 diverse maize lines to
score the presence/absence of 445,418 nonredundant TEs that
were annotated in four reference genome assemblies (B73,
Mo17, PH207, and W22). This study provides a genome-wide
analysis of TE presence/absence polymorphism across a large
panel of diverse maize genotypes as we continue to try to under-
stand how TEs contribute to phenotypic variation and adapta-
tion within the species.

Materials and methods
Whole-genome resequencing
A subset of 511 lines from the Wisconsin Diversity Panel (Hansey
et al. 2011; Hirsch et al. 2014; Mazaheri et al. 2019) was used for
this study (Supplementary Table S1). For 57 genotypes, available
short-read sequence data were downloaded from the National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA; Supplementary Table S1). These samples ranged in
theoretical coverage of 10-55x sequencing depth based an esti-
mated genome size of 2.4 Gb. For 454 genotypes, plants were
grown under greenhouse conditions (27�C/24�C day/night and
16 hours light/8 hours dark) with five plants of a single genotype
per pot. Plants were grown in Metro-Mix 300 (Sun Gro
Horticulture) with no additional fertilizer. Tissue was harvested
for DNA extractions at the Vegetative 2 developmental stage. The

newest leaf of each seedling in the pot was collected and immedi-
ately flash frozen in liquid nitrogen. Tissue was ground in liquid
nitrogen using a mortar and pestle. DNA was extracted using a
standard cetyltrimethylammonium bromide (CTAB) DNA extrac-
tion protocol (Saghai-Maroof et al. 1984), and treated with 25 ml of
PureLink RNase A (Invitrogen) at 39�C for 30 minutes. Genomic
DNA for each genotype was submitted to Novogene (Novogene
Co., Ltd., Beijing, China) for whole genome sequencing with 150
base pair paired end reads generated on a HiSeq X Ten sequenc-
ing machine. For each genotype at least 20x theoretical sequenc-
ing depth was achieved.

Read alignment and processing
Quality control analysis of the sequence data was conducted us-
ing fastqc version 0.11.7 (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) (last accessed 2021-07-21). Adapter se-
quence and low-quality base trimming were done using cutadapt
version 1.18 (Martin 2011) and sickle version 1.33 (https://github.
com/najoshi/sickle) (last accessed 2021-07-21) both with default
parameters. Sequence reads were aligned to the B73 v4 (Jiao et al.
2017), Mo17 v1 (Sun et al. 2018), PH207 v1 (Hirsch et al. 2016), and
W22 v1 (Springer et al. 2018) genome assemblies. Alignment of
reads was conducted using SpeedSeq version 0.1.2 (Chiang et al.
2015), which efficiently parallelizes bwa mem (Li and Durbin
2009), with reading groups labeled separately for each FASTQ.
Alignments were subsequently filtered to require a minimum
mapping quality (MQ) of 20 using samtools view (Li et al. 2009). To
assess sample integrity, single nucleotide polymorphisms (SNPs)
were called relative to the B73 v4 genome assembly using
Platypus v 0.8.1 (Rimmer et al. 2014) with default parameters. A
subset of 50,000 random bi-allelic SNPs with less than 50% miss-
ing data and less than 10% heterozygosity was used to calculate
Nei’s pairwise genetic distances using StAMPP version 1.5.1 and a
neighbor joining tree was generated with nj() in ape version 5.3
all using R version 3.6.2 (R Development Core Team 2020). Three
samples with discordance to known pedigree relationships were
removed from downstream analysis to result in the 509 geno-
types included in Supplementary Table S1.

