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Innate lymphoid cells in early
tumor development
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Innate and adaptive immune cells monitor, recognize, and eliminate transformed

cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key

role in many facets of the immune response and have a profound impact on

disease states, including cancer. ILCs regulate immune responses by responding

and integrating a wide range of signals within the local microenvironment. As

primarily tissue-resident cells, ILCs are ideally suited to sense malignant

transformation and initiate anti-tumor immunity. However, as ILCs have been

associated with anti-tumor and pro-tumor activities in established tumors, they

could potentially have dual functions during carcinogenesis by promoting or

suppressing the malignant outgrowth of premalignant lesions. Here we discuss

emerging evidence that shows that ILCs can impact early tumor development by

regulating immune responses against transformed cells, as well as the

environmental cues that potentially induce ILC activation in premalignant lesions.
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1 Introduction

Tumorigenesis is a complex, multistep process in which normal cells evolve

progressively to a neoplastic state. Thus, tumors are often preceded by different stages of

premalignant tissue changes, including hyperplasia, metaplasia, and dysplasia, which are

linked to an increased cancer risk. The immune system can detect tissue changes and

eliminate transformed cells in a process referred to as tumor immunosurveillance. The

original cancer immunosurveillance hypothesis was formulated in the 1950s and described

that adaptive lymphocytes reduce tumor growth in response to recognizing tumor antigens

(1, 2). Since then, this theory has been refined and cancer immunosurveillance is now

widely accepted as being part of the cancer immunoediting process, wherein the tumor-

suppressive and tumor-promoting activities of the immune system shape tumor

development. This process is divided into three different phases: elimination (cancer

immunosurveillance), equilibrium (cancer persistence/dormancy), and escape (cancer

progression) (3–5).
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Our current understanding of cancer immunosurveillance is

primarily based on studies in mice, which have shown that the

immune system can prevent the outgrowth of many different

types of primary and transplantable tumors (4). Evidence for the

importance of the immune system in preventing tumor

development in humans is found in studies showing increased

incidences of malignancies in immunocompromised patients

with AIDS and recipients of organ transplants using

immunosuppressants, as well as spontaneously regressing

benign and malignant melanocytic lesions accompanied by

lymphocytic infiltrates (4). Despite the immune system’s anti-

tumorigenic activities, deregulated inflammatory responses have

also been linked to carcinogenesis and often precede tumor

development (6). Thus, the immune system does not only

protect the host against tumor development but also promotes

progression of premalignant to malignant cells.

A comprehensive view of tumor immunosurveillance would

include not only adaptive immune cells but also innate immune

cells since it is well known that they detect and destroy

transformed cells (4, 5). Besides T cells, natural killer (NK)

cells are known to play a key role in cancer immunosurveillance

(7). NK cells are innate lymphoid cells (ILCs) that mirror

CD8+ T cytotoxic cells and secrete cytotoxic molecules such as

granzymes and perforin to eliminate virus-infected cells and

tumor cells. Increasing evidence suggests that other ILC family

members also play an important role in the immune response

against tumors (8) and their role in tumor development is

starting to being explored. ILCs have been classified into NK

cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi)

cells based on their cytokine and transcription factor expression

profiles, and developmental pathways (9). ILC1s, ILC2s and

ILC3s share features with CD4 T helper (h)1, Th2, and Th17/22

subsets, respectively. NK cells and ILC1s express the

transcription factor T-box transcription factor 21 (T-BET) and

secrete interferon (IFN)-g. In addition, NK cells, but not ILC1s,

require the transcription factor Eomesodermin (EOMES) for

their development. However, a proportion of ILC1s can express

EOMES (10). ILC1s are involved in the immune response

against viruses and intracellular bacteria. They express

multiple granzyme molecules, but at lower levels compared to

NK cells. ILC2s are dependent on the transcription factors

GATA-binding protein 3 (GATA3) and retinoic acid-related

orphan receptor (ROR)a and produce classical type 2 cytokines

such as interleukin (IL)-4, IL-5, and IL-13 in response to parasite

infection and allergen exposure. ILC3s and LTi cell subsets share

a characteristic expression of the retinoic acid receptor-related

orphan nuclear receptor gt (RORgt) and the cytokines IL-17A

and IL-22 but follow different developmental pathways. ILC3s

are immune effectors that contribute to host defense against

extracellular bacteria and fungi, whereas LTi cells initiate the

development of fetal lymphoid tissues (9).

