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Abstract: Sudden infant death syndrome (SIDS) represents the leading cause of death in under
one year of age in developing countries. Even in our century, its etiology is not clear, and there is
no biomarker that is discriminative enough to predict the risk of suffering from it. Therefore, in
this work, taking a public dataset on the lipidomic profile of babies who died from this syndrome
compared to a control group, a univariate analysis was performed using the Mann–Whitney U test,
with the aim of identifying the characteristics that enable discriminating between both groups. Those
characteristics with a p-value less than or equal to 0.05 were taken; once these characteristics were
obtained, classification models were implemented (random forests (RF), logistic regression (LR),
support vector machine (SVM) and naive Bayes (NB)). We used seventy percent of the data for model
training, subjecting it to a cross-validation (k = 5) and later submitting to validation in a blind test
with 30% of the remaining data, which allows simulating the scenario in real life—that is, with an
unknown population for the model. The model with the best performance was RF, since in the
blind test, it obtained an AUC of 0.9, specificity of 1, and sensitivity of 0.8. The proposed model
provides the basis for the construction of a SIDS risk prediction computer tool, which will contribute
to prevention, and proposes lines of research to deal with this pathology.

Keywords: SIDS; lipidomic; metabolomic; glycerophospholipids; machine learning; biomarker

1. Introduction

Sudden infant death syndrome (SIDS) is the leading cause of infant mortality after
the neonatal period in developed countries [1], and it is defined as death that remains
unexplained, after having exhausted clinical and forensic investigations in children under
one year of age [2]. Therefore, it is considered a diagnosis of exclusion; there are multiple
theories that try to explain what causes this death without fully clarifying the physiopatho-
genesis of how or why it occurs. One of the most accepted theories is the triple risk theory,
which implies that a baby is vulnerable, in a critical period of development, and there was
a trigger. Where there are genetic factors that alter the central nervous system, cardiac
channelopathies have been associated [3,4]; as well as inborn errors of metabolism; brain-
stem dysfunction and cardiorespiratory function; respiratory obstruction; infections; heat
stress; and compression of vertebral arteries; among many other factors [5]. Taking this and
modifiable risk factors into account, attempts to avoid these deaths have focused on preven-
tion, especially safe sleep [1]; however, tools need to be investigated to help identify these
patients. Despite the success obtained from the safe sleep campaigns, inquiry is required
in order to obtain answers, which is why, at the moment, the realization of postmortem
directed genetic tests (molecular autopsy) is recommended within the investigation of the
cases [3].
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Lipidomics and metabolomics have been described in the literature as optimal ap-
proaches to find differences in a particular physiological state. For example, a study of the
metabolic profile in urine of preterm newborns of mothers with and without chorioam-
nioitis was carried out, where they found differences between the metabolites that were
able to distinguish those born to mothers who suffered from this pathology or not [6]. Other
authors [7] have worked with the metabolic profile in postmortem brains and identified
changes in the urea as well as changes in carbohydrate and protein metabolism.

Metabolomics currently in disease research shows promise for biomarker discovery.
Biomarkers are useful for predicting or identifying a risk of disease, diagnosing it, monitor-
ing or prognosis [8]. Lipidomics is found within the metabolomics [9]; independently, it is
dedicated to the study and characterization of the set of cellular lipids, the molecules with
which they interact and their functions in the body, showing that the classic functions with
which they are associated with lipids are those of structure and energy storage. However,
technological advances have shown that there are different lipids in the human body sug-
gesting the existence of functions not yet explored [10]. For example, in the detection of
unexplored pathophysiological mechanisms for brain diseases [11], the potential value of
metabolomics to study SIDS stands out. This study compares the profiles of the medulla
oblongata in human brains of patients who died from SIDS with a control group, conclud-
ing that this type of study could lead to the antemortem identification of biomarkers [12].
Graham et al. directed a study of brain metabolomics in patients who died from SIDS
compared to a control group, and they were able to identify possible biomarkers [13].

Omics technologies provide a large amount of data, which, when used in a univariate
or multivariate manner, could contribute to the detection of the risk profile of the patient
who dies from SIDS [14]. The large amount of data, which is produced with new tech-
nologies, benefits from the analysis with machine learning techniques. In the literature,
it is described that through using machine learning (ML) techniques with characteristics
between groups of cases and controls, it is possible to find biomarkers that help in medical
diagnosis [15–18].