Transposable element identification in the
Wisconsin Diversity Panel
TE annotations for the B73, Mo17, PH207, and W22 genome as-
semblies were obtained from https://mcstitzer.github.io/maize_
TEs (last accessed 2021-07-21). Mean coverage over the 10 bp win-
dow internal to the start and end of each TE was calculated using
multicov within bedtools version 2.29.2 (Quinlan and Hall 2010)
(Supplementary Figure S1). Binary alignment map (BAM) files for
B73, Mo17, PH207, and W22 short reads aligned to each genome
assembly were down sampled to 15x and 30x coverage using
sambamba version 0.8.0 (Tarasov et al. 2015) for model training to
be consistent with the observed genome-wide coverages in the
larger set of samples for which the model will be applied. If cover-
age was at or below either of these thresholds no downsampling
was performed (Supplementary Table S2). The caret package in R
version 3.6.3 (R Development Core Team 2020) was used to train
a random forest model using the rf function with 10-fold cross
validation repeated three times. The mean coverage over the
10 bp at the start of the TE, mean coverage over the 10 bp at the
end of the TE, and the TE order were used as predictors to train
the model (three predictors in total) and the response was the
presence/absence of the TE. The training set consisted of counts
from resequencing data from three of the four genomes aligned
to all four reference genome assemblies and the test set consisted
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of the counts from resequencing data from the fourth genome
mapped to three of the four reference genome assemblies exclud-
ing itself. Separate models were trained for realized coverage of
30x and realized coverage of 15x using the down-sampled BAM
files described above. Each model was trained with 500,000 TEs
that were randomly selected from the full set of TEs due to com-
putational limitations. These TEs were selected to have approxi-
mately 50% present TEs and 50% absent TEs so as not to bias the
model accuracy for presence or absence. A set of TEs with pres-
ence/absence scores based on whole-genome comparisons of
B73, Mo17, PH207, and W22 was used as previously reported
(Anderson et al. 2019) for analysis of the true positive, true absent,
false positive, and false absent rates of the short read based pres-
ence/absence calls. Feature importance was assessed on each of
the models, and the coverage over the start and end of the TE
had higher feature importance than the TE order (Supplementary
Table S3).

A final model was trained for 15x coverage and 30x coverage
using resequencing data from all four genomes mapped to all
four genome assemblies as described above using 500,000 TEs
for training per model. These models were used to estimate the
probability of the presence of a TE based on the two internal
coverage windows and the TE order for all of the resequenced
genomes. If the realized coverage for a sample was �25x depth
the 30x model was used and if the realized coverage for a sam-
ple was <25x depth the 15x model was used (Supplementary
Figure S2). If the probability of presence from the model was
�0.7 a TE was classified as present in the sample. If the proba-
bility of presence from the model was �0.3 a TE was classified
as absent in the sample. All other TEs were classified as ambigu-
ous. For any TE where the resequencing reads mapped to its
cognate genome (e.g., B73 reads mapped to the B73 genome as-
sembly) did not result in a present classification the TE was con-
sidered recalcitrant to accurate calls for short-read data and
was removed from downstream analysis. Across all samples
mapped to a reference genome assembly if there was greater
than 25% ambiguous data for a TE the TE was removed from
downstream. Presence, absence, and ambiguous scores for each
TE that was retained can be found in Supplementary File S1 for
B73, Supplementary File S2 for Mo17, Supplementary File S3 for
PH207, and Supplementary File S4 for W22.

The nonredundant TE dataset from Anderson et al. (2019)
was used to combine TE population frequencies across homolo-
gous TEs from the different genome assemblies. The mean of
the population frequency for each TE was calculated between
homologous TEs (Supplementary File S5). TE metadata (e.g., lo-
cation relative to the nearest gene or family) for the TE in the
reference genome it was first identified in was used in down-
stream analyses using a previously described order for adding in
TEs from each of the reference genome assemblies (Anderson
et al. 2019).

Information about TE family/superfamily size and LTR simi-
larity of LTR retrotransposons was obtained from the previously
published TE annotation gff files (Anderson et al. 2019). Gene
annotations from B73 version 4 (Jiao et al. 2017), Mo17 (Sun et al.
2018), PH207 (Hirsch et al. 2016), and W22 (Springer et al. 2018) ref-
erence genomes were used to identify TE locations relative to
genes. All metadata is included in Supplementary File S5.

The Kolmogorov–Smirnov test was used to test whether the
frequency distributions of nested and nonnested TEs shown in
Figure 1 were different. This test was implemented using the
ks.test function in base R version 3.6.3 (R Development Core
Team 2020).

SNP identification and analysis
Joint SNP calling was performed across all genotypes using free-
bayes v1.3.1-17 (Garrison and Marth 2012) for the alignments to
the B73 v4 reference genome assembly with scaffolds removed.
Sites with less than 1x average coverage over the whole popula-
tion or greater than 2x the population level mean coverage were
excluded from SNP calling. SNP calls were quality filtered using
GATK (v4.1.2) (Van der Auwera et al. 2013) recommended filters
as follows: QualByDepth (QD) less than 2, FisherStrand (FS)
greater than 60, root mean square MQ less than 40,
MappingQualityRankSum (MQRankSum) less than �12.5, or
ReadPosRankSum less than �8. If a SNP failed (e.g., MQ < 40)
any one of those filters was removed from the dataset. Finally,
vcftools (v 0.1.13) (Danecek et al. 2011) was used to filter sites for
a minimum quality score of 30, a minimum allele count of 50
(called in at least 25 homozygotes or 50 heterozygotes) and to
filter out genotypes called in fewer than 90% of the individuals
in the population. In total, 3,146,253 SNPs remained after all of
these filtering steps (Supplementary File S6).