NK cells circulate in the body, whereas the other ILC subsets

are primarily tissue resident cells that preferentially reside in
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barrier tissues. In addition to providing immunity against

infections, they also play critical roles in maintaining tissue

homeostasis by responding rapidly to environmental cues,

initiating effector responses in a tissue-specific manner and

interacting with tissue-resident cells (11). This makes them

ideally suited to sense malignant transformation and initiate

anti-tumor immunity. However, ILCs have been associated with

pro-tumor and anti-tumor activities in established tumors (8)

and could therefore have a dual role during tumor development

as well. In this review, we discuss the stress signals that could

potentially activate ILCs during tumor development and recent

advances supporting a role of ILCs in immune surveillance

and carcinogenesis.
2 ILCs and tumor development

Premalignant lesions arise from various causes, including

infection, inflammation, and environmental exposures. Innate

immune cells are considered the first responders to cellular stress

and mediate adaptive immune responses. This is supported by a

study that profiled 122 bronchoscopy biopsies from 77 patients

using gene-expression profiling and multispectral imaging,

which included 9 morphological stages of invasive lung

squamous cell carcinoma (SCC) development. During

hyperplasia, the earliest stage of transformation, there was an

increase of innate immune cells, such as neutrophils, activated

mast cells and NK cells, and resting dendritic cells (DCs), as well

as naïve CD4 T cells. This was followed by an increase of CD8 T

cells and activated memory CD4 T cells in metaplastic and

dysplastic tissues. Thus, NK cells are part of an early immune

response against tissue changes associated with malignant

transformation. Although this study did not assess other ILC

populations in these tissues, it is likely that they respond to the

same stress signals that activate other innate immune cells

(section 3.).

Studies in mice have provided important evidence that ILCs

play a role in mediating tumor immunosurveillance, either

directly or indirectly through modulation of effector immune

cell responses. Expression of IFN-g and the effector molecule

tumor necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL) by NK cells has been shown to prevent tumor initiation

in mice (12, 13). In addition, low cytotoxic activity of NK cells is

associated with an increased cancer risk in humans (14–16).

Mice depleted of NK cells and ILC1s by anti-NK1.1 or anti-

asialo-GM1 are more susceptible to the formation of chemically

induced tumors (17). Furthermore, tumor incidence in Rag1−/

−IL2Rg−/− and Rag2−/−IL2Rg−/− mice, which in addition to B and

T cells also lack ILCs, was increased compared to Rag1−/− and

Rag2−/− mice lacking only adaptive immune cells (18, 19).

With the exception of NK cells, the contribution of

individual ILC subsets to immune responses during early

tumor development is less well defined. Using the MMTV-
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PyMT mammary tumor model, Dadi et al. demonstrated that a

cytotoxic ILC1-like population accumulates in precancerous

lesions (20). Importantly these cells were dependent on IL-15

and displayed toxicity against tumor cells (20) (Figure 1).

Interestingly, unlike the ILC1-like population, NK cells did not

expand in these precancerous lesions, suggesting that tissue-

resident ILC1-like cells may play a more important role in early

sensing of cellular transformation. ILC2 stimulation by epithelial

and/or Th2-derived cytokines induces IL-5, GM-CSF and IL-13

expression, leading to eosinophil recruitment, activation and

survival (21, 22). In a model for chemically-induced

fibrosarcomas, IL-5 overexpression protected mice from tumor

establishment through an increased recruitment of eosinophils

to the tumor and surrounding connective tissue (27). Thus,

ILC2s could potentially mediate tumor immunosurveillance by

regulating eosinophil accumulation in premalignant tissues

(Figure 1). A protective role of ILC2s during tumor

development was also described in a chemically-induced

colorectal cancer (CRC) mouse model as ILC2-deficient mice

had an increased tumor burden compared toWTmice (28). This

is further supported by a recent study showing that IL-33

mediated expansion of ILC2s was associated with reduced
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colonic inflammation in a colitis model (29). ILC2s may be

involved in the immune response against developing CRC by

activating eosinophils, as eosinophils have been shown to

prevent the development of CRC in a colitis-associated cancer

model independently of CD8+ T cells (30). However, in an

adenomatous polyposis coli (Apc)-mutation-driven model of

spontaneous intestinal tumorigenesis, IL-25 activated ILC2s

promoted CRC development by promoting myeloid-derived

suppressor cell (MDSCs) function to suppress T cell responses

(24). In addition, another study found that in response to gastric

tissue damage in mice, IL-13-secreting ILC2s are recruited to the

gut mucosa and drive metaplasia development (25). Together,

these studies provide evidence that ILC2s might promote

malignant transformation, depending on the environmental

cues and tissues involved (Figure 1). Additional studies will be

required to distinguish between pro- and anti-tumorigenic

functions of ILC2s, similar to what is observed for their role in

established tumors (8).

