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Abstract
When using Bayesian hierarchical modeling, a popular approach for Item Response Theory (IRT)
models, researchers typically face a tradeoff between the precision and accuracy of the item
parameter estimates. Given the pooling principle and variance-dependent shrinkage, the expected
behavior of Bayesian hierarchical IRT models is to deliver more precise but biased item parameter
estimates, compared to those obtained in nonhierarchical models. Previous research, however,
points out the possibility that, in the context of the two-parameter logistic IRT model, the
aforementioned tradeoff has not to be made. With a comprehensive simulation study, we provide
an in-depth investigation into this possibility. The results show a superior performance, in terms of
bias, RMSE and precision, of the hierarchical specifications compared to the nonhierarchical
counterpart. Under certain conditions, the bias in the item parameter estimates is independent of
the bias in the variance components. Moreover, we provide a bias correction procedure for item
discrimination parameter estimates. In sum, we show that IRT models create a unique situation
where the Bayesian hierarchical approach indeed yields parameter estimates that are not only
more precise, but also more accurate, compared to nonhierarchical approaches. We discuss this
beneficial behavior from both theoretical and applied point of views.
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Bayesian hierarchical modeling is a popular approach for Item Response Theory (IRT) models.
They are quite complex and, depending on sample size and test length, consist of many parameters
of the same type (e.g., item discriminations and item difficulties, as well as person parameters),
making them excellent candidates for Bayesian hierarchical specifications. Due to their hierar-
chical prior structure and the associated pooling process, which maximizes the information in a
given dataset, Bayesian hierarchical models yield item parameter estimates that are more precise
than those of their nonhierarchical counterparts are (e.g., Katahira, 2016). This is typically re-
flected by narrower 95% highest density intervals (HDI) of the parameter estimates.

There is a tradeoff, however, because the increased precision (i.e., smaller standard error) is
associated with a decreased accuracy (i.e., larger bias) of the parameter estimates. The pooling
process depends on the variance of the individual item parameter estimates. To the extent their
variance decreases, their estimates shrink towards their grand mean, that is, the mean of their
hyperprior distribution (Efron & Morris, 1977). Thus, since individual item parameters always
vary to some degree (Fox, 2010), their estimates obtained with Bayesian hierarchical models
exhibit a certain amount of bias, proportional to the amount of shrinkage. Hence, the expected
(typical) behavior of Bayesian hierarchical models is to deliver more precise but biased individual
parameter estimates, compared to the parameter estimates obtained with their nonhierarchical
counterparts.

However, Koenig et al. (2020) found that their optimized hierarchical two-parameter logistic
(OH2PL) IRT model for small-sample item calibration outperformed its nonhierarchical coun-
terpart, especially in terms of bias of the item discrimination parameters. This was an interesting
finding, because it contradicts the typical and theoretically expected behavior of Bayesian hi-
erarchical models (larger bias of all parameters compared to nonhierarchical models).

It is possible, however, that applying the Bayesian hierarchical approach to IRT models creates
a unique situation where there is no tradeoff between accuracy and precision. Reasons for this
unique situation may relate to a combination of characteristics of the item parameters of IRT
models with the current practice of Bayesian hierarchical modeling (i.e., current recommendations
for model specifications and the specification of priors for variance components). Koenig et al.
(2020) did not investigate this possibility further. Therefore, the objective of this paper is to
investigate the question whether Bayesian hierarchical IRT models indeed behave differently than
their general counterparts, in the sense that the aforementioned tradeoff between precision and
accuracy does not have to be made in general, or whether the behavior is a consequence of the
interplay between item parameter and model characteristics when applying the Bayesian hier-
archical approach to IRT models. We further want to explore the specific reasons for this atypical,
but beneficial behavior of Bayesian hierarchical IRT models.

In the following sections, we illustrate (1) the core characteristics and specification of the
Bayesian H2PL, (2) the typical characteristics of parameters in IRT contexts and priors of current
Bayesian hierarchical IRT models, and (3) describe our comprehensive simulation study. We then
(4) present the results of our simulation, and discuss them in relation to their benefits for accurate
item calibration in small samples, computerized adaptive testing (CAT) and Bayesian hierarchical
IRT modeling in general. Scripts to replicate this simulation, our data, and results are available as
an online supplement at https://osf.io/ybk2f/ (Jackman, 2009)

Pooling, Shrinkage, and Bias in the Context of the Hierarchical 2PL
Item Response Theory Model

Suppose a sample of J ( j ¼ 1,…, J ) individuals takes a test consisting of K (k ¼ 1,…,K) items.
According to the 2PL IRT model (Birnbaum, 1968), the probability of a correct response
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ykj 2f0, 1g of person j to item k is a function of their ability θj, the discrimination αk , and difficulty
βk of the item

Pr
�
yjk¼ 1jθj, αk , βk

� ¼ logit
�
αk

�
θj � βk

��
: (1)

Both discrimination and difficulty parameters are item-specific. Thus, in a test of K items there
are K discrimination and difficulty parameters. The hierarchical Bayesian approach implements a
hierarchical structure of prior distributions for the individual item parameters αk , βk and their
grand means μα, μβ along with the variance components τα, τβ (cf. Koenig et al., 2020).