These SNP calls were used to conduct linkage disequilibrium
(LD) analysis with the TE presence/absence scores described
above. For this analysis, TE presence/absence data from only
the alignments to B73 reference genome assembly were used.
Any SNPs located within TEs were removed. LD between SNPs
and TEs was calculated using plink v1.90b6.16 (Purcell et al.
2007) with the –make-founders option to calculate LD among
all inbred lines, –allow-extra-chr to calculate LD in extra scaf-
folds, –ld-window-r2 0 to report r2 in the 0 to 1 range (default is
0.2 to 1), –ld-window 1000000 –ld-window-kb 1000 to calculate
LD within 1mb windows, and –r2 dprime with-freqs to report
both D’ and r2 and to display minor allele frequencies in the
output. If more than one SNP had the same highest LD in either
the r2 or D’ analysis, the SNP that was physically closest to the
SNP was used for downstream analyses. Principal components
analysis of SNPs and TEs were conducted using Plink
v1.90b6.18 (Purcell et al. 2007) with the -pca option. Pairwise ge-
netic distance matrices for SNPs and TEs were calculated as 1
minus identity by state (IBS) using TASSEL version 5.2.64
(Bradbury et al. 2007).

Results and discussion
Using short-read sequence data to identify TE
presence/absence
For this study, we implemented an approach for scoring TE pres-
ence/absence variation from short-read sequence alignment us-
ing the average coverage of windows within the boundaries of
previously annotated TEs in a random forest machine learning
model. To assess classification accuracy, presence/absence
scores defined by the previous comparison of TE content gener-
ated for four maize genome assemblies including B73, Mo17,
PH207, and W22 were used as true positive (Anderson et al. 2019).
It should be noted that some polymorphisms in this true positive
set might be wrong for reasons described in the publication from
which they were generated (Anderson et al. 2019). As such, 100%
accuracy in comparison to this set is not possible unless the
same miscalls are generated in two independent methods. Still,
this set represents a high-quality set of TE polymorphisms for
which to assess the relative accuracy of different parameters.
The average model cross-validation accuracy observed across the
training iterations was 0.88 (SE¼ 0.01) for the model with 15x cov-
erage and 0.89 (SE¼ 0.04) for the model with 30x coverage. The
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final model used for prediction had prediction accuracies of 0.88
and 0.89 for 15x, 30x coverage model, respectively. The threshold
for classification of the present, absent, or ambiguous was se-
lected to balance accuracy of the model across the different
training sets and the proportion of TEs in which a nonambiguous
categorization could be assigned (Supplementary Figure S3). For
both the 15x and 30x models, a cutoff of �0.3 probability of pre-
sent to classify a TE as absent and a cutoff of �0.7 probability of
present to classify a TE as present was determined to optimally
balance these two metrics.

These models and the subsequent filtering methods [i.e., re-
moving TEs that are recalcitrant to short-read based genotyping
(B73 ref: 13.78%, Mo17: 7.18%, PH207: 3.88%, and W22: 7.68%) and
those with high levels of ambiguous calls (B73 ref: 0.20%, Mo17:
0.24%, PH207: 1.54%, and W22: 0.34%)] provide a high-quality set
of TE presence/absence calls that allowed for analysis of TE vari-
ation on a genome-wide scale in maize. It should be noted, how-
ever, those rare alleles will be under-represented in this set due
to the fact that only those TEs that were previously annotated in
at least one of four de novo assembled maize genomes are in-
cluded in this study.

TE frequency distribution in a panel of diverse
inbred lines
The final models were applied to short-read sequence data from
509 genotypes of the Wisconsin Diversity Panel (Hansey et al.
2011; Hirsch et al. 2014; Mazaheri et al. 2019) mapped to the B73,
Mo17, PH207, and W22 reference genome assemblies. For each
annotated TE in these genome assemblies, the presence/absence
frequency of the TE in this panel of diverse inbred lines was

determined. Genetic relationships based on SNPs and TEs were
assessed to further validate the quality of these TE presence/ab-
sence calls based on their consistency with other marker types
and known pedigree relationships. Principle component analysis
of the SNPs and TEs both revealed expected population structure
based on previous pedigree information and heterotic group
membership (Supplementary Figure S4A), and pairwise genetic
distances between individuals using SNPs and TEs were highly
correlated (Supplementary Figure S4B). As previously reported,
there are a number of shared TEs across these four genome as-
semblies (Anderson et al. 2019). The population frequency of ho-
mologous TEs determined from mapping the short read data to
the different genome assemblies were highly correlated [average
Pearson’s correlation across the six pairwise comparisons r2 ¼
0.91 (SE¼ 0.04); Supplementary Figure S5], demonstrating the
consistency of this pipeline, and enabling classifications to be
combined into a nonredundant set of TEs. For downstream
analysis of these redundant TEs, the mean was calculated across
frequencies obtained from all genomes for which a homologous
TE was present (Figure 1; Supplementary File S5).

