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ABSTRACT

Resistance to programmed cell death (PCD) is a hall-
mark of cancer. While some PCD components are
prognostic in cancer, the roles of many molecules
can be masked by redundancies and crosstalks be-
tween PCD pathways, impeding the development
of targeted therapeutics. Recent studies character-
izing these redundancies have identified PANopto-
sis, a unique innate immune-mediated inflamma-
tory PCD pathway that integrates components from
other PCD pathways. Here, we designed a system-
atic computational framework to determine the pan-
cancer clinical significance of PANoptosis and iden-
tify targetable biomarkers. We found that high ex-
pression of PANoptosis genes was detrimental in low
grade glioma (LGG) and kidney renal cell carcinoma
(KIRC). ZBP1, ADAR, CASP2, CASP3, CASP4, CASP8
and GSDMD expression consistently had negative
effects on prognosis in LGG across multiple sur-
vival models, while AIM2, CASP3, CASP4 and TN-
FRSF10 expression had negative effects for KIRC.
Conversely, high expression of PANoptosis genes
was beneficial in skin cutaneous melanoma (SKCM),
with ZBP1, NLRP1, CASP8 and GSDMD expression
consistently having positive prognostic effects. As a
therapeutic proof-of-concept, we treated melanoma
cells with combination therapy that activates ZBP1
and showed that this treatment induced PANoptosis.
Overall, through our systematic framework, we iden-
tified and validated key innate immune biomarkers
from PANoptosis which can be targeted to improve
patient outcomes in cancers.

GRAPHICAL ABSTRACT

INTRODUCTION

Resistance to cell death is one of the hallmarks of cancer
(1). Activation of programmed cell death (PCD) pathways
can be a successful strategy to clear cancer cells (2,3). Sev-
eral distinct innate immune-mediated PCD pathways have
been identified (4), with pyroptosis, apoptosis and necrop-
tosis being the best-characterized. Understanding the clin-
ical impact of PCD in cancer prognosis is important for
patient stratification and identifying the molecular mech-
anisms of cancer pathogenesis, making this an active area
of research (5–13). However, much remains unknown. Fur-
thermore, the roles of many PCD molecules can be masked
by functional redundancies, synergisms and crosstalks be-
tween PCD pathways. These redundancies have made it dif-
ficult to identify specific molecular targets in PCD for anti-
cancer therapies. Therefore, studies that consider the total-
ity of biological effects in PCD to identify molecular func-
tions and therapeutic targets are critical.

Recent studies highlighting the extensive crosstalk among
the molecular components of pyroptosis, apoptosis and

*To whom correspondence should be addressed. Tel: +1 901 595 3634; Fax: +1 901 595 5766; Email: Thirumala-Devi.Kanneganti@StJude.org

C© The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-6395-6443


2 NAR Cancer, 2022, Vol. 4, No. 4

necroptosis in infectious diseases, autoinflammatory dis-
eases and cancers have led to the identification of PANop-
tosis, a unique innate immune-mediated inflammatory PCD
pathway regulated by PANoptosome complexes, which in-
tegrate components from other PCD pathways (14–27). To
date, PANoptosis has been functionally assessed most ex-
tensively in vitro and in murine models. In a murine model
of colorectal cancer, IRF1 drives PANoptosis to inhibit tu-
morigenesis (28). Additionally, treatment with IFN com-
bined with a nuclear export inhibitor activates PANopto-
sis and limits tumorigenesis in murine models of melanoma
(17). In human cancer cell lines, PANoptosis can be acti-
vated by TNF-� and IFN-� co-treatment to kill the can-
cer cells (18). Despite these advances, little is known about
the prognostic implications of PANoptosis for overall sur-
vival (OS) in human patients with diverse cancers. While
the roles of pyroptosis, apoptosis and necroptosis indepen-
dently in pancancer progression and therapeutic responses
have been investigated (6,29), considering these pathways as
segregated entities and not as an integrated PCD modality
through PANoptosis provides an incomplete understanding
of PCD in cancer.

In this study, we developed a systematic framework using
32 tumor lineages from The Cancer Genome Atlas (TCGA)
(30) to characterize the prognostic implications of PANop-
tosis gene expression. We defined the PANoptosis gene sig-
nature based on experimental evidence from the literature
(16,17,31–33) and used a consensus clustering approach
(34–39) to classify tumor samples into PANoptosis high,
PANoptosis medium and PANoptosis low groups for each
cancer type. We then devised a two-step computational ap-
proach to filter the gene set and determine the key PANop-
tosis molecules of consistent clinical relevance for OS, and
we validated these models using independent (out-of-box)
test sets.

We found that high expression of PANoptosis genes
was detrimental for OS in low grade glioma (LGG) and
kidney renal cell carcinoma (KIRC), while it was bene-
ficial in skin cutaneous melanoma (SKCM). The expres-
sion of ZBP1, ADAR, CASP2, CASP3, CASP4, CASP8
and GSDMD consistently contributed to the negative effect
on prognosis in LGG, while AIM2, CASP3, CASP4 and
TNFRSF10 consistently contributed in KIRC. In SKCM,
ZBP1, NLRP1, CASP8 and GSDMD expression consis-
tently contributed to the positive effect on prognosis. As
a proof-of-concept that the biomarkers we identified could
be translated into potential therapeutic targets, we treated
melanoma cells with combination therapy that activates
ZBP1 (17) and showed that this treatment induced PANop-
tosis to kill the cancer cells. Overall, our findings underscore
the importance of PANoptosis for the prediction of cancer
patient survival and suggest new biomarkers which can be
targeted to improve patient outcomes.

MATERIALS AND METHODS

Data acquisition, filtering and normalization

RNA-Seq data from TCGA (https://www.cancer.gov/tcga)
were downloaded and processed using TCGA biolinks
(v2.22.3). The RNA-Seq data from 32 primary solid tumor
(TP) cancers consisting of over 9000 tumor samples were

used in our analysis. Owing to the lack of TP samples in
SKCM, we included metastatic samples (TM) in the SKCM
dataset. Gene symbols were converted to the official HUGO
Gene Nomenclature Committee gene symbols, and genes
without gene symbols or gene information were excluded.
This resulted in 23 216 genes for each cancer type. For each
cancer type, the samples were quantile normalized using
preprocessCore (v1.56.0) and log2 transformed for further
analysis.