A recent study by Goc et al. identified a major

histocompatibility complex class II positive (MHCII+) ILC3

population in precancerous adenomas in mice and humans

(23). In a spontaneous CRC mouse model, deletion of ILC3-
FIGURE 1

Potential roles of ILCs during tumor development. NK cells and ILC1s have shown cytotoxic activity against precancerous cells (12, 13, 20). IL-5-
secreting ILC2s may recruit eosinophils (EOS) to precancerous tissues and activate cytotoxic effector functions in EOS, such as the release of
eosinophilic granule proteins (EGPs) (21, 22). MHCII+ ILC3s were shown to promote CD4 and CD8 cell responses to prevent tumor
development (23). Conversely, ILC2s may drive MDSCs activation and subsequent T cell suppression via IL-4 and IL-13 secretion (24), as well as
metaplasia development via the release of IL-13 (25). IL-17A and IL-22 expression by ILC3s may promote clonal expansion of precancerous cells
(26). This figure has been created with BioRender.com.
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specific MHCII resulted in an increased number of advanced

tumors and a significant reduction in overall survival, suggesting

that MHCII+ ILC3 limit tumor development. Further analysis

revealed that mice lacking MHCII expression in ILC3s were

characterized by a significant reduction of Th1 and T-bet+ CD8

T cells, thereby providing evidence that interactions between

ILC3s and T cells promote type-1 immunity (Figure 1).

Although this study supports a role of ILC3s in tumor

immunosurveillance, there are other studies that implicate

ILC3s in tumorigenesis. Dysregulated IL-23 mediated ILC3

activation and IL-17 and IL-22 production has been shown to

promote gut inflammation and tumorigenesis (31, 32). In

addition, in a hepatocellular carcinoma (HCC) mouse model

established by a murine HCC cell line, IL-23 over-expression

promoted HCC development in an IL-17-dependent manner

(33). Interestingly, most IL-17-producing cells in early tumors

were NCR−ILC3s, suggesting that they are the initial responders

to IL-23. Using a model for UV–induced cutaneous

carcinogenesis, Lewis et al. also demonstrated that chronic UV

exposure leads to an increase in IL-22 and IL-17A-producing

ILC3s in the skin, which drive mutant keratinocytes clonal

expansion in the absence of T cells (26) (Figure 1). Based on

studies in established tumors, it is known that ILC3s can have

conflicting functions (8, 34) and current evidence suggests that

this might also be the case for their role during early

tumor development.
3 Stress signals during cell
transformation and their potential
role in ILC activation

Stressed and dying cells in precancerous tissues express and/

or release various endogenous danger molecules, such as
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damage-associated molecular patterns (DAMPs), cell-surface

receptors, and cytokines, that activate the immune system

(35). Early detection of stress signals is important for

successful cancer immunosurveillance. However, some signals

may activate inflammatory responses that contribute to

malignant transformation instead of protecting against it. ILCs

sense changes in the tissue microenvironment through a broad

array of cell surface and intracellular receptors, including

costimulatory receptors, cytokine and chemokine receptors

(36–38). Binding of ligands to these receptors also drives ILC

plasticity, thereby shaping their function and phenotype (39).

Here, we will discuss how known stress signals released by

precancerous cells could potentially activate ILCs and initiate

ILC-mediated immune responses that impact tumor

development. In particular, we will focus on signals associated

with an inflammatory response in the absence of infection. ILCs

express toll-like receptors that could potentially recognize

pathogen-associated molecular patterns (PAMPs) during

infection-associated tumor development (40, 41). However, it

is likely that the immune responses to these infections and

developing tumors in the same tissues overlap and the role of

ILCs in response to intracellular pathogens has already been

extensively reviewed elsewhere (40).
3.1 DAMPs

DAMPs are endogenous danger signals released by damaged

or dying cells to induce an immune response during non-

infectious inflammation. Although DAMPs have been

proposed to activate local antigen-presenting cells (APCs), it is

also possible that these signals promote inflammation by

activating ILCs. However, the role of inflammatory signals

during tumor development is often not clearly defined as they

can also be associated with cancer growth. Here, we discuss
TABLE 1 Expression of DAMPs and cytokine receptors by ILCs.