Decision making in medical diagnosis is a complicated process in which various
factors are involved that can affect the certainty of doctors; for this reason, different ML
techniques have been implemented to improve certainty in the diagnosis of diseases [19].
For example, Zoabi and collaborators used this type of technique in conjunction with
clinical data to predict coronavirus disease [20]. Other researchers have implemented ML
models for the prediction of cardiac arrhythmias [21]. ML has also been applied to cancer
diagnosis [22], and it has also been recently applied to SIDS. For example, Blackburn and
collaborators, taking into account infant mortality files and using unsupervised machine
learning techniques, have identified groups of descendants of SIDS [23]. Galván-Tejada and
collaborators; using clinical and short-chain fatty acid data, have also sought to aid in the
diagnosis of SIDS [24]. However, it is necessary to continue investigating to identify the real
cause of SIDS and effective models, which allow reducing more deaths from this pathology.

For this reason, in this work, the lipidomics of patients who died from SIDS are
analyzed in comparison with control patients, and machine learning classification models
are implemented in order to contribute to finding the risk profile and potential antemortem
biomarkers that allow avoiding more deaths in the future.

2. Materials and Methods

In this section, the materials and methods used are briefly described, and the steps
that were carried out in the experimentation stage are visualized in Figure 1. All of
the experimentation was developed in R (version 4.1.0) [25], which is a free software
environment for graphics and statistical computing.
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Figure 1. Flowchart of the steps that were followed for the development of the machine learning
models, until their evaluation.

A public dataset available in the National Metabolomics Data Repository of the NIH
Common Fund was used for this study. The dataset is named Lipidomics in sudden infant
death syndrome, and it takes into account deceased patients diagnosed with SIDS (cases)
and deceased patients from any other cause (controls) [26]. Lipid values were extracted
from serum samples, and everything related to their processing regarding clinical analysis
can be found in the “sample preparation” section where the public dataset was found.

2.1. Data Description

The information contained in the dataset “Lipidomics in sudden infant death syn-
drome” includes 6 characteristics of clinical information (post-conception age, postnatal
age, gestational age, patient identification numbers, and the class or diagnosis—that is,
case or control patient. The first includes patients who died and were diagnosed as due to
SIDS and the second corresponds to the death of the patient from any other cause other
than SIDS). The rest of the information is divided into two groups; the first corresponds to
the negative mode analysis of the C18 ion, in which there are 132 characteristics (lipids),
and there are 278 in the positive C18 ion. In total, there are 416 characteristics obtained
postmortem in 33 patients, of which 23 correspond to cases and the rest are controls.

Each of them was grouped by the super class; for easy viewing, Table 1 shows the
first column, which corresponds to the group, and the second column corresponds to the
number of features in this group for the ion C18 negative mode analysis. Table 2 shows the
same distribution of information, but it corresponds to the ion C18 positive mode analysis.
So, joining both modes of analysis, we have 16 different groups of lipids.

Table 1. Grouped features according to their super class; ION C18 negative mode analysis.

Group Number of Features

Cardiolipins 6
Sphingolipids 1

Acids 16
Glycerophosphate 1
Phosphatylcholine 24

Phosphatylethalonamine 24
Phosphatidylglycerols 15
Phosphatidylinositols 12

Glycerophosphoserines 9
Lysophosphatidylethanolamine 8

Ether Phosphatidylethanolamines 16
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Table 2. Grouped features according to their super class; ION C18 positive mode analysis.

Group Number of Features

Cholesterol esters 12
Diacylglycerols 37

Monoradylglycerols 2
Phosphatylcholine 37

Phosphatylethalonamine 11
Sphingomyelins 43
Triacylglycerols 98

Lysophosphatidylcholines 25
Ether Phosphatidylethanolamines 4

Ether Phosphatidylcholines 9

2.2. Data Preprocessing

In this work, only the characteristics corresponding to lipids were included, uniting in
a single data set both the mode analysis positive and negative C18 ion characteristics. So,
410 characteristics were used in total without including the class or diagnostic feature. We
included 33 patients; 23 of them were classified as death by SIDS and the rest died from
any other diagnosis, so they are considered control cases.