A common implementation of the hierarchical 2PL IRT model is as follows. For the abilities θj,
(a) standard normal distribution is used as prior. Moreover, for each item, a bivariate normal
distribution is used for the item-specific parameter vector ξk ¼ flogðαkÞ, βkg. The log-
transformation on the discrimination parameter is required for the use of the bivariate normal
distribution (e.g., Glas & van der Linden, 2003). The bivariate normal distribution is governed by
the vector of item parameter grand means μα, β ¼ fμα, μβg and covariance matrix

Σ ¼
�
τα ρβατβτα
ραβτατβ τβ

�
. For the grand means μα, β normal prior distributions are used. The prior

for Σ is a noninformative Inverse Wishart distribution with υ ¼ 3 degrees of freedom and the

identity matrix I ¼
�
1 0
0 1

�
as scale matrix. The variance components τα and τβ are not modeled

explicitly. They can be recovered, however, from the diagonal of the covariance matrix Σ. The full
model is specified as follows:

Pr
�
yij¼ 1jθj, αk , βk

� ¼ Bernoulli
�
logit

�
αk

�
θj � βk

���
(2)

Level 1:

θj ∼ Nð0, 1Þ (3)

ξk ∼BVNðμα, β,ΣÞ (4)

Level 2:

μα ∼ Nð0, 1Þ (5)

μβ ∼ Nð0, 2Þ (6)

Σ ∼ IWð3, IÞ (7)

In this hierarchical structure, the individual item parameters share an inherent dependency with
their respective grand means (Betancourt & Girolami, 2015). This dependency maximizes the
information available for the estimation of the individual item parameter estimates. The increase in
information leads to an increased precision of the individual parameter estimates, that is, narrower
95% HDIs or smaller standard errors.

Another consequence of the dependency of individual item parameters and their grand mean is
that, for instance, an item discrimination parameter αk lies between the individual estimate bαk and
its grand mean μα. Thus, there are two extreme cases: (1) the item discrimination parameter
estimate corresponds to its individual estimate αk ¼ bαk (no pooling), or (2) the item discrimination
parameter estimate corresponds to its grand mean αk ¼ μα (complete pooling). The estimates of
the item discrimination parameters depend on their variance component τα. As τα → 0, the item
discrimination parameter estimates shrink towards, and eventually correspond to, their grand

40 Applied Psychological Measurement 48(1-2)



mean μα. This shrinkage, however, introduces a certain amount of bias into the individual item
parameter estimates, because αk ¼ μα would only be unbiased if τα ¼ 0, that is, all item dis-
crimination parameter estimates are equal. In the context of the 2PL model, however, zero
variance situations are hardly realistic. Thus, in the case of τα > 0 and the resulting shrinkage,
individual parameter estimates in Bayesian hierarchical models, although more precise, are biased
compared to estimates obtained from nonhierarchical models.

The amount of bias introduced into the estimation of the individual item parameters depends on
the relation of the true variance τα of a set of item parameters (item discriminations in this case) and
the accuracy of its estimate bτα. Suppose you have a set of item discrimination parameters, the
typical range of their values is known and similar across assessments, that is, their grand mean
remains roughly constant across applications (which seems a plausible assumption for item
discrimination parameters of the 2PL). The theoretically possible shrinkage (and thus the as-
sociated bias) increases with an increasing τα, because with the increasing τα the individual
parameter estimates are less tightly clustered around their grand mean. Consequently, the in-
dividual parameter estimates’ biases increase even more with the bias of bτα. Their bias should be
larger whenbτα is underestimated, because less variability is assumed than there actually is, leading
to an increased amount of unintended shrinkage. Thus, we have a relation betweenbτα the accuracy
of and the respective individual item discrimination parameter estimates bαk . We will therefore
explore in detail the relation of the bias of bτα and bαk .
Typical Characteristics of Parameters and Current Specifications of
Bayesian Hierarchical Item Response Theory Models

To derive possible explanations of the atypically better performance of the Bayesian H2PL model
compared to its nonhierarchical counterpart (as noted by Koenig et al., 2020), we have to consider
the typical characteristics of the item parameters, as well as processes in the context of the current
practice of specifying Bayesian hierarchical IRT models.

First, the item discrimination and difficulty parameters are known to fall in a relatively narrow
range. The item discriminations, for example, typically fall in the interval ½0:5, 3:0� (e.g., OECD,
2021). Parameter values outside this interval are considered unrealistic or undesirable, and items
exhibiting such discriminations are usually eliminated from an item bank. Similarly, item dif-
ficulty parameters are typically found to be in the interval ½�4, 4� (e.g., OECD, 2021); again, item
difficulties outside this interval are rare and seldom used for a test. Hence, the variance component
of both item parameter types is also restricted. Using these assumptions, the maximum variance of
the item discriminations is τα ¼ 1, and of the item difficulties τβ ¼ 16. Note that the typical
variance components in calibrated item banks are much smaller: For instance, the variance
components of the item discrimination and difficulty parameters of the PISA 2018 cycle were
mostly τα < 0:4, and τβ < 1:0 (cf. OECD, 2021). Hence, both individual item parameter estimates
cluster closely around their respective grand means (especially in case of the item discrimination
parameters). Thus, the variance component can be considered small enough to render the bias
induced by shrinkage negligible, relative to the true values of the item parameters.