Different orders of TEs have different mechanisms of replica-
tion (Wicker et al. 2007), and families within these orders have dif-
ferent insertional preferences (SanMiguel et al. 1998; Sultana et al.
2017; Springer et al. 2018) and different effects on DNA methyla-
tion and chromatin accessibility (Eichten et al. 2012; Choi and
Purugganan 2018; Noshay et al. 2019). As such, we hypothesized
the frequency of TEs in the population would be variable across
orders of TEs and families. For nonnested elements (i.e., those not
contained within another TE), a subset of the TEs were present in
all or nearly all of the diverse lines included in this study for

Figure 1 TE frequency distribution of a nonredundant set of TEs annotated in the B73, Mo17, PH207, and W22 genome assemblies. Short read sequence
data from 509 genotypes were aligned to each genome assembly. Using a random forest machine learning method, TEs were classified into present
(probability present �0.7), absent (probably present �0.3), and all the other TEs were classified as ambiguous. For homologous TEs that were present in
more than one assembly, the mean frequency across assemblies was calculated for the nonredundant set. TEs with less than 25% ambiguous calls are
included (455,418 TEs). Percentages indicate the percent of low (<20%), moderate (20–80%), and high frequency (>80%) TEs in each order.
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LTRs, Helitrons, and TIRs (Figure 1). However, for all three orders,
there was a substantial number of TEs that were at low (<20%) to
moderate (20–80%) frequency in the population. This proportion
was particularly high for the LTRs where 73.57% of nonnested
TEs were present in low to moderate frequency in the population.
These polymorphic TEs have the potential to drive phenotypic
variation as has been seen for a number of morphological/devel-
opmental (Chuck et al. 2007; Studer et al. 2011) and adaptive traits
(Yang et al. 2013) in maize. The demonstrated extent of TE vari-
ability on a genome-wide scale across a large number of individu-
als that this study provides is critical in furthering our
understanding of the contribution of variable TEs in producing
phenotypic variation within species. Given that only TEs that
were annotated in at least one of only four genomes were in-
cluded in this study, it is expected that the proportion of poly-
morphic TEs at low to moderate frequency would be
substantially higher than what is presented here if all TEs in all
genotypes in the population were annotated. In contrast, the ma-
jority of the high-frequency TEs were likely already captured
from just these four genome assemblies, and the count of these
TEs would remain relatively static if all genomes were to be de
novo assembled and annotated.

LTR retrotransposons with lower similarity of their two LTRs
were generally more frequent in the population than those with
higher LTR similarity: A negative relationship between age of TE
insertions approximated by the similarity of their two LTRs and
their frequency was previously demonstrated using a limited
number (n¼ 4) of genotypes (Anderson et al. 2019). We sought to
test this relationship between similarity of the two LTRs for an in-
sertion and frequency on our broader set of germplasm, where
younger insertions generally have higher LTR similarity and older
insertions generally have lower LTR similarity. For other orders of
TEs, there are no accurate methods to assess age. Thus, these
analyses were limited to LTR retrotransposon insertions. In this
maize diversity panel, the LTR similarity was negatively corre-
lated with population frequency, which suggests that LTRs with
low LTR similarity were generally more frequent in the popula-
tion than LTRs with high LTR similarity (Figure 2A). It is worth
noting, however, that there were a large number (n¼ 14,509,
36.30% of all high-frequency LTR) of LTR insertions that had
moderately LTR similarity (LTR similarity 95–99%; n¼ 12,655) or
high LTR similarity (LTR similarity >99%; n¼ 1,854), and are at
high frequency (>80%) in the population (Figure 2B), and 180 of
the insertions with high LTR similarity were fixed in this popula-
tion. Fifteen of the fixed insertions with high LTR similarity were
within 5 kb of a gene and may be under selection or linked to
other features in the genome under selection that could have
driven their rapid rise to fixation in the population. A number of
these genes have been functionally characterized, such as agpll2
(Huang et al. 2014), as well as trps4 (Zhou et al. 2014), which may
be important for tolerance to different stress conditions.