An exhaustive search was carried out to look for missing data, which were not found;
therefore, there was no need to impute the data. The diagnostic variable was converted
into binary values, representing 0 for control patients and 1 for SIDS cases.

2.3. Data Normalization

For the normalization of the data, the conversion of the values to z-scores was carried
out, which represents how many standard deviations below or above the mean is the value
to be evaluated from a reference population. This is exemplified in Equation (1), where x is
the observed measure, mu is the population mean, and sigma is the population standard
deviation [27].

z =
x− mu

σ
(1)

2.4. Classification Methods

Classification is one of the uses of supervised learning, which aims to predict class
labels. In the case of medicine, with a binary classification, it seeks to identify the diagnosis:
whether a patient is sick or healthy. Each of the implemented methods is described
below and were developed in R [25], a free software environment for statistical computing
and graphics.

Random forest (RF) [28] is based on multiple decision trees, so it has the advantage
of decreasing the possibility of overfitting; each tree has a prediction of class, and finally,
there is a mean to determine to which class each patient belongs: for example, if a patient is
sick or not.

Each tree follows a series of logical decisions, similar to a flow chart, with decision
nodes indicating a decision to be made about an attribute. Each branch indicates the
decision options, which are assigned a predicted class. An important decision is to choose
the best split, so that the ideal is that the partitions contain examples of a single class. If this
happens, they are considered pure segments. One of the measures to measure this purity is
entropy; the minimum value of 0 indicates that the sample is completely homogeneous,
while 1 indicates the maximum amount of disorder. In the entropy Equation (2), for a
given segment of data (S), the term n refers to the number of different class levels, and Pi
refers to the proportion of values falling into class level i. In simple terms, the total entropy
resulting from a division is the sum of the entropy; each of the n partitions is weighted
by the proportion of examples that fall in that partition (wi) [29]. We used the package
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’randomForest’ [30]. It is important to point out that all the functions mentioned in this
work were used with the pre-established hyperparameters.

Entropy(S) =
n

∑
i=1

wiEntropy(Pi) (2)

Logistic regression (LR) [31] is used for binary classification, modeling the probability
of belonging to one group or another. It transforms the value obtained with the linear
regression (β + β1X), using a function; the most used is the sigmoid function (Equation (3)),
which will result in a value between 0 and 1. In other words, it is useful when you are
interested in the impact of different explanatory variables on a binary response variable [32].
We used the funtion ’glm’ into the package ’stats’ [33].

σ(x) =
1

1 + e−x (3)

Support vector machine (SVM) is also useful for classification; it is considered a
robust method, since it combines characteristics of the nearest neighbors and regression
methods [29]. Its objective is to predict the new sample class, with the prior learning
of the training. SVM uses a linear boundary called a hyperplane to divide data into
groups of similar elements shown in Equation (4). Generally, as indicated by the class
values, assuming you have two classes, the hyperplane, constructed, optimally separates,
or whichever has the maximum distance (margin); a good separation between the classes
will allow a correct classification [34].

w̄ · x̄ + b = 0 (4)

However, in practice, some relationships between variables are not linear, so a kernel
function can be applied to transform the features, assigning the data to a different dimen-
sional space to achieve separation between classes. There are different types of kernels,
such as linear, polynomial, or sigmoid; on this occasion, the radial kernel was used, also
known as the radial basis function (RBF), which is popular for its similarity to the Gaussian
distribution. It is represented by Equation (5) [35]. The ’e1071’ package was used with the
’svm’ function [36].

K(x1, x2) = exp

(
−‖x1 − x2‖2

2σ2

)
(5)

Naive Bayes (NB) is a method that searches to describe the probability of occurrence
of an event. Taking into account the Bayes theorem [37], the probability of occurrence of
an event A is sought; since event B has already occurred, it is also known as conditional
probability, and it is exemplified in the following Equation (6). Thus, the probability is
determined of a sample belonging to one class or another.