Second, current specifications of Bayesian H2PL models are tailored towards avoiding bias in
both the individual parameter estimates bαk ,bβk and the estimates of their variance componentsbτα,bτβ. They use separate prior distributions for the variance components and the correlation
between the item parameters, for a better control over the behavior of both parameters (e.g.,
Barnard et al., 2000), and to avoid the a-priori dependencies associated with the Inverse Wishart
distribution for covariance matrices. This so-called separation strategy uses the LKJ prior dis-
tribution for the lower-triangular Cholesky factor of the correlation matrix LV of the item
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parameters. For a D×D lower-triangular Cholesky factor of a positive-definite matrix this prior

distribution has the density LKJðLVjηÞ ¼ ∏D
d¼2 L

D�dþ2η�2
dd governed by the shape parameter η

(Lewandowski et al., 2009). Setting η ¼ 1 yields a uniform density over correlation matrices of
order D; as η increases, extreme correlations become more unlikely (Stan Development Team,
2020). Setting η ¼ 2 yields a weakly informative prior for the Cholesky factor of the item
correlation matrix. For the variance components, instead of the noninformative Inverse Gamma
distribution, current Bayesian hierarchical models use weakly informative (half-) Cauchy or
Exponential distributions as prior distributions for the variance components (e.g., Ulitzsch et al.,
2020; Bezirhan et al., 2021). The primary reason for this shift is that the Inverse Gamma dis-
tribution is problematic for variance components close to zero. Especially in noninformative
specifications, the Inverse Gamma distribution has a low mass near zero, which introduces
unintended information (Gelman, 2006). When the true variance component is near zero (in
contrast to the assumed prior during estimation), its estimate will be drawn away from zero,
resulting in biased estimates of the variance components. Using either the Cauchy or Exponential
distribution eliminates (or, at least, reduces) this source of bias. Thus, both alternative prior
distributions yield more accurate variance estimates. In the model specification below, the
separation strategy is implemented by (13) and (14).

Lastly, current specifications of Bayesian H2PL models are noncentered. In noncentered
specifications, the first level of the model consists of a standard normal prior distribution for the
abilities θj. But instead of directly sampling item-specific parameter vectors ξk from a bivariate
normal distribution as in (4), the first level of the noncentered model is completed by a standard

normal prior distribution for item-specific vectors of uncorrelated z-scores ~ξk ¼ fzαk , zβkg (see
also Koenig et al., 2020, 2022). These z-scores are essentially uncorrelated deviations from the

parameter grand means μα and μβ. The actual item parameter estimates bαk ,bβk are then computed,

not sampled, by first multiplying ~ξk by the diagonal matrix of the variance componentsΛ andLV

to obtain item-specific vectors of correlated deviations, ξk ¼ ðΛLV
~ξkÞT, and then adding the

respective grand means, that is, bαk ¼ expðμα þ ξαkÞ and bβk ¼ μβ þ ξβk (e.g., Koenig et al., 2022).
The resulting joint posterior of the item and person parameters is much easier to explore [no
correlation on level 1 and no cross-level dependency as in (4)], thus avoiding bias due to
inefficient sampling or an insufficient effective sample size (Betancourt & Girolami, 2015;
Zitzmann & Hecht, 2019). The complete noncentered, optimized specification of the H2PL is as
follows:

Pr
�
yjk¼ 1jθj, αk , βk

� ¼ Bernoulli
�
logit

�
αk

�
θj � βk

���
(8)

Level 1:

θj ∼ Nð0, 1Þ (9)

~ξk ∼ Nð0, 1Þ (10)

Level 2:

μα ∼ Nð0, 1Þ (11)

μβ ∼ Nð0, 2Þ (12)

τα, β ∼ Cauchyð0, 5Þ (13)
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LV ∼ LKJð2Þ (14)

In sum, favorable and optimized model specifications that avoid bias in estimated variance
componentsbτα,bτβ in combination with typically small true variance components τα, τβ of the item
parameters might explain why the Bayesian H2PL yields item parameter estimates that are less
biased than the estimates obtained with its nonhierarchical counterpart. We will now explore this
principle further.

Purpose of the Study

Consequently, the primary purpose of this paper is an in-depth investigation of the question,
whether the curious behavior of the Bayesian H2PL is (a) an indication of a generally different
behavior of Bayesian hierarchical IRT models, compared to that of their general counterparts, or
(b) a consequence of the interplay between item parameter and model characteristics as outlined
above. Moreover, we aim at providing insights regarding the specific reasons for this curious
behavior in the context of the Bayesian H2PL.

Therefore, we follow a two-step approach answering two primary research questions. First, we
investigate whether the hierarchical specifications of the 2PL, namely, the optimized Bayesian
hierarchical 2PL (OH2PL; Koenig et al., 2020) and the standard Inverse Wishart specification
(SH2PL), yield less biased item parameter estimates than their nonhierarchical counterpart. We
chose the OH2PL and the SH2PL as examples of current approaches to Bayesian hierarchical IRT
modeling (e.g., Gilholm et al., 2021). In this step, we compare the performance (relative and
absolute bias, root mean squared error RMSE) of the hierarchical specifications of the 2PL with
different specifications of the nonhierarchical 2PL model to check whether the advantages are
robust across a broad range of data conditions. We also look at the widths of the 95% HDIs of the
resulting item parameter estimates across model specification to assess the precision of the es-
timates. Second, we take a closer look at the relation of the relative and the absolute bias in the
individual parameter estimates bαk ,bβk on the one hand, and the true and estimated variance
components τα, τβ in the hierarchical specifications of the 2PL on the other hand. Here, we aim at
clarifying (1) whether the relative and absolute bias in the item parameter estimates is independent
from their true variance components (i.e., does not increase when τα increases), and (2) whether
the relative and absolute bias in the item parameter estimates is independent from the bias in the
estimated variance components. If both questions can be answered in the affirmative, we provide
evidence that the behavior of the H2PL is in fact different from (or even superior to) general
Bayesian hierarchical models.