To compare expression of the genes of interest in a tis-
sue specific manner, quantile normalized RNA-Seq data
were obtained from the UCSC Xenabrowser (https://toil.
xenahubs.net). The RNA-Seq dataset comprised a compre-
hensive set of tumor samples from TCGA as well as healthy
controls from Genotype-Tissue Expression Project (GTEx)
(40) for different tissues of origin. This dataset contained a
total of 19 120 samples, 10 535 samples from TCGA and
7781 samples from GTEx, and was used for differential ex-
pression analysis. Moreover, phenotypic information, such
as the age, gender, grade/stage for each cancer patient in
TCGA was obtained from the UCSC Xenabrowser.

Out-of-box validation datasets

For the out-of-box validation of the prognostic value
achieved by the survival models built for various cancer
subtypes, independent test sets were obtained from the
PREdiction of Clinical Outcomes from Genomic profiles
(PRECOG) repository (41) as well as the National Cen-
ter for Biotechnology Information (NCBI) GEO Accession
viewer. Gene expression profiles of patients from GSE22155
(42) and GSE16011 (43) were obtained, along with their
survival information from PRECOG repository. Expres-
sion profiles of patients from GSE65904 (44) were acquired
through GEO Accession viewer and E-MTAB-1980 (45)
through the ArrayExpress along with their corresponding
survival information. For each of these external datasets,
only those samples with survival information available were
considered. For the datasets obtained through PRECOG
repository, the ‘getGEO’ function from GEOquery package
(v2.62.2) was used to acquire the gene expression profiles
and download the raw counts for the other datasets. Expres-
sion profiles of genes with missing gene symbols were then
removed. Each external dataset was then further quantile
normalized, and log2 transformation was performed to uti-
lize the processed data for testing the predictive capabilities
of the survival models.

GSE65904 and GSE22155 were used as validation sets
for SKCM survival models and consisted of 202 and 54 sam-
ples, respectively. GSE16011 consisted of 284 samples, of
which only 20 samples belonged to Grade II Astrocytes or
Grade II Oligodendrocytes, i.e., the LGG tumor subtype;
these 20 samples were treated as the validation set for LGG.
Finally, E-MTAB-1980 (NG2699), consisting of 101 sam-
ples, formed the test set for KIRC.

Cancer cell lines

A total of 1377 cancer cell lines along with their expression
profiles were downloaded from DepMap portal (DepMap
Public 21Q3). These cell lines belong to the Cancer Cell
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Line Encyclopedia (46). The cell lines were filtered to in-
clude only those cell lines for which the primary disease as-
sociated was skin cancer, resulting in 34 melanoma cancer
cell lines. These cancer cell lines had inherent diversity in
terms of the age, gender, cancer type (primary or metastasis)
of the skin cancer patients as well as their sample collection
site.

We performed experimental validation on two melanoma
cancer cell lines: SK-MEL-5 (NCI-60 cancer cells; National
Cancer Institute, Bethesda, MD) and RVH-421 (DSMZ)
cancer cells. SK-MEL-5 was derived from the lymph node
of a 24-year-old female and is a metastatic cancer cell line.
The RVH-421 cell line was derived from the central nervous
system of a 28-year-old male and is a metastatic cancer cell
line.

Single cell transcriptomics

Single cell transcriptomics datasets for LGG and SKCM
cancer types were downloaded from the Broad Institute Sin-
gle Cell Portal under accession number SCP271 (47) and
GEO Accession viewer under accession ID GSE72056 (48),
respectively.

The metadata for the tumor of origin and cluster labels
for the single cells in the LGG scRNA-seq dataset were also
available. The LGG dataset comprised single cell transcrip-
tomics of six different Pilocytic Astrocytomas (PA) consist-
ing of a total of 931 cells. The Seurat (v4.1.1) package in R
(49) with default normalization steps was used to process
the dataset. These steps include normalizing using ‘Log-
Normalize’ method with a scale factor of 10 000 followed by
selection of the top 3000 genes with maximal variance us-
ing the ‘vst’ method and scaling the dataset. Principal Com-
ponent Analysis (PCA) (50) was then performed, with the
number of principal components set to the default setting
of 30. Then the Unified Manifold Approximation and Pro-
jection (UMAP) (51) method was run, resulting in the 2D
co-ordinates for the single cells and allowing visualization
of the LGG dataset.

The SKCM single cell RNA-seq (scRNA-seq) consisted
of single cells derived from six patients each with at least
50 malignant cells as well as their corresponding non-
malignant (immune and endothelial) cells. The dataset con-
sisted of a total of 3700 cells. The same pre-processing steps
as those outlined for the LGG dataset were used to obtain
the UMAP 2-D co-ordinates for the SKCM dataset.

PANoptosis clusters

An unsupervised consensus clustering based on a gene set
of 27 PANoptosis genes (Supplementary Table S1) was
performed for each cancer type separately using the Con-
sensusClusterPlus (v.1.58.0) R package with the following
parameters: 5000 repeats, a maximum of six clusters and
agglomerative hierarchical clustering with Ward criterion
(‘ward.D2’) inner and complete outer linkage. This method-
ology has previously been shown to be successful in identi-
fying optimal prognostic clusters for pancancer immuno-
logic constant of rejection (52–55) and pyroptosis-related
signatures in gastric cancer (56). The optimal number of
clusters (≥3) for best segregation of samples based on the

PANoptosis signature was initially determined heuristically
using the Calinski-Harabasz criterion (57). With the intent
to compare cancer samples with a highly active PANop-
tosis phenotype with those that have a relatively inactive
PANoptosis phenotype, the cluster with the highest average
expression of PANoptosis genes was designated as ‘PANop-
tosis high’, while the cluster with the lowest average ex-
pression of PANoptosis genes was designated ‘PANopto-
sis low’. All samples in the intermediate cluster(s) were de-
fined as ‘PANoptosis medium’. Tumor samples were anno-
tated with a PANoptosis score, defined as the single sam-
ple gene set enrichment score (ssGSEA) obtained from the
GSVA (v1.42.0) R package (58) using the ‘gsva’ function
with the kernel density parameter set as ‘Gaussian’. For
generation of the Heatmap (Figure 1B), a modified version
of ‘heatmap.3’ function was used.