P(A|B) = P(B|A)P(A)

P(B)
=

P(A
⋂

B)
P(B)

(6)

The naive Bayes algorithm makes two assumptions about the data: the first is that the
data are equally important and that they are independent, which is unlikely to be the case
in reality. So, the general formula would be:

P(yi | X1, X2..., Xn) = P(X1 | yi)P(X2 | yi)...P(Xn | yi) (7)

Such assumptions have lent themselves to error speculation; however, it is said to
work well, since it is not important to obtain a careful probability estimate provided that
the predicted class values are true. For instance, if a disease classification model correctly
identifies sick a patient, it does not matter whether it was 51% or 99% as long as the
predicted class is correct [29]. The ’naivebayes’ function was used [36].
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2.5. Feature Selection

The selection of the characteristics was carried out through a filtering method, which
consists of applying different statistical techniques. In this case, considering that the sample
size is small, according to the literature, the use of non-parametric tests is useful, which
are used when the data do not present a Gaussian distribution. According to the literature,
the Mann–Whitney U test [38] is useful when the normal or Gaussian distribution of the
data cannot be identified, due to a small sample of the population, as is the case here. It
takes into account the medians to know if there are differences between two independent
populations [39], as in the case of patients who died from SIDS and control cases, according
to each of the characteristics or lipids in this case.

The characteristics are ordered independently of the population to which they belong
in ascending order to obtain the ranks. Subsequently, the Mann–Whitney U is calculated
for each characteristic with Equations (8) and (9), where n1 corresponds to the first sample
population and n2 corresponds to the second population, R represents the sum of the
ranges of the population sample, respectively, obtaining the p value for 95% of statistical
significance. The ’wilcox.test’ function was used [40].

U1 = n1n2 +
n1(n1+1)

2
− R1 (8)

U2 = n1n2 +
n2(n2+1)

2
− R2 (9)

2.6. Cross-Validation

In this work, cross-validation was used, which is a statistical method that helps
evaluate and compare learning algorithms. The main idea when using this method is that
a part of the data set is hidden from the training model (the part shaded in orange in the
Figure 2) in each iteration (k), and this repeats until at some point each of the folds created
is used as a test. Then, we subject the model to a blind evaluation with the data that were
kept out (the part shaded in purple in the Figure 2). This ensures that by subjecting the
classification model to a new population, the algorithm will behave similarly to the test
stage in the experimental phase, largely avoiding overfitting [41]. It was implemented with
the function ’trainControl’ inside the ’caret’ package [42].

Figure 2. Exemplification of the cross-validation used in this work.

2.7. Metrics of Evaluation

There are two classification possibilities in this work: the SIDS patient or control
case. Therefore, with the cases subjected to the model, a confusion matrix can be formed.
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To determine the true positive rate (Sensitivity), that is, the probability that a sick subject has
a positive test result, we use Equation (10), where TP refers to true positive cases (patients
with disease classified as sick) and FN refers to false negatives (healthy patients classified
as sick). The true negative rate (Specificity), in other words, is the probability that a healthy
subject will have a negative test result as represented by Equation (11), where TN are true
negatives (healthy patients classified as healthy) and FP are false positives (sick patients
classified as healthy); based on this, the ROC curve (receiver operation curve) is plotted,
which represents the probability of the classifier to correctly determine a sample chosen at
random, either positive or negative; and the area under the curve (AUC) was calculated.
The higher the AUC, the better the model is at predicting 0 as 0 (healthy) and 1 as 1 (sick).
This means that the higher the AUC, the better the model will be at distinguishing between
patients with disease and without disease. That is, the model is excellent if it has an AUC
of 1, which is interpreted as that the model has a good measure of separability. On the
other hand, if the AUC is close to 0, it is the worst measure of separability: that is to say
that instead of classifying 1 as 1, it does so as 0, and vice versa. The AUC of 0.5 represents
that the model has no class separation capability, which is equivalent to making a random
decision [43–46].

Sensitivity =
TP

TP + FN
(10)

Speci f icity =
TN

TN + FP
(11)

Another metric used was accuracy, which is a statistical measure of how well a binary
classification test correctly identifies or excludes a condition. In other words, it is the
proportion of true results among the total number of cases examined and is represented
by the following Equation (12), where TP are true positives (sick patients identified as
such), TN are true negatives (healthy patients identified as such), FP are false positives
(healthy patients identified as sick) and FN are false negatives (sick patients identified as
healthy) [47]. For this stage, the ’caret’ [48] and ’pROC’ [49] libraries were used.