There was a large portion (84.52%) of the fixed insertions with
high LTR similarity that were located within previously defined
low recombination regions (Supplementary Table S4; Swanson-
Wagner et al. 2010; Eichten et al. 2011). These regions were defined
by comparing genetic and physical maps and defining boundaries
to define the high recombination arms and the low recombina-
tion middle of each chromosomes including the centromere and
pericentromere. The fixed insertions with high LTR similarity
were enriched (Fisher test with P-value < 0.001; Figure 2C) for be-
ing located within the low recombination regions of the genome
relative to the frequency for all LTRs. However, this enrichment
in the low recombination region of the genome is also observed

Figure 2 Relationship between TE similarity and frequency in a
population of diverse inbred lines. (A) Heatmap of LTR similarity vs
frequency where white boxes indicate no TEs present at a particular
frequency-by-LTR similarity. Yellow line is a LOESS curve fit through the
data (n¼ 177,073). (B) Relationship of LTR similarity in categories of low
similarity (LTR similarity <95%), moderate similarity (LTR similarity
between 95 and 99%), and high similarity (LTR similarity >99%), and
frequency in categories of low (<20%), moderate (20–80%), and high
frequency (>80%). (C) Proportion of different groups of LTRs in the low
and high recombination portions of the genome based on B73 reference
(n¼ 108,968).
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for all fixed LTRs regardless of their LTR similarity. If we look at
other elements in the families from which these fixed insertions
with high LTR similarity are in there is no significant difference
between them and all LTRs or all of the LTR insertions with high
LTR similarity in the genome. Thus, the enrichment of fixed LTRs
with high LTR similarity in the pericentromere is likely a product
of their location.

The elements in the high-frequency group (not just fixed) with
high LTR similarity were from 494 different families. We sought
to test if there was an enrichment within these families for ele-
ments that were at high frequency with high LTR similarity rela-
tive to the frequency of this class compared to all other LTRs.
Indeed, for those families with at least 20 elements in the family
(n¼ 62), 15 had a higher than expected proportion of elements
that had high LTR similarity and were at high frequency in the
population (Fisher test with P-value < 0.01; Supplementary Table
S5). The majority of these enriched families are within the Gypsy
superfamily, including RLG00001, a large Cinful-Zeon family
(Sanz-Alferez et al. 2003) with 23,948 copies in the B73 genome
that lacks homologs in Sorghum (Paterson et al. 2009; Jiao et al.
2017; Stitzer et al. 2019). Another family of note is RLG0009. This
family was previously documented to be consistently upregu-
lated under heat stress across genotypes with multiple members
of the family showing increased expression, potentially due to
the presence of conserved cis-regulatory elements within the TE
that facilitate stress-responsive expression of this family (Liang
et al. 2020). The potential importance of this family to stress re-
sponsiveness, the conserved response across members of the
family, and the consistency in response across genotypes are all
consistent with, and provide potential explanations for why this
family had enriched presence in the class of high-frequency TEs
that also have high LTR similarity.

On the other end of the spectrum, for the class of TEs with low
LTR similarity (LTR similarity <95%), it is expected that some will
be common as they have had time to rise in frequency in the pop-
ulation and others will be rare as they are being lost over time,
which was the case in this population. Within the class of TEs
that have low LTR similarity, 14.28% were at low frequency in the
population, 30.92% were at high frequency in the population, and
the remaining 54.80% were at moderate frequency in the popula-
tion (Figure 2B).

Most nested TEs insertions occur near the
insertion time of the outer element
Nested TEs exhibited higher levels of moderate frequency
(20–80%) and low frequency (<20%) TEs as compared to the non-
nested TEs (Figure 1). In all three orders, the frequency distribu-
tion of nested and nonnested TEs was significantly different (KS
test, P-value < 2 � 10–16). A nested TE could be the product of an
insertion very soon after the outer element inserted or it could be
the product of a spectrum of much younger insertions that hap-
pened well after the insertion of the outer element. Genome-wide
we see that nested elements have higher LTR similarity than
nonnested elements (Supplementary Figure S6).

To further explore the difference in frequency of nested and
nonnested elements we looked at specific nested TEs and the
nonnested element into which they inserted. Within these pairs,
the nested insertion should be at the same or lower frequency
compared to the outer element, as the nested insertion cannot
exist in a genotype without the outer element. This was true for
67.38% of the pairs, and an additional 20.33% had less than 5%
higher frequency in the nested element. Overall, there was a
strong correlation between the nested TE frequency and the

frequency of the TE into which it was nested (Pearson’s correla-
tion r2 ¼ 0.52; Figure 3A), with 71.5% having frequencies within
5% of each other, and the remaining 28.5% of pairs having a
range of difference in frequencies between the inner and outer
elements (Figure 3B).