Survival analysis

Overall survival (OS) from the TCGA clinical data re-
source was used to generate the Kaplan–Meier (59) curves.
For each cancer type, patients with less than one day of
follow-up were removed, and survival data were censored
after a follow-up duration of 10 years. The hazard ratios
(HRs) between PANoptosis high and PANoptosis low clus-
ters, including their corresponding P-values, were estimated
through a � 2 (chi-square) test (60). The ‘analyze survival’
followed by ‘kaplan meier plot’ functions from survival-
Analysis (v0.2.0) R package were used to build the uni-
variate survival analysis models and visualize the Kaplan–
Meier plots, respectively. The forest plots (Figure 1D, Sup-
plementary Figure S2B) were generated using the forestplot
(v2.0.1) R package. The cancer types, pheochromocytoma
and paraganglioma (PCPG, no death events in PANopto-
sis high), kidney chromophobe (KICH, one death event
in PANoptosis high and four death events in PANoptosis
low), testicular germ cell tumors (TGCT, no death events in
PANoptosis low) and pancreatic adenocarcinoma (PAAD,
no death events in PANoptosis low) were excluded before
the generation of the forest plot, as the number of deaths
in the two comparison groups (PANoptosis high versus
PANoptosis low) was too small for survival estimation.
Cancer types with a P-value <0.05 and a total number of
tumor samples >100 in PANoptosis high plus low groups
were identified as cancers where PANoptosis had a signifi-
cant prognostic value.

Three types of survival analysis models were built with
increasing order of complexity to filter and extract the
subsets of key PANoptosis genes driving the survival
prognosis in the cancer subtypes of interest. The sim-
plest model was the univariate cox-proportional hazards
model (61), performed using the ‘coxph’ function from
the survival (v3.2.11) R package. A multivariate cox-
proportional hazards model (Coxnet) was also built, tak-
ing into consideration all the relevant PANoptosis mark-
ers using the ‘coxph’ function. To test the proportional
hazards (PH) assumption, the ‘cox.zph’ function was uti-
lized. This function correlated an individual PANoptosis
marker’s scaled Schoenfeld residuals (61) with time in or-
der to test for independence between the residuals and
time.
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Figure 1. PANoptosis has a prognostic impact in cancers. (A) Consensus Clustering showing three distinct clusters (PANoptosis low, PANoptosis medium
and PANoptosis high) based on PANoptosis gene expression for SKCM. (B) Heatmap depicting gene expression profiles of 27 PANoptosis markers
including sensors and upstream regulators, adaptors and effectors of PANoptosis as scaled Z-scores for SKCM tumor samples. For brevity, 13 out of the
27 genes are labeled, but 27 distinct rows are shown. (C) Boxplot showing the distribution of PANoptosis scores in the three PANoptosis clusters for cancer
subtypes of interest: LGG, KIRC and SKCM. (D) Forest plot showing N1 = number of samples in PANoptosis high cluster, N2 = number of samples in
PANoptosis low cluster, P-value and hazard ratio (HR) with 95% CI for overall survival (OS) when comparing PANoptosis high versus low for each cancer
type where there is significant prognostic impact (P-value < 0.05). (E–G) Kaplan–Meier curves showing OS across the PANoptosis high and PANoptosis
low groups in the three cancer types with significant differences in survival (PANoptosis high beneficial [HR < 1] or detrimental [HR > 1]). *** P-value <

0.001.
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A regularized cox elastic-net regression (62,63) model
using the glmnet (v4.1.3) package in R was then used.
The regularized cox regression model is a generalized lin-
ear model (GLMnet) with an additional regularization
term on hazards coefficients (�) to be estimated for the
PANoptosis genes. The regularization path for either the
Least Absolute Shrinkage and Selection Operator (LASSO)
(62) or elastic-net model was obtained through a grid
search using cross-validation. The optimal regularization
parameter (�) value was identified using the ‘glmnet.cv’
function.

Finally, the non-linear random-forest survival model (64)
was used with the ‘rfsrc’ function from the randomForest-
SRC (v3.0.0) R package. The hyper-parameter optimization
for parameters, such as ‘mtry’ or number of genes used to
build a tree, ‘ntree’ or number of trees, and ‘nodesize’ or
the size of nodes of a tree, was performed using a grid-
search approach with cross-validation. The models were
built by randomly sampling 80% of the data as a train-
ing set, with the remaining used as the out-of-box valida-
tion set. The PANoptosis genes which were important in
the optimal random-forest model were identified using the
fast ‘subsample’ function, which prioritized the most im-
portant genes along with a confidence interval for their
importance.

The predictive capability of a survival model was mea-
sured through quantitative metrics, referred to as Harrell’s
concordance index (CI) (65), and the area under the time-
dependent receiver operating curve (AUC) (66). The CI was
defined as the proportion of concordant pairs divided by the
total number of possible evaluation pairs. It ranged between
[0,1], where values closer to 1 indicated that the predicted
risk scores were almost completely correlated with survival,
and CI values >0.5 were considered better than random
predictions. The AUC metric determined the predictive ca-
pability of a model at time (t). In particular, the AUC metric
would be higher if a model could accurately determine the
at-risk patients at a time point (t) (true positives) with fewer
false positives, that is, patients who are alive at time point (t)
but had higher risk scores from the model. The AUC metric
takes values between [0, 1], where higher AUC values (closer
to 1) indicated better predictive performance of the model,
and AUC values >0.5 were considered better than random
predictions.

Differential expression analysis

To identify gene sets which were differentially regulated be-
tween two conditions (e.g. PANoptosis high vs PANoptosis
low, PANoptosis high versus normal and PANoptosis low
versus normal, see Figure 2B), the Limma (v3.50.0) R pack-
age (67) was used. The ‘model.matrix’ function was used
to estimate the design matrix, followed by the ‘lmFit’ and
‘eBayes’ functions to determine the linear fitted model. The
‘topTable’ function was employed to obtain the results from
the linear fitted model with statistical information. Only
those genes with a false discovery rate (FDR) (68) adjusted
P-value <0.01 and |log2(fold change)| >0.5 were considered
as differentially expressed genes. Here, |.| corresponds to ab-
solute value function.

Gene set enrichment analysis

To define the PANoptosis score (Figure 1C, Supplementary
Figures S2A, S8), a single sample gene set enrichment anal-
ysis (ssGSEA) was performed using the ‘gsva’ method with
kernel density function parameter set to Gaussian kernel.
To estimate the PANoptosis activity (enrichment) for each
cell in the single cell transcriptomics dataset, we used the
‘enrichIt’ function from escape (v1.6.0) package in R (69).
The ‘enrichIt’ function implements ssGSEA specific to sin-
gle cell transcriptomic data.

Correlation matrix

The correlation matrix of all PANoptosis genes was calcu-
lated using Pearson correlation and plotted using Complex-
Heatmap (v2.10.0) R package (70). The significance of cor-
relations between the expression profiles of two genes was
estimated using the ‘cor.test’ function with the method pa-
rameter set as Pearson correlation.