Accuracy =
TP + TN

TP + FP + FN + TN
(12)

3. Results and Experimentation

This section presents the experiments carried out for the development of this work
as well as the results obtained. As the first step, the set of lipidomic features (410 plus
the class) were subjected to four different classification methods such as random forest
(RF), logistic regression (RL), support vector machine (SVM), and naive Bayes (NB). These
were used to predict 0 (control patient) or 1 (patient died from SIDS), using 70% of the
data and cross-validation with k-folds (5). Subsequently, each of the trained models was
submitted to evaluation with the remaining 30% of data, performing a blind test, and
the evaluation metrics reported in Table 3 were obtained. Different rates for splitting the
dataset are reported in the literature for the training and testing stages; however, it was
observed that using the 70/30 rate on a small dataset ensures that the same proportion of
cases and controls is maintained.
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Table 3. Evaluation metrics for each classifier of the standardized dataset.

Classification Method Features AUC Accuracy Sensitivity Specificity

RF 410 0.2857 0.4444 0.5714 0
RF 21 0.9000 0.8889 0.8000 1
LR 410 0.4500 0.5555 0.4000 0.7500
LR 21 0.7500 0.7777 0.8000 0.7500
SVM 410 0.7000 0.7777 0.8000 0.7500
SVM 21 0.9000 0.8888 1 0.7500
NB 410 0.6750 0.6666 0.6000 0.7500
NB 21 0.8000 0.7777 0.6000 1

Figure 3 shows the AUC obtained in the blind test of the models implemented with
the 21 selected features. It is observed that regardless of the classification method used,
all exceed 0.5 AUC, with the RF and SVM method achieving the best performance with a
0.9 AUC.

Figure 3. ROC curves of the four machine learning classification models, with the 21 selected features,
blind test results.

Then, a new experiment was carried out, using 70% of the data, which consisted of
submitting each of the 410 characteristics to the Mann–Whitney U test, with which the
p-value was obtained. Once this analysis was carried out, the characteristics with the
p-value greater than 0.05 were selected, with a total of 21 characteristics, which are shown
in Table 4. In this table, the name of the characteristic is shown in the first column, while
the corresponding class to which it belongs, the chemical formula and finally the p-value
obtained are observed on the right.
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Table 4. Features selected by Mann–Whitney U test of the lipidomic profile in SIDS.

Features Super Class Main Class Sub Class 1 Formula p-Value

PC 40:7 Glycerophospholipids Glycerophosphocholines PC C48H82NO8P 0.00420
PI 36:2 Glycerophospholipids Glycerophosphocholines PC C44H84NO8P 0.00420
PE 35:0 Glycerophospholipids Glycerophosphoethanolamines PE C40H80NO8P 0.01060
DG 34:1 Glycerolipids Diradylglycerols DAG C37H70O5 0.01308
PC.38.7 Glycerophospholipids Glycerophosphocholines PC C46H78NO8P 0.01602
PE 34:3 Glycerophospholipids Glycerophosphoethanolamines PE C39H72NO8P 0.02355
TG 57:8 Glycerolipids Triradylglycerols TAG C60H100O6 0.02355
CL 70:5 Glycerophospholipids Cardiolipins CL C79H144O17P2 0.02355
SM 40:1 Sphingolipids Sphingomyelins SM C45H91N2O6P 0.02826
PC 30:2 Glycerophospholipids Glycerophosphocholines PC C38H72NO8P 0.02826
PC 32:3 Glycerophospholipids Phosphatidylcholines PC C40H74NO8P 0.03372
SM 36:2 Sphingolipids Sphingomyelins SM C41H81N2O6P 0.03372
PC 33:1 Glycerophospholipids Glycerophosphocholines PC C41H80NO8P 0.03372
CE 18:2. Sterol Lipids Sterol esters Chol C45H76O2 0.03372
DG 36:2 Glycerolipids Diradylglycerols DAG C39H72O5 0.03372
PC 32:1 Glycerophospholipids Glycerophosphocholines PC C38H73O10P 0.03999
PG 36:3 Glycerophospholipids Glycerophosphoglycerols PG C42H77O10P 0.04717
CE 22:6 Sterol Lipids Sterol esters Chol C49H76O2 0.04717
PC 40:10 Glycerophospholipids Glycerophosphocholines PC C50H80NO8P 0.04717
PC 42:7 Glycerophospholipids Glycerophosphocholines PC C50H86NO8P 0.04717
SM.30.1 Sphingolipids Sphingomyelins SM C35H71N2O6P 0.04717