Within the set of outer elements that were fixed or nearly
fixed in the population (frequency > 0.95), there was a continu-
ous range of frequencies for inner elements that likely represent
nested insertions with a range of ages. Using LTR similarity as a
proxy to LTR age, we tested if there is a relationship between the
LTR similarity of the nested element contained within fixed ele-
ments and their frequency in the population. This analysis could
only be done for LTR nested elements as the other orders do not
have an accurate metric to approximate age. As hypothesized,
those nested elements that were at lower frequency in the popu-
lation had higher LTR similarity than those that were at high fre-
quency in the population (Figure 3C), and this was observed
independent of the order of the outer element (Supplementary
Figure S7).

To further address this question of the timing of nested
insertions into outer elements we focused on the subset of
nested-outer element pairs in which both elements were LTRs
and therefore had LTR similarity information. As with fre-
quency, the quality of the LTR similarity metric was assessed
with the expectation that the similarity of the nested insertions
should be higher than that of the outer element. Across the
LTR nesting pairs, 84.12% had a higher LTR similarity for the
inner element, indicating an overall high quality of this data
(Supplementary Figure S8). Using the combination of frequency
and LTR similarity we tested the extent to which an outer ele-
ment and nested element insertion occurred at a similar time
or wheather the nested insertions occur over a range of time
based on the LTR similarity (Figure 3D). The majority of nested-
outer element pairs have nearly identical frequencies (Figure 3,
A and D), but with a range of LTR similarities. The most likely
interpretation of these results is that in these cases the nested
insertion occurred very near the timing of the outer element in-
sertion and that the distribution of mutation accumulation is
different for nested versus outer elements. This could be the
result of methylation that occurs shortly after the initial inser-
tion of the outer element. The paired outer and nested inser-
tion will then insert as a unit in subsequent insertion events
further perpetuating this relationship. While this finding is
true for a large majority of the nested-outer pairs it should be
noted that there are still a substantial number of pairs that
have a range of frequency differences and LTR similarity differ-
ences that likely represent longer periods of time between the
insertion of the outer element and the subsequent insertion of
the nested element (Figure 3D).

Relationship between location of TEs relative to
genes and frequency in the population
TEs that are located in or near genes have the potential to
change expression patterns of a gene (Hirsch and Springer
2017) or the product a gene encodes (Lisch 2013). In some
cases, these functional insertions are a substantial distance
from the gene, such as a 57 kb upstream Harbinger-like DNA
TE that represses ZmCCT9 in cis and promotes flowering under
long days (Huang et al. 2018). Others are much closer, such as a
STONER element that inserted 42 bp upstream of the Cg1 tran-
scription start site and results in a chimeric fusion of the
STONER element and the gene impacting the juvenile to adult
vegetative transition (Chuck et al. 2007). Based on these prior
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studies, we sought to test genome-wide if the frequency and
distribution of TE insertions varies based on their proximity
and orientation with respect to genes in the genome. In order
to test this, we first categorized TEs into categories using the
following hierarchical ordering: gene completely within the TE,
TE completely within the 5’ UTR, completely within the 3’ UTR,
completely within an exon, completely within an intron,
completely encompassed by a gene, 0–1 kb upstream of a gene,
1–5 kb upstream of a gene, 5–10 kb upstream of a gene, 0–1 kb
downstream of a gene, 1–5 kb downstream of a gene, 5–10 kb
downstream of a gene, and intergenic (>10 kb from the nearest
gene).

There are relatively few genes proximal TEs that are actu-
ally within the gene body (orange in Figure 4, A–C). Only 4.34%
of LTR proximal TEs (1640/37,838) and 3.79% of Helitron proxi-
mal TEs (334/9056) are actually within the gene, while 11.52%
(5534/48,037) of TIR proximal TEs are within the gene body. In

general, those TEs that are within the gene body are at higher
frequency than those that are outside of the gene body, and
this is particularly true for those that are not contained within
an intron. For LTRs the age of the proximal TEs could also be
evaluated, and those TEs that were within the gene body were
also enriched for being younger based on LTR similarity than
those proximal TEs that are outside of the gene body (Figure
4D; P-value < 0.001). This finding is somewhat unexpected
given the potential deleterious functions that TE insertions
could have on the expression of a gene and the integrity of the
encoded protein, and likely indicates a positive effect of these
insertions allowing them to rise in frequency relatively
quickly.