As a further contribution to the literature, we will further seek clarification whether there is a
critical value of the true variance components τCritical that can be considered too large, that is, a
cutoff from which we have to expect biased individual item parameters. This, in turn, will allow
pinpointing cases in which the Inverse Gamma is a better choice for the hyperprior for the variance
components. As mentioned before, the use of the Inverse Gamma has been discouraged because of
its erratic behavior when the true variance is close to zero (e.g., Gelman, 2006; Polson & Scott,
2012). So far, there is no clear indication of what might be considered “too close to zero.”

Moreover, we present a bias correction procedure for individual item discrimination parameter
estimates in cases in which they are biased because of their variance component being under-
estimated. As mentioned before, bias should be more pronounced when the true variance is
underestimated due to larger unintended shrinkage. Such a procedure constitutes another im-
portant contribution to optimize the Bayesian H2PL model further, especially for its use in small-
sample situations.
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Method

Simulation Design

The fully crossed design of the study consisted of the following factors. (1) The variance in the
item discriminations τα ¼ ð0:05, 0:1, 0:2, 0:4, 0:6, 0:75, 1:0Þ, (2) the variance in the item diffi-
culties τβ ¼ ð0:45, 0:6, 0:8, 1:0, 1:5Þ, (3) the correlation between the item parameters
ραβ ¼ ð:0, :3Þ, (4) the sample size N ¼ ð50, 100, 200, 500, 1200Þ, (5) the test length
K ¼ ð20, 30, 40Þ, and (6) the model specification (the OH2PL, the SH2PL, and three specifi-
cations of the nonhierarchical 2PL model (NH2PL): noninformative, weakly informative, and
informative prior distribution for the item discrimination parameters; see below). This resulted in a
total of 5250 conditions examined. We chose the variances of the item parameters to cover a large
range of both typical and extreme values and the correlations, sample sizes, and test lengths to be
able to investigate, whether the beneficial behavior of the OH2PL found by Koenig et al. (2020) is
also present when the item parameters are uncorrelated, and in suboptimal testing conditions.
Sample sizes larger than N = 200 are considered adequate for item calibration under the 2PL IRT
model, where N = 1200 is considered the point of diminishing returns (De Ayala, 2023).

Nonhierarchical Specifications of the 2PL Model

The prior configurations of the nonhierarchical models were chosen to keep the different model
specifications comparable, and reflect prior configurations common in IRTmodeling (e.g., Levy &
Mislevy, 2016). In all model specifications, the ability parameters were given a standard normal
prior θj ∼Nð0, 1Þ for identification purposes.

The nonhierarchical Bayesian specifications of the 2PL model only have a single level
consisting of prior distributions for the individual item parameters. Because Koenig et al. (2020)
found differences in the performance (compared to the hierarchical specification) to be specific to
the item discrimination parameter, the specifications differ primarily in the prior distribution for
the individual discrimination parameters [NH2PL1, NH2PL2, NH2PL3, respectively:
αk ∼ logNð0, 1Þ, αk ∼ logNð0:5, 1Þ, αk ∼ logNð1, 1Þ]. The prior distribution for the item difficulty
parameters βk ∼Nð0, 2Þ was kept constant across the three specifications.

Data Generation and Analysis

Data were generated under a unidimensional 2PL with correlated item parameters. To obtain
realistic item discrimination and difficulty parameters (0:5 < αk < 4:0 and �4 < βk < 4), we drew
uncorrelated vectors of item parameters from a truncated bivariate normal distribution with grand
mean vector μα, β ¼ f1, 0g with lower limits LLα, β ¼ f0:65, � 4:5g and upper limits
ULα, β ¼ f4:0, 4:5g. We rescaled these vectors by mean centering the uncorrelated vectors and
adding the true marginal means of the truncated bivariate distribution to obtain the desired
correlations. We generated 100 data sets for each simulation condition with different item and
person parameters for each dataset resulting in slightly more than half a million data sets.

We used Stan (Carpenter et al., 2017) and the R interface Rstan (Stan Development Team,
2020) to estimate the hierarchical and nonhierarchical models. Stan employs the No-U-Turn-
Sampler (NUTS; Hoffman & Gelman, 2014), which is an adaptive variant of Hamiltonian Monte
Carlo (HMC). In HMC, Hamiltonian systems are simulated to sample from target distributions
(Neal, 2011). By introducing the momentum as an auxiliary variable, HMC is able to utilize the
local geometry of the target distribution in order to traverse the posterior density more efficiently
(Gelman et al., 2014). This usually requires, however, hand-tuning of key parameters of the
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standard HMC algorithm. The No-U-Turn-Sampler implemented in Stan eliminates this re-
quirement by adaptively tuning the necessary parameters. Thus, applied researchers can focus on
the model specification, and not on the setup of the MCMC algorithm (Annis et al., 2017). For
more details about the standard HMC algorithm and its adaptive variant interested readers are
referred to Hoffman and Gelman (2014), where both algorithms are illustrated in great detail.
Three chains with 3000 draws (1000 burn-in cycles) were set up. Moreover, different random
starting values were supplied to each chain. Convergence was achieved when the R-hat diagnostic
was smaller than 1.05 (Vehtari et al., 2021). For a comprehensive overview of the frequency of
non-convergent solutions across model specifications, see Supplement 1. Non-convergent so-
lutions were excluded from further analysis.