1 PC—Phosphatidylcholines; PE—Phosphatidylethanolamines; DAG—Diacylglycerols; TAG—Triacylglycerols;
CL—Cardiolipins; SM—Sphingomyelins; Chol—Cholesterol esters; PG—Phosphatidylglycerols.

Each of the selected characteristics was subjected to normalization, using a z-score.
With these selected characteristics plus the class or diagnosis, classification models were
trained with the RF, RL, SVM and NB methods, dividing the data by 70 and 30 for cross-
validation and blind testing, respectively. The same were evaluated in each stage, and the
performance of each of the models is reported in Table 3.

4. Discussion

These results represent the first report describing a complete lipid profile analysis of
cases and controls in SIDS.

A first experiment was carried out, which consisted of training the classification
models, which will identify patients at risk of dying from SIDS compared to the control
group (who died for any other reason), using four machine learning methods (RF, RL, SVM
and NB), using 410 features (lipids values).

In the second experiment, using the statistical method of the Mann–Whitney U test,
it was sought to know if it was possible to differentiate between the two groups with
these features. We found that only 21 characteristics achieved this objective with a p-
value of <0.05, that is, achieving statistical significance. In addition, each of the selected
characteristics was subjected to normalization by means of z-score, and four classification
models were subsequently implemented with the same automatic learning methods of the
previous experiment in order to carry out the comparison.

Both experiments were subjected to cross-validation and exposed to evaluation with
30% of the data to perform a blind test, which means that the developed models had no
prior knowledge of the new data to be evaluated, obtaining evaluation metrics for each
one of them. In Table 3, the blind test stage of each one of the models is observed, with its
two variants, with all the characteristics (410) and with the selected ones (21). It is clear
that the models with 21 features present better performance compared to the models with
410 features. This is consistent with the literature [50,51], since a greater number of features
does not ensure better performance of machine learning models, but on the contrary, they
can be detrimental, as in this case.

According to the results, in the test stage, any of the four models (with 21 characteris-
tics) present acceptable evaluations with an AUC greater than 0.75, specificity greater than
0.75, sensitivity greater than 0.6 and accuracy of 0.7777. However, the RF method stands
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out for having three of the four metrics evaluated with the best performance (AUC 0.9),
which is followed by SVM (AUC 0.9), NB (AUC 0.8) and finally LR (AUC 0.75).

The NB model stands out by maintaining the same value in the accuracy and sensitivity
metrics of the model with all and with the selected features. Based on the principle of
independence of the characteristics for which this classifier is considered naive, it is difficult
for such a statement to be true, since in the human body, metabolites and other body
substances are in constant interaction. This model, according to the sensitivity, is the
one with the worst performance regarding detecting the disease in sick subjects: it barely
manages to overcome the random choice.

Such performances could be improved by balancing the data set. Different techniques
allow for balancing data sets. For example, there are the resampling methods; within
them are those of oversampling, which are responsible for increasing the minority class;
on the other hand, those of subsampling reduce the minority class. However, they are
controversial, since the use of subsampling techniques could lose valuable information,
while oversampling techniques if the samples are few can lead to overfitting. For this
reason, in this work, we decided not to implement them; however, it is interesting to know
the behavior of the models when implementing these techniques and discuss them, which
could be future work. Regarding the values close to the unit, as the sensitivity of 1, in
the SVM model with 21 features, even using cross-validation techniques and the blind
test would also benefit from testing the models with oversampling techniques or bigger
data sets.