DAMP/Cytokine Receptor(s) NK cells ILC1 ILC2 ILC3 Reference(s)

Ms Hu Ms Hu Ms Hu Ms Hu

HMGB1 RAGE Yes nd nd nd Yes nd nd nd (42, 43)

TLR2 Yes Yes nd Yes Yes Yes nd Yes (44–48)

TLR4 Yes Yes nd Yes Yes Yes nd Yes (44, 47–49)

ATP *P2Y1/2/4/6/11-14 Yes Yes nd nd nd Yes nd Yes (50–53)

*P2X1-7 Yes Yes Yes nd nd nd nd Yes (51, 54–56)

IL-33 ST2 Yes Yes nd nd Yes Yes nd nd (57–60)

IL-25 IL-25R No No nd No Yes Yes No No (9, 61)

IL-12 IL-12R Yes Yes Yes Yes Yes Yes Yes nd (36, 62–66)

IL-15 IL-2Rb Yes Yes Yes nd Yes Yes Yes Yes (20, 67–71)

IL-18 IL-18R Yes Yes Yes Yes Yes Yes nd Yes (62, 71, 72)

IL-23 IL-23R No Yes No Yes nd No Yes Yes (9, 36, 73)
Mouse, Ms; Human, Hu; nd, not determined. *Expression of 1 or more of indicated receptors has been reported.
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DAMPs with receptors found on ILCs (Table 1) and their

potential role during tumor initiation and activation of

ILC responses.

3.1.1 High mobility group box 1
HMGB1 is a nuclear protein widely expressed in

mammalian cells and is involved in various cellular processes,

including the maintenance of chromosome structure and

function, DNA damage repair and transcription. Cells

undergoing necrosis passively release HMGB1, while various

exogenous and endogenous stimuli can induce the active release

of HMGB1 by immune cells, endothelial and epithelial cells (74).

Notably, HMGB1 is one of the DAMPs released during

immunogenic cell death, which is induced by infectious

pathogens and anticancer chemotherapeutics (75) .

Extracellular HMGB1 acts as a danger signal that mediates

inflammation and repair responses via binding to the

inflammatory receptor advanced glycation end-products

(RAGE) and Toll-like receptors (TLRs). These receptors are

expressed by various immune cells, including NK cells and

ILC2s (Table 1). In established tumors, conflicting roles have

been described for HMGB1, including the activation of tumor-

promoting inflammatory responses and immunosuppressive

pathways, as well as the induction of anti-tumor responses

(76). Current evidence supports a pro-tumorigenic role of

HMGB1 during tumor development. Studies assessing serum

levels in patients with normal tissue, premalignant lesions, early

and advanced stages of cancer, showed that HMGB1 levels

increase according to the progression of gastric and

hepatocellular carcinogenesis (77, 78). This suggests that

HMGB1 is released during cellular transformation. However,

HMGB1 might promote tumor development rather than

activating immune responses against premalignant cells as

chemically-induced skin and inflammation-induced liver

cancer development was inhibited in mice deficient for the

HMGB1 receptor RAGE (79, 80). This is further supported by

a study of premalignant and malignant lesions of the uterine

cervix, which showed that HMGB1 inhibited maturation of

plasmacytoid DCs to render them tolerogenic (81). More

studies are needed to understand the complex role of HMGB1

during tumor development.

The impact of HMGB1 expression on ILCs in premalignant

lesions has not been assessed yet. However, studies in established

tumors support a role of HMGB1 in NK activation. In mice,

HMGB1 released from chemotherapy-induced necrotic tumor

cells induced NK cell activation and infiltration into the tumor

(82). Mouse and human ILC2s were also shown to express

RAGE and respond to HMGB1 activation (42, 83). Thus, ILC2s

could potentially respond to HMGB1 via RAGE or its other

receptors (Table 1) in premalignant and malignant lesions,

however, if and what effect this has on tumor development is

currently unknown.
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3.1.2 Adenosine triphosphate
ATP is a multifunctional nucleotide best known for storing

and transferring energy in cells. Extracellular ATP is actively

secreted by stressed cells or passively released by dead cells, and

acts on P2 purinergic receptors (Table 1). Released ATP is

enzymatically converted into adenosine by the ectonucleotidases

CD39 and CD73, which binds to P1 purinergic receptors.