Cell culture and stimulation

RVH-421 (ACC 127) was obtained from DSMZ-German
Collection of Microorganisms and Cell Cultures, and SK-
MEL-5 (HTB-70) was obtained from ATCC as part of the
NCI-60 cancer cell line panel. Each cell line was cultured in
RPMI 1640 medium (Corning, 10–040-CV) supplemented
with 10% FBS and 1% penicillin and streptomycin. Cancer
cells were seeded at a concentration of 3 × 105 cells into
12-well plates and incubated at 37◦C overnight. Cells were
washed with warm Dulbecco’s PBS before being treated
with 10 �M KPT-335 (Selleckchem, S7707) or 5 ng/ml lep-
tomycin B (LMB; Sigma, L2913) in the presence or absence
of 50 ng/ml IFN-� (PeproTech, 300–02) in RPMI 1640
medium supplemented with 10% FBS and 1% penicillin and
streptomycin for 32 h.

Real-time imaging for cell death

The kinetics of cell death were determined using the In-
cuCyte S3 (Sartorius) live-cell imaging system. Cancer cells
(3 × 105 cells/well) were seeded in 12-well tissue cul-
ture plates. Cells were treated with the indicated stimuli
and stained with propidium iodide (PI; Life Technologies,
P3566) following the manufacturer’s protocol. The plate
was scanned, and fluorescent and phase-contrast images
(4 image fields/well) were acquired in real-time every 1 h
from 0 to 32 h post-treatment. PI-positive dead cells were
marked with a ‘red’ mask for visualization. The image anal-
ysis, masking, and quantification of dead cells were done
using the software package supplied with the IncuCyte im-
ager.

Western blotting

Western blotting in cancer cell lines was performed as pre-
viously described (18). Briefly, RVH-421 cells were seeded a
day before stimulation at a density of 0.5 × 105 cells/well
in 6-well cell culture plates. For caspase evaluation, the
proteins were collected by combining cell lysates with cul-
ture supernatants in caspase lysis buffer (with 1× pro-
tease inhibitors, 1× phosphatase inhibitors, 10% NP-40,
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Figure 2. PANoptosis markers are differentially expressed across tissues and tumor types. (A) Basal expression of the 27 PANoptosis markers across
the three normal tissue types of interest. (B) LogFC (log2 fold-change) matrix illustrating the differential regulation of the PANoptosis markers for (a)
PANoptosis high versus PANoptosis low; (b) PANoptosis high versus normal; (c) PANoptosis low versus normal for the three cancer types. A gene is
considered differentially expressed if |logFC| > 0.5 and FDR-adjusted P-value < 0.05. *Gene with an FDR-adjusted significance of differential expression
with a P-value ∈ (1e–5, 1e–2]; **P-value ∈ (1e–10, 1e–5]; ***P-value < 1e–10.
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and 25 mM DTT) and 4× sample loading buffer (con-
taining SDS and 2-mercaptoethanol). For all other sig-
naling proteins, the cells were lysed in RIPA buffer, sup-
plemented with protease inhibitor and phosphoStop as
per the manufacturer’s instructions and sample loading
buffer. Samples were denatured by boiling for 10 min at
100◦C and separated using SDS-PAGE––followed by the
transfer on to Amersham Hybond P polyvinylidene di-
fluoride membranes (10600023; GE Healthcare Life Sci-
ences) and immunoblotted with primary antibodies against
caspase-1 (ab207802; Abcam), caspase-3 (9662; Cell Sig-
naling Technology), cleaved caspase-3 (9661; Cell Signal-
ing Technology), caspase-7 (9492; Cell Signaling Tech-
nology), gasdermin D (96458; Cell Signaling Technol-
ogy), GSDME/DFNA5 (ab215191; Abcam), caspase-8
(clone 12F5, ALX-804-242-C100; Enzo Life Sciences),
RIPK3/RIP3 (NBP2-24588; Novus Biologicals) and �-
actin (clone 13E5, 4970; Cell Signaling Technology) fol-
lowed by secondary anti-rabbit or anti-mouse HRP anti-
bodies (Jackson ImmunoResearch Laboratories).

RT-PCR analysis

Total RNA was extracted using TRIzol (ThermoFisher
Scientific, 15596026), and cDNA was prepared us-
ing 500 ng of total RNA using the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
4368814). Real-time quantitative PCR was then per-
formed on an Applied Biosystems 7500 real-time PCR
instrument with 2× SYBR Green (Applied Biosystems,
4368706). Primer sequences used were: ZBP1 forward:
5′-AACATGCAGCTACAATTCCAGA-3′; ZBP1 reverse:
5′-AGTCTCGGTTCACATCTTTTGC-3′; β-ACTIN
forward: 5′-CACCATTGGCAATGAGCGGTTC-3′; β-
ACTIN reverse: 5′-AGGTCTTTGCGGATGTCCACGT-
3′.

Statistical analysis

GraphPad Prism version 8.0 software was used for data
analyses. Data were shown as mean ± SEM. Statistical sig-
nificance was determined by two-way ANOVA (with Dun-
nett or Tukey multiple comparisons tests) for three or more
groups. The numbers of experimental repeats and technical
replicates are indicated in the corresponding figure legends;
n = the number of biological replicates used in the experi-
ments. * P < 0.05 and is considered statistically significant.

RESULTS

Prognostic impact of PANoptosis clusters in different cancer
subtypes

To improve our understanding of the role of cell death
in cancer and to determine whether PANoptosis has
prognostic value in this context, we evaluated the ex-
pression of PANoptosis markers across cancer types.
RNA-Seq data from 32 different cancer types (Table 1)
were obtained from TCGA. We used experimental ev-
idence in the PANoptosis literature (16,17,31–33) com-
bined with known molecules from pyroptosis, apopto-
sis or necroptosis to identify a set of molecules involved

Table 1. TCGA cancer abbreviations. Cancers of interest are highlighted
in colors

Cancer
Cancer

type Full name

LGG Primary Brain Low Grade Glioma
KIRC Primary Kidney Renal Cell Carcinoma
SKCM Metastatic Skin Cutaneous Melanoma
STAD Primary Stomach Adenocarcinoma
COAD Primary Colon Adenocarcinoma
ACC Primary Adrenocortical Carcinoma
BLCA Primary Bladder Urothelial Cancer
BRCA Primary Breast Invasive Carcinoma
CESC Primary Cervical Squamous Cell Carcinoma and

Endocervical Adenocarcinoma
CHOL Primary Cholangiocarcinoma
ESCA Primary Esophageal Carcinoma
GBM Primary Glioblastoma Multiforme
HNSC Primary Head and Neck Squamous Cell