Evaluation Criteria

To test the aforementioned assumptions, we calculated the average raw bias
�
B ¼ 1

R πest � πtrue
�
,

the average relative bias [because item difficulties can be close to zero, we calculated it as

Brel ¼ 1
R ðπest � πtrueÞ=ð1þ jπtruejÞ], the absolute bias Babs¼ j 1Rπest � πtruej, and the root mean

squared error (RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Rðπest � πtrueÞ2=R
q

). Here, πest and πtrue are the estimated and true

values of a parameter (π serving as generic notation for the parameters of interest), respectively,
and R the number of replications. The average width of the 95% HDI was indicated by the
difference between the 97.5% percentile and the 2.5% percentile, and was averaged over items and
replications. As mentioned above, the behavior of the hierarchical 2PL IRT models is in fact
different from (or even superior to) general Bayesian hierarchical models when two assumptions
are met. First, the average relative and absolute bias and RMSE of the item parameters under the
hierarchical approach is similar or superior to the relative and absolute bias and RMSE of the item
parameters under its nonhierarchical counterpart. The first assumption will be supported, if
BH2PL ≤B2PL, BabsLH2PL ≤Babs2PL and RMSEH2PL ≤RMSE2PL across a wide range of simulation
conditions. Second, a different behavior is assumed when the relative and absolute bias in the item
parameter estimates does not increase when the associated true variance components increase, and
when the bias in the item parameter estimates is independent from the bias in the estimated
variance components. The second assumption will be supported if Brel remains approximately
constant as τα, τβ increase and rbα̂kb τ̂α¼ rb β̂k

b τ̂β
¼ rab α̂k

b τ̂α¼ rab β̂k
b τ̂β

≈ 0. We used the com-

monly applied cutoff of Brel < 0:10 to indicate unbiased item parameter estimates (Kaplan, 1988).
The second indication was independence of Brel and Babs in individual item parameter estimates
and their variance components.

Results

Hierarchical Specifications Consistently Outperform the Nonhierarchical 2PL

Figure 1 shows the bias of the item discrimination parameter estimates of both specifications
of the Bayesian H2PL in comparison with their nonhierarchical counterpart, across all
simulation conditions. It becomes evident that the performance of both the OH2PL and the
SH2PL was better (and never worse) than the performance of the different specifications of
the nonhierarchical 2PL. This general pattern also held when investigating the absolute bias
of the item discrimination parameters (Figure 2). The advantages of the hierarchical
specifications were especially pronounced with N ¼ 50 observations. Both hierarchical
specifications outperforming the nonhierarchical 2PL was corroborated by the differences in
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the RMSE of the item discrimination parameters (see Figure 3). The OH2PL and the SH2PL
consistently outperformed their nonhierarchical counterpart. As expected, the average width
of the 95% HDI was consistently smaller in the hierarchical specifications, compared to their
nonhierarchical counterpart (Figure 4). In sum, the first condition in favor of an atypical
behavior of Bayesian hierarchical IRT models was met: the hierarchical specifications
yielded indeed parameter estimates that were less biased compared to their nonhierarchical
counterpart. Moreover, they were robust (i.e., they did not depend on the specification of the
nonhierarchical 2PL), and they were not specific to the OH2PL, although the OH2PL

Figure 1. Raw bias in item discrimination parameter estimates across simulation conditions.

Figure 2. Absolute bias in item discrimination parameter estimates across simulation conditions.
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(slightly) outperformed the SH2PL. Overall, the results for the item difficulty parameter were
similar and did not lead to different conclusions. They are included in Supplement 1. The
general pattern of advantages of the hierarchical specifications, especially in smaller samples,
could also be found in models that are more complex, such as the generalized partial credit
model (GPCM; Muraki, 1992). We ran a small additional simulation with this model that
corroborated the findings for the 2PL model. The additional simulation is described in
Supplement 3.

Figure 3. RMSE in item discrimination parameter estimates across simulation conditions.

Figure 4. 95% HDI of the item discrimination parameter estimates across simulation conditions.
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Bias in Item Parameters Partly Independent from Bias in Variance Components

Table 1 summarizes the relation between the relative and absolute bias in the item parameter

estimates bαk ,bβk and the relative bias in the estimates of their associated variance componentsbτα,bτβ. There was no association between the relative bias in both item parameter estimates and
the relative bias in their variance components (the correlations were negligible). In contrast, the
correlations between the absolute bias in both item parameter estimates and the relative bias in the
estimates of their associated variance components were not negligible.

Hence, the second condition supporting an atypical behavior of Bayesian hierarchical IRT
models (namely, Brel remaining approximately constant as τα, τβ increase and
rab α̂

k
b τ̂α¼ rab β̂k

b τ̂β
≈ 0) was only partly met. Analogously to the first condition, this applied to

both the OH2PL and the SH2PL.