TEs that are proximal to a gene, but not contained within a
gene, have much lower frequencies than was observed for TEs
within gene bodies (purple and green in Figure 4, A–C) and lower
than expected based on genome-wide rates. The frequency

Figure 3 Relationship between population frequency of nested elements and the elements in which they are nested. (A) Proportion of genotypes a TE is
present in between nested TEs and the TE in which the element is nested. (B) Distribution of the proportion of genotypes the outer TE is present in
minus proportion of genotypes in which the nested TE is present. (C) LTR similarity distributions for nested elements that are nested in TEs that are
fixed or nearly fixed (frequency >0.95) in the population. This plot only contains nested LTRs as LTR similarity estimates are not available for other
orders. (D) Relationship between LTR similarity and frequency for outer elements minus nested elements. Points in the gold quadrant meet biological
expectations that the outer element has a lower LTR similarity and is at higher frequency than the nested element. This plot only contains instances in
which the outer and nested elements are both LTRs.
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relative to genome-wide rates further decreases at increasing dis-
tance from the gene in both the 5’ and 3’ directions, and this is
consistent across the three orders. Proximal TEs outside of the
gene body also have a relatively higher proportion of insertions
with low LTR similarity (older insertions) relative to those that
are within genes (Figure 4D). The final class of proximal TEs,
those that encompass a gene, show similar frequency to TEs that
are proximal, but not within a gene, and are significantly de-
pleted for insertions with high LTR similarity (P-value < 0.001;
pink in Figure 4, A–D). The genes contained within these TEs are
all in the nonsyntenic gene space relative to sorghum and rice.
Genes in the nonsyntenic gene space account for less phenotypic
diversity than those in the syntenic gene space and are likely un-
der different selective pressures in general compared to syntenic
genes and TEs contained within syntenic genes (Schnable et al.
2011; Brohammer et al. 2018).

Many TE insertional polymorphisms are not
tagged by SNP markers
There is a limited number of plant species in which a species or
population level cataloging of TE presence/absence variation has
been conducted at a genome-wide level (Quadrana et al. 2016;
Stuart et al. 2016; Carpentier et al. 2019; Chen et al. 2020;
Dominguez et al. 2020). As such, the contribution of TEs to pheno-
typic variation, utility for genomic prediction, and other applica-
tions linking genotypes and phenotypes has only been minimally
evaluated. In many instances, a linked marker has been identi-
fied as significant and with fine-mapping it is revealed that the
causative variant is in fact a polymorphic TE insertion (e.g.,
Studer et al. 2011).

We sought to test the extent to which the extensive number
of polymorphic TE insertions that were classified in this study
were in linkage disequilibrium (LD) with genome-wide SNP
markers to begin to understand the extent to which phenotypic
variation that is caused by TEs has or has not been accounted
for in previous studies that used only SNP markers. For this
analysis, all SNPs within 1 Mb plus or minus a TE were evaluated
and the SNP that was in the highest LD was recorded. The ma-
jority of TEs were in moderate (r2 0.5–0.9) to high (r2 > 0.9) LD
with a nearby SNP marker, but there was a subset of 49,382
(19.9%) TEs that were in low LD (r2 < 0.5) with all SNPs within a
1 Mb window of the TE (Figure 5A). LTRs had the highest portion
of TEs in high LD with a SNP (58.8%), while TIRs had 45.9% in
high LD, and Helitrons had only 40.5% in high LD (Figure 5B). Of
the subset of TEs that had a SNP in high LD (>0.9), the majority
(86.50%) of the SNPs were within 200 Kb of the TE (Figure 5C).
This distance to the SNP with the highest LD increased when
TEs in all levels of LD with SNPs were included (Supplementary
Figure S9). TEs that were at very high frequency within the pop-
ulation were generally in low LD with SNPs, and those that were
at moderate frequency in the population were in moderate to
high LD with SNPs (Figure 5, D–F). This trend was consistently
observed across orders of TEs.