Carcinoma
KICH Primary Kidney Chromophobe
PAAD Primary Pancreatic Adenocarcinoma
THYM Primary Thymoma
KIRP Primary Kidney Renal Papillary Cell Carcinoma
LIHC Primary Liver Hepatocellular Carcinoma
LUAD Primary Lung Adenocarcinoma
DLBC Primary Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma
MESO Primary Mesothelioma
OV Primary Ovarian Cystadenocarcinoma
PCPG Primary Phenochromocytoma & Paraganglioma
PRAD Primary Prostate Adenocarcinoma
READ Primary Rectum Adenocarcinoma
TGCT Primary Testicular Germ Cell Tumors
THCA Primary Thyroid Carcinoma
UCS Primary Uterine Carcinosarcoma
UVM Primary Uveal Melanoma
UCEC Primary Uterine Corpus Endometrial Carcinoma
LUSC
SARC

Primary
Primary

Lung Squamous Cell Carcinoma
Sarcoma

in PANoptosis (Supplementary Table S1). The PANop-
tosis gene signature was defined as 27 genes includ-
ing cytosolic sensors and upstream regulators (ADAR,
AIM2, MEFV, NLRC4, NLRP1, NLRP3, NLRP9, TN-
FRSF1A, ZBP1), adaptors (FADD, PYCARD) and ef-
fectors (CASP1, CASP10, CASP12, CASP2, CASP3,
CASP4, CASP5, CASP6, CASP7, CASP8, DFNA5, GS-
DMD, MLKL, RIPK1, RIPK3, TNF) (Supplementary Ta-
ble S1) (33,71,72). To group tumor samples based on the
gene expression profiles of PANoptosis markers, we per-
formed an unsupervised consensus clustering for each can-
cer type separately (SKCM provided as an example; Fig-
ure 1A). The consensus clustering approach identified three
clusters referred to as ‘PANoptosis high’, ‘PANoptosis
medium’ and ‘PANoptosis low’, where tumors belonging to
the PANoptosis high cluster had a majority of the PANop-
tosis markers highly expressed, thereby suggesting the pos-
sibility of enhanced cell death through PCD, and vice versa
for the PANoptosis low cluster.

We observed that the expression of PANoptosis genes
varied between the tumor samples, reflective of intratumor
heterogeneity (Figure 1B). Furthermore, several PANopto-
sis genes had correlated expression profiles across all tumor
samples within a particular tumor type (Supplementary
Figure S1A–C). Next, we estimated a PANoptosis score
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for a given tumor sample using a ssGSEA technique. The
PANoptosis score was quantified as the difference between
the average expression of PANoptosis markers versus the
average expression of other genes (∼23 000 genes) in a tu-
mor sample (73). Thus, a high PANoptosis score repre-
sented an overexpression of PANoptosis genes (or an en-
hanced possibility of cell death), while a low PANopto-
sis score represented down-regulation of the PANoptosis
genes in a given tumor sample (or a reduced possibility of
cell death). In line with this definition, we observed that
PANoptosis scores were lower in tumors belonging to the
PANoptosis low cluster when compared to the PANopto-
sis medium cluster, and the PANoptosis scores were lower
in samples of the PANoptosis medium cluster in compari-
son to the PANoptosis high cluster (Supplementary Figure
S2A).

The distribution of PANoptosis scores varied among the
tumor samples, and the difference between the highest and
lowest PANoptosis scores varied between the different can-
cer subtypes (Supplementary Figure S2A). We noticed a
stark contrast between the median PANoptosis scores in
PANoptosis high and PANoptosis low groups respectively
for each of the LGG, KIRC and SKCM cancer types (Fig-
ure 1C). We therefore sought to investigate the more clin-
ically relevant questions such as how the presence of two
contrasting PANoptosis clusters (PANoptosis high versus
PANoptosis low) contributed to survival and how this var-
ied across diverse cancer subtypes.

To determine the clinical relevance of the PANoptosis
clusters, we performed a univariate survival analysis for
each of the 32 different cancer subtypes comparing the sur-
vival of patients with tumors in the PANoptosis high clus-
ter (treatment group) to that of patients with tumors in the
PANoptosis low cluster (control group). The quantitative
difference in survival was measured via hazard ratio (HR)
along with a 95% confidence interval (denoted in parenthe-
ses). An HR above a value of 1 suggested that patients with
tumors in the PANoptosis low cluster had a better survival
prognosis than those with tumors in the PANoptosis high
cluster; an HR below a value of 1 suggested patients with
tumors in the PANoptosis high cluster had a better survival
prognosis than those with tumors in the PANoptosis low
cluster.

The PANoptosis high phenotype was associated with sig-
nificantly reduced OS (P-value < 0.001) in LGG and KIRC
(Figure 1D and Supplementary Figure S2B). In LGG, we
observed the greatest detrimental and significant associa-
tion between the expression of PANoptosis genes and prog-
nosis, with the largest HR of 3.57 (2.09–6.09) and the widest
gap between the survival curves of patients in the PANop-
tosis low versus PANoptosis high clusters (Figure 1D, E).
Similarly, for KIRC, PANoptosis high had a significant neg-
ative prognostic impact, with an HR of 1.93 (1.36–2.74)
(Figure 1D, F). In contrast, the PANoptosis high cluster
showed a significant survival benefit (P-value < 0.001) com-
pared with the PANoptosis low cluster for the SKCM can-
cer type (Figure 1D and Supplementary Figure S2B). We
observed a significant prognostic benefit for PANoptosis
gene expression in SKCM, with an HR of 0.36 (0.23–0.58)
and a large gap between the survival curves of patients in
the PANoptosis high versus PANoptosis low clusters (Fig-

ure 1D, G). We also observed a significant prognostic as-
sociation of PANoptosis with OS for cancers such as uveal
melanoma (UVM), adrenocortical carcinoma (ACC), thy-
moma (THYM) and mesothelioma (MESO). However, ow-
ing to the small sample size (N1 + N2 < 100), we did not
consider these cancer subtypes further in our analysis. To-
gether, these results suggested that patients could be clus-
tered into three different groups within each tumor type:
PANoptosis high, PANoptosis medium and PANoptosis
low with respect to the gene expression profiles of PANop-
tosis markers. Moreover, the PANoptosis high and PANop-
tosis low clusters were associated with OS trends for three
cancer subtypes, highlighting their clinical relevance and the
importance of personalized therapeutic regimens.