Bias in Individual Item Parameter Estimates and the True Variance Components

The violin plots in Figure 5 illustrate the change in relative bias in the individual item parameter
estimates along increasing true values of the associated variance components τα, τβ. The violin
plots in Figure 5 show the means and ±2SD (black dots with associated vertical bars) of the relative
bias in α, along with the kernel probability density of the relative bias at the true values of the
variance components.

From Figure 5 (right panel) we learn that the relative bias in the item difficulty parameter β did
not increase with the true variance τβ. The same applied to the item discrimination parameter α
(left panel), but for τα exceeding .4, we observed an increasing amount of outliers larger than .1.
However, all instances the middle 50% of estimates were still within the interval [–.1, .1] (dashed
lines in Figure 5).

Table 1. Correlations Between the Bias in the Estimates of the Variance Components and the Relative and
Absolute Bias in the Item Parameter Estimates Across Sample Sizes and Test Lengths.

OH2PL SH2PL

N K rb α̂k
b τ̂α rb β̂k

b τ̂β
rab α̂k

b τ̂α rab β̂k
b τ̂β

rb α̂k
b τ̂α rb β̂k

b τ̂β
rab α̂k

b τ̂α rab α̂k
b τ̂β

50 20 .070 �.005 �.115 �.202 .008 �.013 .215 .06
30 .043 .001 �.218 �.261 .006 �.005 .169 .05
40 .024 .003 �.255 �.286 .006 �.002 .167 .04

100 20 .026 �.003 �.200 �.218 �.004 �.004 .181 .04
30 .005 �.009 �.259 �.257 �.003 �.008 .150 .04
40 .004 �.007 �.278 �.282 .001 �.007 .118 .03

200 20 .008 �.011 �.233 �.218 �.005 �.011 .160 .02
30 �.001 �.001 �.267 �.247 �.012 �.002 .128 .03
40 �.009 .001 �.266 �.259 �.010 �.011 .114 .01

500 20 .001 .003 �.223 �.194 �.009 �.019 .153 .02
30 �.009 �.009 �.234 �.213 �.005 �.010 .120 .01
40 �.010 �.005 �.227 �.224 �.006 �.008 .109 .01

1200 20 �.003 �.006 �.201 �.174 �.017 �.017 .147 .06
30 �.001 �.007 �.208 �.186 �.010 �.002 .129 .03
40 �.012 �.010 �.213 �.189 �.001 �.011 .107 .02
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A potential reason for this increase can be found when looking at the bias in the variance
componentbτα: Figure 6 reveals a clear negative relationship of true and estimated τα, in thatbτα
was overestimated for true τα below .4 and underestimated for true τα larger than .4. Moreover,
there was a clear difference between the two model variants: While the SHPL showed a

Figure 6. Bias of Estimated Variance Component bτα by its True Values τα for Samples and Test Lengths.
Note. Circles: OH2PL. Boxes: SHPL. The pattern does not change across simulation conditions.

Figure 5. Relative Bias in the Item Parameter Estimates by True Variance Components.
Note. Left panel: Item discrimination parameters. Right Panel: Item difficulty parameters. OH2PL with
solid lines, SHPL with dotted lines. The dashed lines indicate the interval [–.1, +.1].
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marked overestimation for τα < .4 and underestimation for τα > .4, only the latter applied for
the OH2PL (i.e., there is just a minor overestimation for true τα < .4 but still underestimation
for true τα > .4).

To investigate this potential explanation further, we ran two four-way ANOVAs with the
relative and absolute bias as dependent variables and specification, sample size, test length, and
true variance component τα as independent factors. The four-way interaction between the factors
was significant for both relative and absolute bias (see Section 4 in Supplement 1).

We found that the relative and absolute bias was consistently higher when τα > .4 compared to
τα < .4 (see Table 2). Moreover, the largest amounts of bias were clustered in conditions with very
small sample sizes, short test lengths, and large/extreme variances.

Table 2. Mean Bias Across Specification, Sample Size, Test Length, and Variance Components.

N K

Small Typical Large Extreme

RB AB RB AB RB AB RB AB

OH2PL
50 20 �.002 .159 .005 .251 .024 .390 .049 .506

30 �.002 .138 .010 .235 .023 .354 .037 .450
40 �.010 .129 .010 .231 .019 .337 .035 .427

100 20 �.002 .116 .004 .203 .015 .287 .029 .367
30 .001 .105 .005 .192 .013 .270 .022 .333
40 .001 .097 .006 .188 .012 .263 .021 .320

200 20 �.001 .086 .003 .162 .010 .215 .014 .259
30 �.001 .081 .004 .154 .010 .199 .011 .243
40 .001 .079 .004 .150 .009 .195 .012 .236

500 20 �.001 .068 .003 .115 .003 .142 .005 .167
30 .001 .064 .003 .109 .003 .134 .005 .158
40 .001 .063 .003 .106 .004 .130 .005 .153

1200 20 .001 .054 .001 .078 .001 .092 .002 .111
30 .001 .052 .001 .072 .001 .086 .002 .104
40 .001 .051 .001 .072 .001 .086 .002 .101

SH2PL
50 20 .023 .228 .030 .278 .044 .378 .057 .475

30 .020 .202 .027 .253 .037 .350 .047 .436
40 .019 .185 .024 .241 .038 .345 .042 .422

100 20 .012 .178 .017 .218 .023 .286 .032 .353
30 .011 .158 .014 .201 .019 .267 .028 .329
40 .011 .147 .015 .195 .018 .261 .024 .318