Of the lipids capable of discriminating between the two groups, 13 of the them cor-
respond to the group of glycerophospholipids, of which 8 correspond to the group of
glycerophosphocholines, 2 correspond to the group of glyphosphoethanolamines, 1 corre-
sponds to the group of cardiolipins, 1 corresponds to the group of phosphatidylcholine,
and 1 corresponds to the group of glycerophosphoglycerol. Of the remaining lipids, three
belong to the group of sphingolipids and a subgroup of sphingomyelins, three belong
to glycerolipids in subgroups of one triradyglyceroles and two diradylglycerols; and the
remaining two belong to the sterol lipid group and sterol ester subgroup.

Hishikawa et al. [52] describe in their research the diversity of the functions of
membrane glycerophospholipids in mammalian cells, which can be the constituents of cell
membranes as well as precursors of cell signaling molecules and are part of lipoproteins and
bile, among others. On the other hand, cone-shaped glycephospholipids with a small polar
head (such as PE and CL), and/or bulky acyl chains, have important functions in membrane
fusion, endocytosis, exocytosis, cytokinesis and in vesicle trafficking. That is to say that they
are important in the transport of lipids. In addition, CL has been associated with problems
of cellular respiration and energy production. It also stands out that lung surfactant, which
is produced by type II pneumocytes, prevents lung collapse, and it is approximately 90%
made up of lipids, and there are mainly dipalmitoyl-phosphatidylcholine and associated
proteins in the remaining 10%. In other research, the role of glycerophospholipids in neural
membranes is recognized, which is also relevant, since brain problems have been associated
as causes of death from this syndrome [53–55]. This reinforces theories about pulmonary
defects and at the same time opens possible lines of research since, when found in the
results of this work, the ability to differentiate patients who died from SIDS from the control
group, with glycerophospholipids, could lead to finding answers about the real origin of
this pathology.

In the related literature, the work of Graham et al. [12,13] stands out, as they have used
undirected metabolomics in their first work and directed metabolomics in their second to
be able to identify babies who die of SIDS against those who do not, achieving AUC values
of 1 and 0.92, respectively. However, they recognize some limitations in their work, such
as that the cohort is not balanced, and that it is necessary to determine if their proposal is
of clinical utility in blood. In contrast to the work that we present, the lipidomic profile
was used, using a sample in peripheral blood, which could be useful for accessibility. It is
relevant that our experimentation includes a validation or blind test with 30% of the data,
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which the trained model is totally unaware of. This allows reinforcing the performance of
the model and visualizing the behavior it will have in real life, simulating that it is subjected
to a different and unknown population.

5. Conclusions

The information presented regarding the lipids capable of discriminating between
babies who died or not due to SIDS provides valuable information to the state of the art.
To our knowledge, it is the first work that reports the lipidomic profile in babies who die
from SIDS.

The 21 characteristics used for the predictive models are potential biomarkers that are
capable of predicting together (multivariate model) if a patient is likely to die from this
cause. It is encouraging because lines of research emerge aimed at obtaining answers about
what really causes death, so that in the future, an accurate risk profile can be obtained to
prevent more deaths.

There are a few studies that used metabolomic data from children who died of SIDS
to predict susceptibility to SIDS death [12,13]. It is invasive to obtain tissue samples,
but in contrast, this study has the potential to use lipids that were obtained in blood.
The values obtained in the blind test with 21 characteristics were very good, achieving a
maximum AUC of 0.9 with the RF model, which could be used as a prediction method, and
a computer tool for detect potential cases, allowing the capture and follow-up of patients
with this condition.

However, it presents some limitations, such as the imbalance of the data and the small
size of the sample, which will be possibly favored by a larger cohort.

An exhortation is also required from the health institutions to carry out a follow-up
in this age group in order to make databases that allow obtaining relevant information,
preferably in a larger cohort. A second approach that would be interesting is to analyze the
21 selected characteristics in order to reduce them according to the definitions of biomarkers
in the [56] literature. Some can be considered as potential biomarkers and be submitted
to the evaluation phase, both analytical and clinical, in order to verify their relevance in
living patients. In addition, the metabolic or lipidomic pathways can tentatively manage to
discriminate between cases and controls, which could help clearly identify patients with a
higher risk of dying from this cause.
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