We built additional multivariate Coxnet survival mod-
els including patient clinical features such as age, gender,
grade or stage of cancer in combination with the PANop-
tosis score for each of the three selected cancer subtypes.
We observed that the PANoptosis score built using TCGA
data was significantly prognostic in the multivariate Coxnet
model for LGG, with an HR of 4.48 (2.56–7.84), and for
KIRC, with an HR of 1.99 (1.29–3.06) (Supplementary Fig-
ures S3A, B); in both these cancer types, a higher PANop-
tosis score was significantly detrimental for OS. Conversely,
we observed that a higher PANoptosis score was signif-
icantly beneficial in the multivariate Coxnet model for
SKCM, with an HR of 0.291 (0.169–0.502) (Supplementary
Figure S3C). These results illustrate that the PANoptosis
score holds significance in OS prediction as a factor inde-
pendent of confounding variables such as age, gender and
molecular subtype of the tumor.

Tissue and tumor-specific expression of PANoptosis markers

Different tissues express different basal levels of PANopto-
sis genes (74). This suggests that the underlying tissue type
may pre-dispose certain cancers to have more of a PANop-
tosis high or PANoptosis low phenotype. To understand
how the PANoptosis gene cluster expression in tumors dif-
fers from its expression in normal tissue, we characterized
the tissue-specific expression of the 27 genes considered in
the PANoptosis gene set based on the tissues of origin for
the three tumor subtypes where PANoptosis clusters had a
significant prognostic value (LGG, KIRC and SKCM). The
average expression of these genes in normal samples for the
three different tissues (brain, kidney and skin) was collected
from GTEx (Figure 2A). The expression values of these
genes were scaled across the tissues thereby demonstrat-
ing that the majority of the PANoptosis genes had higher
basal expression in skin and kidney tissues when compared
to their expression in the brain; notable exceptions were
NLRC4 and NLRP3 sensors and the effector gene DFNA5
(GSDME). Additionally, we observed tissue-specific lower
basal expression of certain sensors such as AIM2, NLRP3
and NLRC4 in skin and NLRP1 and NLRP3 in kidney. We
also observed lower basal expression of the effector gene
DFNA5 in skin in comparison to brain.

Our primary goal was to identify components of PANop-
tosis that could be targeted for therapeutic benefit. There-
fore, we sought to reduce and filter the PANoptosis gene set
from the original 27 genes to identify the minimal set of key
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targetable genes with relevance to survival for each of the
three cancer subtypes of interest. To this end, we first com-
pared the differential regulation of the PANoptosis mark-
ers for the following three conditions: (a) PANoptosis high
vs PANoptosis low; (b) PANoptosis high versus normal;
(c) PANoptosis low versus normal. We performed a dif-
ferential expression analysis on the normalized RNA-Seq
data downloaded from UCSC Xenabrowser comprising tu-
mor and normal samples. The tumor samples from UCSC
Xenabrowser were matched with those in the TCGA to dis-
tinguish the tumors into PANoptosis high and PANopto-
sis low clusters. We identified the differential expression of
PANoptosis genes among all genes across the three compar-
ison conditions (a, b and c) for each of the three cancer types
(Supplementary Figures S4A–C). We also visualized the av-
erage expression of the 27 PANoptosis genes in normal ver-
sus PANoptosis low versus PANoptosis high samples for
the three cancer types (Supplementary Figures S5A–C). We
observed that in LGG and SKCM, the majority of PANop-
tosis genes had the highest expression in PANoptosis high
cancer samples, the next highest expression in normal tis-
sue, and the lowest expression in PANoptosis low cancer
samples (Supplementary Figures S5A, C, D). In contrast,
in KIRC, the majority of PANoptosis genes had the high-
est expression in PANoptosis high cancer samples followed
by PANoptosis low cancer samples, and the lowest expres-
sion in normal tissue (Supplementary Figures S5B, D). This
suggests that the majority of PANoptosis genes will be sig-
nificantly upregulated when either comparing PANoptosis
high versus PANoptosis low (a) or PANoptosis high versus
normal (b) irrespective of the cancer subtype. Indeed, this is
what we observed (Figure 2B). We also found that the ma-
jority of PANoptosis markers were significantly downregu-
lated in LGG and SKCM when comparing PANoptosis low
versus normal (c), while they were significantly upregulated
in KIRC cancer subtype (Figure 2B).

For each cancer type of interest, the genes that were dif-
ferentially regulated in condition (a) were referred to as
the primary markers (Supplementary Table S2). Since these
genes were significantly differentially regulated (|logFC| >
0.5 and FDR-adjusted P-value < 0.05) between PANopto-
sis high versus PANoptosis low clusters, and the patients
in these clusters had significant differences in OS, we hy-
pothesized that these genes are likely to play a prominent
role in differential prognosis. PANoptosis genes which were
significantly differentially regulated in conditions (b) or (c)
were considered as secondary markers (Supplementary Ta-
ble S2). Since these genes were differentially expressed when
comparing the PANoptosis high/low cluster tumor samples
to normal samples from GTEx, we hypothesized that they
might also play an indirect role in the differential prognosis.

Based on this identification of primary and secondary
markers that are likely most important for differential prog-
nosis, we filtered our PANoptosis gene set for each cancer
to remove genes which were not differentially regulated in
any of the comparison conditions (a, b and c). This filtered
out NLRP9 for LGG and SKCM; CASP6 for KIRC and
SKCM; RIPK1 for SKCM; and GSDMD and NLRP1 for
KIRC (Figure 2B and Supplementary Table S2). Together,
these results indicate that tissue-specific basal expression of
PANoptosis markers varies across the three healthy tissues

of interest. While certain PANoptosis markers were consis-
tently differentially regulated across the three cancer types,
there were certain genes which were not differentially ex-
pressed for each of the cancer types. These genes can be
eliminated to select for potentially targetable PANoptosis
genes with clinical relevance.

Identification of key prognostic PANoptosis markers through
consensus of diverse survival analysis models

To further measure the predictive capability of the filtered
PANoptosis markers for OS, we built diverse survival anal-
ysis models (62,64) of increasing complexity. The predictive
capability of a survival model was quantitatively measured
through Harrell’s concordance index (CI) and area under
receiver operating curve (AUC). We built survival models
using only the primary markers as well as primary plus sec-
ondary markers for LGG, KIRC and SKCM cancer sub-
types. We used a univariate, multivariate (Coxnet), general-
ized linear cox-regression analysis model (GLMnet) and a
non-linear random-forest based survival (RFS) model for
each of the three cancers using the primary or primary plus
secondary markers as covariates.