Purigeneric receptors are widely expressed by various immune

and non-immune cells. Established tumors are characterized by

high concentrations of ATP and adenosine. Adenosine and

ectonucleotidases are predominantly associated with tumor-

promoting and immunosuppressive activities (84). Extracellular

ATP-binding can support or inhibit anti-tumor responses,

depending on ATP concentration, the type of receptor, and the

target cell (85). The role of extracellular ATP and adenosine in

tumor development has not been extensively studied and related

studies have provided contradictory results. For example, studies

assessing the role of the ATP receptor P2X7R in inflammation-

associated CRC models have described an increase as well a

reduction of tumor incidence in mice deficient for P2X7R (86,

87). Evidence for the involvement of ATP and adenosine in

activating ILC responses was provided in the context of tissue

repair and inflammation. Blocking of the ATP receptor P2X1R

abrogated cytokine secretion in NK cells and ILC1s and impaired

liver regeneration in a model for partial hepatectomy (54). In a

chemically induced intestinal injury model, IL-22-secreting ILC3s

accumulated in the colon and were important for the control of

colitis. Treatment with an ectonucleotidase inhibitor prevented

ILC3 activation and IL-22 production by ILC3s. Thus,

accumulation of ATP was associated with ILC3 inhibition, while

conversion to adenosine lead to activation of ILC3s (88).

3.1.3 IL-33
IL-33 acts as a cytokine and a DAMP, as it’s released by

epithelial cells, endothelial cells, and fibroblasts in response to

tissue damage, as well as actively secreted by APCs. The primary

receptor for IL-33 is ST2, which exists in soluble form as a decoy

receptor, and as part of a membrane-bound heterodimer

together with the co-receptor IL-1 receptor accessory protein

(IL1RAP) that initiates downstream signaling (89). IL-33

activates ST2-expressing mast cells, eosinophils, macrophages,

ILC2s, NK cells, and T cell subsets, such as Th1, Th2, CD8+ T

cells, and Tregs (90) (Table 1), thereby modulating both innate

and adaptive immune responses. IL-12-induced IFN-g
production by murine and human NK cells is enhanced by IL-

33 (57, 58) and as a central regulator of type 2 immunity, IL-33

mediates ILC2 activation and proliferation (9). IL-33 has a dual

role in established cancer and has been associated with both anti-

tumor and pro-tumor immune responses (91). Anti-tumor

functions are mostly attributed to the induction of type 1

immune responses and pro-tumor activities include the

activation of Tregs and type 2 responses. The role of IL-33 in
frontiersin.org
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tumor development has been mostly studied in the context of

CRC and current data suggests that IL-33 can contribute to the

pathogenesis (92, 93) as well as the suppression of CRC

development (94). IHC analysis of precancerous colorectal

lesions also revealed that precancerous epithelial cells, as well

as stromal and endothelial cells can be a source of IL-33 (95). It

remains to be elucidated how IL-33 contributes to the described

pro- or anti-tumorigenic functions of ILC2s in CRC and other

cancers, and if the cytokine milieu in these tissues allows for IL-

33-mediated enhancement of NK cell responses.

3.1.4 IL-25
Like IL-33, IL-25, also known as IL-17E, functions as a

cytokine and a DAMP. IL-25 signals through the IL-25R, a

heterodimer complex composed of IL-17RB and IL-17RA, and is

produced by epithelial cells and immune cells including

activated Th2 cells, mast cells, and eosinophils. Expression of

IL-25 is regulated by harmful environmental cues and plays an

important role in activating Th2 immune responses.

Dysregulated IL-25 expression has been linked to airway

inflammation and severe asthma exacerbation (96). IL-25 has

also been shown to promote inflammatory responses in the

context of colitis (97), suggesting that it might favor tumor

development. However, pro- and anti-tumorigenic functions

have been described for IL-25. A study by Thelen et al. found

that blocking of IL-25 in a colitis-driven colon cancer model,

leads to increased tumor burden and a decrease of eosinophils in

colon tissues (98). Conversely, Jou et al. found that IL-25

treatment of Apc1322T/+ mice, an APC-mutation-driven CRC

mouse model, resulted in an increased tumor burden, which was

accompanied by increased ILC2 infiltration (24). In this model,

ILC2 indirectly suppressed anti-tumor T cell responses by

activating MDSCs via IL-4 and IL-13. Genetic ablation of

ILC2s or IL-25, or treatment with IL-25 blocking antibodies in

these mice led to reduced tumor growth and increased survival.
3.2 Cytokine-mediated ILC activation

Cytokines are small soluble proteins that are crucial for

immune cell homeostasis and the regulation of innate and

adaptive immune responses. Proinflammatory cytokines are

released in response to cellular stress and infection to alert the

immune system to the presence of potential danger. Transformed

cells are known to secrete and promote production of diverse

cytokines in different types and stages of cancers (99).