There are many metrics to assess LD and they represent dif-
ferent aspects of LD (Flint-Garcia et al. 2003; Slatkin 2008). For ex-
ample, D’ measures only recombinational history, and r2

measures both recombinational and mutational history. We
assessed LD between SNPs and TEs using D’ as the metric and ob-
served substantially more TEs in near or perfect LD with a SNP
(Supplementary Figure S10, A and B). Only 357 TEs had a D’ value
of less than 0.9 to a SNP within 1 Mb of the TE, and a relationship
with population frequency was no longer observed. The average
distance between the SNP and TE decreased relative to r2 for the

Figure 4 Relationship between TE frequency and relative position to
the nearest gene. Helitrons (A), TIRs (B), and LTRs (C) were categorized
using the following hierarchy: gene completely within the TE, TE
completely within the 5’ UTR, completely within the 3’ UTR,
completely within an exon, completely within an intron, completely
encompassed by a gene, 0–1 kb upstream of a gene, 1–5 kb upstream of
a gene, 5–10 kb upstream of a gene, 0–1 kb downstream of a gene, 1–
5 kb downstream of a gene, 5–10 kb downstream of a gene, intergenic
(not shown in figure). Full colored bars (left bars) contain frequencies
for TEs in each genomic region and transparent bars (right bars)
contain frequencies for genome-wide background rates based on 100
bootstrap iterations. (D) Proportion of LTRs with low LTR similarity
(LTR similarity <95%), moderate LTR similarity (LTR similarity
between 95 and 99%), and high LTR similarity (LTR similarity >99%) in
each gene proximity category.
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SNP in highest LD with a TE (102,838 for r2 vs 50,371 for D’; Figure
5C and Supplementary Figure S10C). This result makes sense as
TE insertions represent different mutational events from the
SNPs to which they are being evaluated and this is not reflected
in the D’ metric.

Overall, while TE presence/absence patterns generally re-
flect maize breeding history (Supplementary Figure S4), there
are TE insertional polymorphisms that are not tagged by
SNPs across different metrics (Figure 5 and Supplementary
Figure S10). These TEs that are not tagged by SNPs may be of
important phenotypic consequence in maize, as has been
shown in tomato (Dominguez et al. 2020) and rice (Akakpo

et al. 2020). The high number of TEs in low to moderate LD
with SNPs based on r2 is particularly important to this point,
as r2 directly measures how different markers correlate with
each other, and therefore how well a particular SNP would
correlate with a potential causative TE. Including TE inser-
tional polymorphism will likely be important in understand-
ing the full complexity of phenotypic trait variation and local
adaptation, and developing improved maize varieties in the
future. Though the power to detect signals from these
untagged TE polymorphisms will be challenging as many of
the TEs that were not effectively tagged by SNPs have a low
minor allele frequency.
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Figure 5 Linkage disequilibrium between TEs and SNPs in a panel of diverse inbred lines. (A) Linkage disequilibrium (LD) between TEs and the SNP with
the highest LD within 1 Mb of the middle of the TE. (B) Proportion of TEs in high (r2 > 0.9), moderate (r2 0.5–0.9), and low (r2 < 0.5) LD with SNPs within
1 Mb of the middle of the TE. Category is based on the SNP with the highest LD in the window. (C) Distance between TEs and the SNP with the highest LD
to it for TEs that had a SNP in high (r2 > 0.9) LD. Distance is calculated as the middle of the TE to the SNP. Only SNPs within 1 Mb of a TE were evaluated.
(D–F) Density plots of population frequencies for TEs in high, moderate, and low LD with SNPs based on the highest LD within 1 Mb of the middle of the
TE for LTRs (D), Helitrons (E), and TIRs (F). Only TEs with less than 25% ambiguous calls are included in these plots.
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Conclusions
TE insertional polymorphisms can play a crucial role in reshap-
ing the phenotype of plants. In this study, we used the whole
genome resequencing data, four high-quality reference
genomes with de novo annotated TEs, and random forest ma-
chine learning models, to generate a high-quality set of
genome-wide insertional polymorphism data for 509 diverse
maize lines. The majority of TE insertions (both nested and
nonnested) were at the low to moderate frequency in the popu-
lation. Within the LTR retrotransposon insertions, we observed
a strong negative relationship between the frequency of the in-
sertion in the population and the LTR similarity within the
inserted element. Population frequency information coupled
with LTR similarity also allowed us to determine that the ma-
jority of nested insertions (i.e., those insertions that are within
another TE insertion) likely occur near the same time as the in-
sertion of the outer element. Finally, analysis of LD between
genome-wide SNP variants and TE insertional polymorphisms
revealed that over 19.9% of TE insertional polymorphisms are
not well tagged (R2> 0.5 by nearby SNPs. This result has major
implications when interpreting the results of genome-wide as-
sociation studies (GWAS) that have been conducting using only
SNP markers. Future work utilizing insertional polymorphism
information may shed light into unexplained phenotypic varia-
tion in diverse germplasm such as this population.

Data availability
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