200 20 .006 .138 .010 .168 .015 .214 .017 .258
30 .005 .125 .007 .157 .013 .199 .016 .243
40 .006 .118 .008 .152 .012 .196 .014 .236

500 20 .002 .099 .004 .115 .006 .141 .007 .196
30 .002 .091 .004 .110 .005 .133 .006 .160
40 .002 .087 .004 .106 .005 .130 .006 .154

1200 20 .001 .070 .001 .079 .002 .092 .004 .110
30 .001 .070 .001 .074 .002 .088 .003 .104
40 .001 .063 .002 .072 .002 .086 .002 .101

Note. N = Sample Size. K = Test Length; Small = τα < 0:1. Typical = τα < 0:4. Large = τα < 0:6. Extreme = τα > 0:6. All
standard errors were smaller than .001; thus, they are not shown for readability. RB = Relative Bias. AB = Absolute Bias.
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Thus, we may summarize that the third condition for confirming an atypical behavior of
Bayesian hierarchical IRT models was also only partially fulfilled. This applied to both hier-
archical specifications of the 2PL.

A Bias Correction Procedure

Interestingly, we found a relationship between the bias in the item discrimination parameter
estimates and the bias in the variance component bτβ, which was unexpected. The top row of
Figure 7 illustrates this relationship with a series of boxplots, summarizing the bias in bαk (the
y-axis) at fixed cutpoints of the bias inbτβ (the x-axis). The dashed line over the boxplots illustrates
the regression of bαk on bτβ. The relationship was negative for both the SH2PL
(β ¼ �0:74, SE ¼ 0:002) and OH2PL (β ¼ �0:52, SE ¼ 0:002); as the bias in the variance
component increased, the bias in the item discrimination parameter estimates decreased. In other
words, when the variance component was underestimated, the individual parameter estimates
were more biased. This relationship allowed developing a bias-correcting procedure of the in-
dividual item discrimination parameter estimates bαk due to the bias of the estimated item difficulty
variance component bτβ. This correction served two purposes: (1) it made the bias in the item

Figure 7. Bias in bαk Due to Bias in bτβ Before and After Applying the Correction Procedure.
Note. Top row: Bias in bαk due to bias inbτβ. Bottom row: Bias in bαk due to bias inbτβ after application of the
bias correction procedure. Left column: OH2PL. Right column: SHPL. Outliers not shown for legibility
purposes. The dashed lines over the boxplots illustrate the regression of bαk (top row) and bαkcorrected (bottom
row) on bτβ.
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discrimination parameter estimates independent from the true variance component of the difficulty
parameters (an independent source of bias), which (2) increases the likelihood to benefit from the
hierarchical approach even under unfavorable data conditions.

At first sight, a linear trend seemed to apply, but a closer look based on distribution-free
measures as the series of boxplots (Figure 7, top row) revealed a certain non-linearity, that is, a
logarithmic kind of association.

Because we knew the true values of all parameters in our simulation study, we could calculate
the actual bias of both bαk and bτβ. Exploring by means of nonlinear least squares estimation, how
the bias of the individual parameters bαk depend on the bias ofbτβ, we identified the approximation

~bbα ¼ �1

2
logðbbτβ þ 1Þ (15)

with ~bbα denoting the predicted bias. Supplement 2 shows that this correction worked exactly as
expected. Moreover, Supplement 2 provides the details of how equation (15) has been derived.

However, in real-life applications the bias of bτβ remains unknown. Thus, we have to take a
second step to find a suitable estimate for it in order to predict the bias of bαk (and correct for it,

subsequently). In order to find a suitable approximation for the bias ofbτβ, namely, b *bτβ , we set up a
prediction model using information available in real-life applications

b*bτβ ¼ β0 þ β1N*β2K*β3MðbτβÞ*β4SDðbτβÞ*β5VARðbτβÞ (16)

whereN is the sample size, K the number of items,MðbτβÞ the mean, SDðbτβÞ the standard deviation,
and VARðbτβÞ the variance of the posterior distribution of the estimate of the variance component.
The bottom row of Figure 7 (again, a series of boxplots summarizing the bias in the corrected bαk
(the y-axis) at fixed cutpoints of the bias in bτβ (the x-axis) with a dashed line over the boxplots
illustrating the regression of the corrected bαk onbτβ) illustrates that the linearization of the bias of bαk
was quite successful. We could reduce the bias in bαk for both the SH2PL (β ¼ �0:54, SE ¼ 0:002)
and OH2PL (β ¼ �0:25, SE ¼ 0:002). Some non-linearity remains which was a consequence of
the lack of approximation when bτβ is underestimated.