Furthermore, DCs and macrophages that are activated in

response to cellular stress also start expressing proinflammatory

cytokines and contribute to the local cytokine milieu. Studies of

murine and human tissues found that there is a reduction of

proinflammatory cytokines when premalignant lesions or early

tumors progress to clinically apparent tumors (100–102) and an
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increase of immunosuppressive cytokines (103). In addition,

aberrant release of proinflammatory cytokines contributes to

tumor progression and immune cell dysfunction. Thus, the

cytokines present in premalignant tissues will shape local

immune responses, including ILC activity. Common cytokines

associated with ILC activation are IL-12, IL-15 and IL-18 for

ILC1s and NK cells; IL-2, IL-18, IL-25, IL-33, and thymic stromal

lymphopoietin (TSLP) for ILC2s; and IL-1ß and IL-23 for ILC3s

(104). Here, we discuss the role of ILC-activating cytokines in the

context of tumor development.

3.2.1 IL-12
The heterodimeric pro-inflammatory cytokine IL-12 is

known for its role in activating anti-tumor immunity (105).

IL-12 is produced by APCs, such as DCs and macrophages, and

induces Th1 differentiation and the production of IFN-g in T

and NK cells (106). In addition, IL-12 negatively regulates Treg

cell function and proliferation (107, 108), as well as Th2 and

Th17 differentiation (106). The lack of IL-12 subunits p35 or p40

results in increased or earlier tumor development in mice (109–

112). These studies highlight the importance of IL-12 in

regulating early immune responses against transformed cells.

In addition, various IL-12 gene polymorphisms leading to

decreased IL-12 production are associated with increased

susceptibility to cancer (113). Besides NK cells, ILC1 also

respond to IL-12 stimulation and IL-12 promotes conversion

of ILC2s and ILC3s to IFN-g-producing ILC1s (114).

3.2.2 IL-15
IL-15 is a proinflammatory cytokine crucial for the

proliferation and survival of T cells and NK cells (115). Lack

of IL-15 in mice results in severe reduction of both cell types

(116). IL-15 mainly exists as a heterodimeric complex with

membrane bound or the soluble form (sIL-15) of IL-15Ra,
and binds to the IL-2Rbg heterodimer on nearby effector cells.

Cellular sources of IL-15 include monocytes, macrophages, DCs,

stromal cells, and epithelial cells (115). Various murine tumor

cell lines have also been shown to express IL-15 (102). IL-15

enhances anti-tumor responses of murine and human CD8+ T

cells and NK cells (117–120), and is considered a promising

agent for cancer immunotherapy (121). In NK cells, IL-15

treatment leads to upregulated expression of NKG2D and the

cytotoxic effector molecules TRAIL and perforin (122). In

transplanted and spontaneous tumor models, IL-15-deficiency

and the subsequent reduction in T and NK cell numbers leads to

accelerated tumor development (102, 123–125), suggesting that

IL-15 plays a critical role during early anti-tumor responses.

Moreover, deletion of IL-15 in CRC patients was associated with

a higher risk of relapse and reduced disease-free survival (126).

Besides NK cells, mouse and human helper ILC1s have also been

shown to respond to IL-15 (20, 67, 127–129). Other ILC

populations may also get activated in response to IL-15 in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.948358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Warner et al. 10.3389/fimmu.2022.948358
early tumors as IL-15 has been shown to induce conversion of

ILC3s into IFN-g-producing ILC1s and cytotoxic NK cells

(114, 130).

3.2.3 IL-18
IL-18, originally termed IFN-g-inducing factor, is part of the

IL-1 family. Binding of IL-18 to its receptor, which consists of

IL-18Ra and IL-18Rb, can be prevented by the soluble IL-18

binding protein (IL-18BP). IL-18 is expressed by various types of

cells, including macrophages, DCs, and epithelial cells (131).

Together with IL-12, IL-18 induces Th1 responses by acting on T

cells and NK cells to induce IFN-g production. Treatment with

IL-18 also enhances Fas-L-expression and FAS-L-mediated

cytotoxicity in NK cells and CD8+ T cells (132, 133). In

patients with cervical premalignant lesions, low expression of

IL-18 was associated with an increased risk of progression of

pre-neoplastic lesions to cancer (134), supporting its role in

activating immune responses against transformed cells.

3.2.4 IL-23
IL-23 is an IL-12 family member and a heterodimer that

consists of a p19 and a p40 subunit, which is shared with IL-12.