We first examined the prognostic impact of the expres-
sion of individual PANoptosis genes for each tumor type.
High expression of the majority of the PANoptosis genes
in LGG corresponded to significantly worse survival prog-
nosis (HR > 1) as observed from the univariate survival
models (Figure 3A and Supplementary Figure S6A). We
then used the elastic-net model as our generalized linear
model (GLMnet) for survival analysis. However, since sev-
eral of the PANoptosis genes had correlated expression pro-
files (Supplementary Figures S1A–C), the GLMnet model
can result in a diverse set of genes with non-zero coeffi-
cients (either beneficial or detrimental to survival) for differ-
ent initial random seeds (63). This was an important caveat
that has not been accounted for by several previously pub-
lished techniques using GLMnet models for cox regression
analysis (5–13). To overcome this limitation, we ran our
GLMnet model 100 times with 100 random seeds and 5-fold
cross-validation to obtain the optimal model (in terms of
cross-validation CI) during each run (Supplementary Fig-
ures S7A and B). Different PANoptosis genes appeared in
the optimal model at different rates across the 100 runs (Fig-
ure 3B). We only considered those genes which appeared in
at least 50% of the GLMnet models as prognostically rele-
vant. Finally, we also built a non-linear random-forest sur-
vival analysis (RFS) model (64) with hyper-parameter op-
timization using a cross-validation technique (Supplemen-
tary Figure S7C). We then intersected the gene sets from
each of these analyses to identify the key set of PANoptosis
genes with prognostic impact for each of the cancer sub-
types.

In the case of LGG, the GLMnet models suggested sen-
sors and upstream regulators such as ZBP1 and ADAR and
effectors CASP2, CASP3, CASP4, CASP8 and GSDMD
had positive coefficients in the majority of the 100 runs (Fig-
ure 3B). However, the GLMnet models also indicated that
genes such as AIM2, NLRP3 and TNF had negative co-
efficients, suggesting that their expression would be bene-
ficial for survival (Figure 3B) as per the GLMnet model.
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Figure 3. Multiple survival models identify key prognostic PANoptosis markers for LGG, KIRC and SKCM. (A) Forest plot for key PANoptosis genes
whose high expression leads to a poor prognosis for LGG identified through univariate survival models. (B) PANoptosis genes with non-zero coefficients
and the fraction of times they appeared during the 100 random runs of the GLMnet model for LGG. (C) Top 10 PANoptosis genes with highest prognostic
relevance determined by the optimal RFS model for LGG. (D) Forest plot for key PANoptosis genes whose high expression leads to a poor prognosis
for KIRC identified through univariate survival models. (E) PANoptosis genes with non-zero coefficients and the fraction of times they appeared during
the 100 random runs of the GLMnet model for KIRC. (F) Top 10 PANoptosis genes with highest prognostic relevance determined by the optimal RFS
model for KIRC. (G) Forest plot for key PANoptosis genes whose high expression leads to better prognosis for SKCM identified by univariate survival
models. (H) PANoptosis genes with non-zero coefficients and the fraction of times they appeared during the 100 random runs of the GLMnet model for
SKCM. (I) Top 10 PANoptosis genes with highest prognostic relevance determined by the optimal RFS model for SKCM. (A–I) Blue bars represent a
negative coefficient (higher expression is beneficial for survival), and red bars represent a positive coefficient (higher expression is detrimental for survival).
The orange boxes highlight the genes which are prognostic across the univariate, GLMNet and RFS survival models and were considered as the ‘Top’
PANoptosis markers. (B, C, E, F, H, I) The boxplots correspond to variable importance estimated using a subsampling approach.
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Since these genes either were not significant in the univari-
ate model (Supplementary Figure S6A) or not in the top
10 genes identified by the RFS model (Figure 3C), they
were not considered as key PANoptosis genes with prog-
nostic impact for LGG. In contrast, ZBP1, ADAR, CASP2,
CASP3, CASP4, CASP8 and GSDMD were among the top
10 most important variables for the RFS model (Figure 3C)
and were all present in the best GLMnet model (Supple-
mentary Figure S8A) determined by cross-validation. We
therefore identified these genes as the seven key PANoptosis
markers, or ‘Top’ gene set, that are prognostically important
for LGG.

The mean cross-validation (CV) performance of the
GLMnet (CI = 0.801) and RFS (CI = 0.781) using both
primary and secondary markers for LGG was slightly better
than the GLMnet (CI = 0.786) and RFS (CI = 0.771) using
only primary markers (Supplementary Table S3). Moreover,
the survival models built using the ‘Top’ gene set achieved
a mean CV performance of CI = 0.794 for GLMnet and
CI = 0.774 for RFS, which is comparable to their respective
primary plus secondary models (Supplementary Table S3
and S4). We further validated the prognostic value of these
markers on an independent test set (GSE16011). The RFS
model using both primary and secondary markers achieved
a CI of 0.662, while the GLMnet model attained a CI of
0.649 (Supplementary Table S3). Similarly, using the ‘Top’
gene set the RFS model attained a CI of 0.672, while the
GLMnet model achieved a CI of 0.615 (Supplementary Ta-
ble S4). While there was a loss of performance with respect
to the CV CI scores, the predictive capability of the models
remained much higher than random. This loss in predictive
capability could also be attributed to the relatively small size
(20 samples) of the out-of-box validation set.

We also obtained AUC metrics at different time inter-
vals (t) for the Coxnet, GLMnet and RFS models built us-
ing the ‘Top’ PANoptosis markers for LGG on the external
validation set (GSE16011) (Figure 4A). The Coxnet model
was the most accurate (AUC = 0.79 at t = 2 years, AUC
= 0.77 at t = 4 years and AUC = 0.68 at t = 5 years)
among the three different survival models (Figure 4A).
Since a large majority of the events (death) in GSE16011
happened within the first 2 years, the predictive capability
of the Coxnet model was maximal at that time point, i.e., it
could accurately identify the at-risk patients. Over a longer
time-period the predictive capability of the Coxnet model
decreased but was higher than the GLMnet (AUC = 0.71
at t = 4 years and AUC = 0.64 at t = 5 years) and the non-
linear RFS (AUC = 0.68 at t = 4 years and AUC = 0.61
at t = 5 years) models, respectively. This suggests that a lin-
ear combination of the seven PANoptosis markers (ZBP1,
ADAR, CASP2, CASP3, CASP4, CASP8 and GSDMD)
was sufficient in accurately identifying the at-risk strata in
LGG. Additionally, all the models achieved a predictive per-
formance (AUC) better than random (AUC > 0.5) at all
time points, showcasing the predictive performance of our
proposed approach.