Discussion and Conclusion

Our goal in this study was to provide an in-depth investigation of the question whether Bayesian
hierarchical IRT models behave differently than their general counterparts in terms of the accuracy
of the individual parameter estimates. We found (1) the Bayesian hierarchical specifications of the
2PL to yield individual parameter estimates consistently less biased compared to their nonhi-
erarchical counterpart (especially in smaller samples), and (2) the bias in the individual item
parameter estimates being partly independent from the bias in their associated true variance
components. However, as shown by the relation between the bias in the individual discrimination
parameter estimates and their true variance components, both are independent only when τα ≤ 0:4.
Considering that τα is in many applications smaller than 0:4, our findings provide strong evidence
that the performance of the Bayesian H2PL is in fact unique: The resulting item parameter
estimates are not only more accurate (in terms of bias), but also more precise (in terms of HDI),
compared to nonhierarchical approaches (for further justification regarding the increased pre-
cision, see also Jackman, 2009; Katahira, 2016). Our results also indicate, however, that this
uniqueness is not a consequence of a generally different behavior, but rather a consequence of the
interplay between item parameter and model characteristics.
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Thus, from a theoretical point of view, the results of this study indicate that the connection
between variance, shrinkage, and bias, a common characteristic of Bayesian hierarchical models
(e.g., Rouder et al., 2017), albeit not completely absent, is not that pronounced in Bayesian
hierarchical IRT models. In other words, shrinkage of the individual estimates towards their
respective grand means does not lead, on average, to a marked increase in bias in the individual
item parameter estimates. The difference between the results regarding the relative and absolute
bias can be explained by the fact that only the latter explicitly captures the bias of discrimination
parameters on the margins of the parameter distribution. Interestingly, even in terms of absolute
bias the advantage of the hierarchical specifications over their nonhierarchical counterparts re-
mains. Thus, while the behavior is in its core not different from general hierarchical models, the
Bayesian hierarchical specifications of the 2PL provides a means to overcome the tradeoff be-
tween precision and accuracy of the individual item parameter estimates.

What does this rather theoretical finding mean for applied educational and psychological
measurement? In the following, we briefly outline three consequences resulting from our finding
that are relevant for applied IRT modeling.

First, using hierarchical Bayesian approaches for item calibration reduces item calibration
error, one of the primary sources of biased ability estimates in computerized adaptive testing
(CAT; e.g., Frey, 2023). More specifically, with the hierarchical Bayesian approach it is possible to
avoid capitalization on chance in item selection due to spuriously large discrimination parameters
(Patton et al., 2013). Given shrinkage, the overestimation of the item discrimination parameter is
less likely to occur. As shown in this paper, the shrinkage associated with the item discrimination
parameters does not lead to markedly biased parameter estimates in typical conditions
(i.e., τα ≤ 0:4). When τα > 0:4, however, the variance component is underestimated in both hi-
erarchical specifications, which makes non-negligible bias more likely. This is also corroborated
by the results regarding the absolute bias. Thus, τα ¼ 0:4 can be considered as critical variance for
item discrimination parameter estimates.

Second, consequently, using the hierarchical Bayesian approach is likely to avoid capitalization
on item calibration error by the maximum information criterion in CAT (Patton et al., 2013). Since
the item discrimination parameter plays a dominant role, unbiased parameter estimates are crucial
for an accurate calculation of the Fisher information. Thus, the hierarchical Bayesian approach
combined with the bias correction procedure outlined in this paper directly contributes to a more
accurate calculation of the information contained in an item bank, especially in small samples.
This translates into advantages regarding ability estimates and was shown byWagner et al. (2022).
Typically, item calibration error is largest when calibration samples are small; as shown in this
paper, however, smaller sample sizes are not associated with larger calibration errors when
utilizing the hierarchical Bayesian approach. This in turn leads to more flexibility when it comes to
the calibration of new item banks with small samples, for example, when using continuous
calibration methods (e.g., Fink et al., 2018).

Third, the benefits of using the hierarchical Bayesian approach are relatively independent of the
specification of its prior structure. The advantages of the OH2PL over the standard InverseWishart
specifications still exist, but they are small: both overestimate τα when the variance of the item
discrimination parameter estimates is smaller than .4 and underestimate τα when the variance
component is larger than .4. The underestimation is virtually indistinguishable across model
specifications. This implies that, although the literature frequently discourages researchers from
using Inverse Gamma or Inverse Wishart distributions (Gelman, 2006), the standard specification
is a viable distribution in the IRT context. Moreover, the hierarchical Bayesian approach offers
considerable flexibility when it comes to prior specification and structure (see also Koenig et al.,
2022, for an investigation into the robustness of the performance of the OHPL under different
prior specifications).
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Our bias correction procedure is easy to apply. The prediction model for b *bτβ is included in the
online supplementary material and can be used to predict b *bτβ for any test situation. The only things
necessary are the data specifications and the posterior means and standard deviations of previously
(or initially) calibrated item parameters. An illustration of how to apply the procedure is included
in the online supplement. Moreover, the bias correction procedure can easily be extended to
include other information, or can easily be integrated in similar efforts to reduce bias in item
parameter estimates.

Taken together, the results of this study show that the curious behavior of the hierarchical
Bayesian approach can be utilized to improve the accuracy and precision of the resulting item
parameter estimates, not only in the context of the 2PL model, but also more complex models such
as the GPCM. This in turn is beneficial for the precision of ability estimation and renders it
especially appealing for situations where test information is crucial. Moreover, the hierarchical
Bayesian approach facilitates applications of IRT models in situations that would not be feasible
with alternative methods, for example, when recruiting large calibration samples is not possible
(e.g., university exams or in clinical contexts).

To conclude, we could show that the characteristics of parameters typically found in appli-
cations of IRT models in combination with Bayesian hierarchical modeling indeed create a unique
situation where the resulting item parameter estimates are not only more precise, but also more
accurate, compared to nonhierarchical approaches. The contributions of our simulation study can
serve as a reference for applied researchers on when and how to use Bayesian hierarchical
approaches in IRT modeling without having to worry about potentially biased item parameter
estimates. This should be appealing for a wide range of psychometric applications and psy-
chological research.
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