The IL-23 receptor is made up by IL-23R and IL-12Rb1
subunits. The main sources for IL-23 are macrophages and

DCs, which release IL-23 in response to exogenous or

endogenous signals associated with host defense and wound

healing (135). IL-23 plays a crucial role in the differentiation and

maintenance of Th17 cells, and promotes Th17 production of

IL-17A, IL-17F, IL-6, IL-22, and TNF-a. IL-23 is also one of the

main mediators of ILC3 activation, resulting in their constitutive

secretion of IL-22, which in turn acts on mucosal epithelium to

induce the expression of antimicrobial peptides, tight-junctions

and promote the colonization of beneficial commensal bacteria

protecting against intestinal inflammation (136). The role of IL-

23 in cancer is complex and has been associated with tumor-

promoting and tumor-suppressive activities (135). Its role in

tumor development is not well understood. In a model for

MCA-induced fibrosarcomas, tumor incidence was reduced in

mice deficient for the IL-23 subunit p19 and depletion of NK

cells, but not CD8+ T cells, abrogated the protective effect of IL-

23 depletion (137). Conflicting roles were described for IL-23 in

the development of chemically-induced cutaneous tumors, as

tumor growth was either inhibited (112) or enhanced (138) in

p19-deficient mice, depending on the background strain. A

study of murine and human premalignant lesions for head

and neck squamous cell carcinoma reported elevated levels of

IL-2, IFN-g, TNF-a, IL-6, and IL-17 in premalignant lesions,

which was dependent on IL-23 and accompanied by an increase

in IFN-g+ CD4+ T cells (100, 139). In IL-23R KO mice,

production of these cytokines was reduced and the progression

of premalignant oral lesions toward cancer accelerated (139),
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suggesting that IL-23 has a protective role during tumor

development. Although IL-23–driven immune responses have

been primarily linked to T cells, IL-23 could potentially activate

ILC3 in premalignant lesions as well.
3.3 Cell surface receptors and molecules

Unlike T and B cells, ILCs do not express antigen receptors

and therefore do not recognize specific tumor antigens.

However, ILCs express other activating cell surface receptors

that initiate anti-tumor responses (37). NK cell activity is

regulated by a balance between various activating and

inhibitory receptors that bind to cognate ligands on target cells

(140, 141). Healthy cells express MHCI molecules on their

surface that act as inhibitory ligands for inhibitory receptors

on NK cells, such as killer cell immunoglobulin-like receptors

(KIRs) and the CD94/NKG2A heterodimer, thereby

contributing to tolerance from NK cell recognition (142).

Other central activating and co-activating NK cell receptors

include the natural cytotoxicity receptors (NCRs) NKp30,

NKp44, and NKp46, CD16, NKG2D, NKG2C, DNAX

Accessory Molecule-1 (DNAM-1), and 2B4 (142, 143). NK cell

activating ligands are often upregulated in response to

cellular stress associated with infection and malignant

transformation (144).

The NKG2D receptor recognizes several MHCI-like

ligands, including MHCI-polypeptide-related sequence

MICA, MICB, and UL16 binding proteins (ULBP1-6) in

humans, and retinoic acid early inducible-1 family (RAE-

1a-ϵ), H60a-c, and murine UL16 binding protein-like

transcript (MULT-1) in mice (145). Homodimerization of

NKG2D by membrane-expres sed l i gands recru i t s

phosphatidylinositol 3-kinase (PI3K) and growth factor

receptor-bound prote in 2 (GRB2) , resu l t ing in a

phosphorylation cascade. If then, the overall balance of

signaling from both activating and inhibitory receptors

favors NK cell activation, it can stimulate NK cell effector

functions result ing in perforin/granzyme-mediated

cytotoxicity and cytokine release. NKG2D is considered an

important receptor in NK cell immune surveillance of cancer

since spontaneous tumor development was shown to be more

frequent in NKG2D-deficient mice compared to wild type

mice (146). Cell surface expression of NKG2D ligands is low

or not present on healthy tissues, but is upregulated on rapidly

proliferating cells, virally infected cells, and cancer cells (147–

150). Ectopic expression of NKG2D ligands in tumor cell lines

results in tumor cell rejection in mice (151, 152). However,

only a few studies have examined the expressionof these

ligands in premalignant tissue. In mouse models for

cutaneous carcinogenesis, exposure to carcinogens induces
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the expression of NKG2D ligands in skin cells (153–155). NK

cell depletion in one of these studies resulted in higher

numbers of papillomas (153), suggesting that NK cells play

an important role in the elimination of DNA-damaged skin

cells. Notably, recruitment of NK cells to the epidermis was

dependent on TNF-a-induced chemokines CCL2 and

CXCL10. In humans, premalignant skin lesions lacked

expression of MICA (156) and low expression of MICA,

MICB, and ULBP1 is found on thymic hyperplasia (157).

Further studies are needed to understand the role of NKG2D

ligands during tumor development in humans.

The activating receptor DNAM-1 is expressed by many

lymphocyte subsets, including NK cells and T cells. Binding of

DNAM-1 (CD226) to its ligands PVR (CD155) and Nectin-2

(CD112) induces NK cell cytotoxicity (158). These ligands are

highly expressed on tumor cells, but only low or no expression is

found on healthy tissues. Lack of DNAM-1 expression results in

reduced T and NK cell cytotoxicity against tumor cells and

accelerated tumor outgrowth of chemically-induced

fibrosarcomas (159) as well as spontaneous tumors (160, 161).

PVR and Nectin-2 overexpression was observed in human

premalignant lesions of CRC and pancreatic ductal

adenocarcinoma, respectively (162, 163). Together, these

studies provide evidence for a role of DNAM-1 in tumor

immune surveillance, which likely not only involves NK cell

but also T cell activation. Notably, DNAM-1 is also expressed by

human peripheral blood ILC2s (164) and murine liver ILC1s

(55). DNAM-1-mediated ILC1 activation was critical for their

activation and production of IFN-g. Thus, DNAM-1-ligands

expressed on premalignant and malignant tissues may also

activate DNAM-1-expressing non-NK cell ILCs.

NCR receptors were originally identified based on their

ability to mediate cytotoxic functions of NK cells. The three

known NCRs, NKp46, NKp44, and NKp30, comprise a family of

type I transmembrane (TM) receptors and are encoded by the

genes, NCR1, NCR2, and NCR3, respectively (165). Originally,

these receptors were thought to be NK cell specific surface

molecules, but many studies have provided evidence for

expression on other cell types, including a subset of T cells,

ILC1s and ILC3s (166–168). In the context of cancer, NCRs bind

to a broad range of soluble, membrane-bound and nuclear

ligands, including B7H6, platelet-derived growth factor

(PDGF)-DD, and Galectin-3. However, the full spectrum of

NCR ligands and their role in cancer remains to be fully

characterized. Studies have shown that NKp46 is required for

expression of the apoptosis-inducing ligand TRAIL on NK cells

and ILC1s in mice, and genetic deficiency of NKp46 impairs

tumor clearance (169–174), thereby implicating a role for

NKp46-mediated activation of NK cells and ILC1s in tumor

immunosurveillance. In addition, expression of the NKp30

ligands B7H6 and BAT3 by tumor cells was shown to trigger
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NK-cell cytotoxicity and cytokine secretion (175–177). The

expression of NKp46 and NKp30 in human precancerous

lesions is variable. NKp46 ligands were shown to be expressed

on human benign and malignant melanocytic lesions (178), but

NKp46 and NKp30 ligands were only found on primary human

prostate tumors and not benign prostate hyperplasia (179).

B7H6 was expressed in high-grade but not low-grade cervical

lesions (180). Thus, it remains to be determined during which

stage of tumor development NCR ligands mediate NK cell

responses aga ins t t i s sue changes assoc ia ted wi th

malignant transformation.

In addition, expression of NKp30 and NKp44 was also

reported on tumor-associated ILC2s and ILC3s, respectively

(167, 181). In these studies, ILC3s were shown to interact with

tumor cells and tumor-associated fibroblasts via NKp44, and

were associated with a protective role against cancer, whereas

NKp30+ ILC2s interacted with tumors cells via B7H6 and

promoted an immunosuppressive tumor microenvironment.

Further studies are needed to decipher the role of NCRs on

helper ILCs during early tumor immunosurveillance.
4 Perspectives

Despite the growing body of research on ILCs, there is still a

lot we do not understand about how the responses of these

primarily tissue-resident cells are shaped by disease- and tissue-

specific signals. This incomplete knowledge is reflected by

research studies describing conflicting roles for ILCs in

inflammation, immunopathological conditions, and cancer.

This review specifically highlights a gap in our understanding

of the role of ILCs in immunosurveillance and carcinogenesis.

Our current knowledge on ILCs in cancer is mostly based on

studies in established tumors. However, early tumors and

premalignant tissues are characterized by a different tissue

environment than established tumors. This has a profound

impact on ILC responses as these cells sense a large variety of

tissue signals, which modulate their phenotype and function.

Signals that could potentially activate ILC-responses at the

pretumor stage are highlighted in this review and could serve

as a starting point for future studies. In particular, studies in

premalignant tissues of patients are needed to improve our

understanding of the precancerous tissue microenvironment

and the early immune responses against malignant

transformation. It also remains to be determined if and to

what extent signals found in the established tumor

microenvironment, such as lactic acid and hypoxia (182, 183),

shape ILC functions in precancerous lesions. A better

understanding of ILC responses in early tumor development

will also provide novel insights regarding the overall regulation

of ILC responses in response to cellular stress.
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