Similar analyses were performed for the other cancer
types. For KIRC, the majority of PANoptosis genes corre-
sponded to significantly worse OS when highly expressed
(Figure 3D and Supplementary Figure S6B). From the
GLMnet models (Figure 3E) and RFS model (Figure 3F),

we identified sensors and upstream regulators such as AIM2
and TNFRSF1A and effectors such as CASP3 and CASP4
as the key PANoptosis genes associated with worse sur-
vival prognosis across multiple survival analysis models for
KIRC. All the aforementioned genes were part of the best
GLMnet, which had the highest CV CI among 100 runs
(Supplementary Figure S8B). The GLMnet and RFS mod-
els for KIRC using both primary and secondary markers
had similar predictive capability in the CV dataset as the
models that were built using only primary markers (Supple-
mentary Table S3) or the above-mentioned ‘Top’ four key
PANoptosis genes (Supplementary Table S4). Furthermore,
on the independent validation test set, the different survival
models (both GLMnet and RFS) had similar performances
as the CV CI (∼= 0.65) with a slight loss in performance of
the survival models built using only the ‘Top’ four PANop-
tosis markers (CI ∼= 0.62), demonstrating the efficient prog-
nostic and generalization capability of the survival models
for KIRC. For KIRC, the non-linear RFS model performed
the best with respect to the AUC metric (AUC = 0.74 at t =
2 years, AUC = 0.65 at t = 3 years and AUC = 0.62 at t = 5
years) among the Coxnet, GLMnet and RFS models (Fig-
ure 4B). In the NG2699 dataset, the patients at risk gener-
ally die within the first five years, while a large proportion of
the patients remain alive beyond this time and hence were
censored in the analysis. The predictive performance (AUC)
of all the survival models decreased over time (Figure 4B),
though it was always better than random (AUC > 0.5).

For SKCM, from the univariate models, we observed that
the expression of the majority of the PANoptosis genes
was beneficial for survival (HR < 1 and adjusted P-value
< 0.05) (Figure 3G and Supplementary Figure S6C), and
specific genes were identified that were consistent with the
other survival models with regards to their prognostic sig-
nificance (Figure 3G). For SKCM, these included ZBP1,
NLRP1, CASP8 and GSDMD (Figure 3H), all of which
were beneficial for survival when included in the best GLM-
net model (Supplementary Figure S8C). The top 10 genes
identified in the RFS model for SKCM included ZBP1,
NLRP1, CASP8 and GSDMD (Figure 3I), which we se-
lected as the ‘Top’ gene set based on their importance in
each of the survival models. The mean CV performance of
GLMnet (CI = 0.670) and RFS (CI = 0.626) using both
primary and secondary markers (Supplementary Table S3)
were similar to the GLMnet (CI = 0.673) and RFS (CI =
0.612) using only primary markers. Additionally, the per-
formance of GLMnet (CI = 0.664) and RFS (CI = 0.615)
using the ‘Top’ 4 key PANoptosis genes was similar to those
of models built using primary and secondary markers (Sup-
plementary Table S4). Moreover, we validated the general
applicability of our different survival models on two inde-
pendent test sets for SKCM. These test sets were obtained
through GSE65904 and GSE22155. Each of the Coxnet,
GLMnet and RFS models achieved a CI score of ∼=0.6 on
the two out-of-box datasets, comparable to their CV per-
formance (Supplementary Table S3 and Supplementary Ta-
ble S4). Furthermore, the efficiency of the three different
survival models built using the ‘Top’ 4 PANoptosis mark-
ers (ZBP1, NLRP1, CASP8 and GSDMD) was consistent,
AUC ∼= 0.6, on the independent validation set (GSE65904)
at time t ∈ {1, 2, 3} years (Figure 4C). As an additional con-
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Figure 4. Survival models built using key PANoptosis markers predict survival on independent test sets. (A) Comparison of AUC metric at t ∈ {2,4,5}
years between Coxnet, GLMnet and RFS survival models for LGG. (B) Comparison of AUC metric at t ∈ {2,3,5} years between Coxnet, GLMnet and
RFS survival models for KIRC. (C) Comparison of AUC metric at t ∈ {1,2,3} years between Coxnet, GLMnet and RFS models for SKCM.
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firmation, we found that PANoptosis score was significantly
prognostic in each of the test sets when we built multivari-
ate Coxnet survival models including patient clinical fea-
tures such as age, gender, grade or stage of cancer in com-
bination with the PANoptosis score for LGG, KIRC and
SKCM cancer subtypes (Supplementary Figure S3).

Overall, using a consensus of diverse survival analysis
models with adequate predictive capabilities, we found a re-
fined set of potentially targetable PANoptosis genes with
clinical relevance for OS. Further, we built and validated ef-
ficient prognostic survival models for each of the three can-
cer types of interest.

Single cell level evidence for PANoptosis in LGG and SKCM
scRNA-seq datasets

The TCGA data analyzed to form our training set and
the data for our out-of-box test sets included bulk level
RNAseq data for the tumor types of interest. We next
sought to understand the relevance of PANoptosis gene
expression at the single cell level by analyzing available
scRNA-seq datasets. In an LGG single cell transcriptomics
dataset (47), we observed that the majority of PANopto-
sis markers had low average and percentage expression in
tumor cells (Figure 5A). However, in immune cell types,
specifically T-cells and microglia, several PANoptosis mark-
ers were either highly expressed or expressed in a high per-
centage of the corresponding cells (Figure 5A). These re-
sults were further reflected in the PANoptosis activities es-
timated for every cell using the ssGSEA technique and vi-
sualized through UMAP; we observed that there was less
PANoptosis activity in the tumor cells compared to immune
cells (Figure 5B).

In contrast, in the SKCM dataset (48), several of the
PANoptosis markers were expressed in a high percentage
of tumor cells (Figure 5C). However, the average expres-
sion of most PANoptosis markers was lower in tumor cells
when compared to their expression across immune (T-cells,
B-cells, NK-cells and macrophages) or stromal (endothe-
lial) cells (Figure 5C). We again observed less PANoptosis
activity in the tumor cells when compared to the immune
and stromal cells in the SKCM dataset (Figure 5D), high-
lighting this consistent observation at single cell resolution.
Furthermore, the tumor cells in the SKCM dataset were ob-
tained from six different patients and had significantly dif-
ferent transcriptomic profiles, leading to disjointed clusters
(Figure 5D).

Proof-of-concept: PANoptosis causes cell death in melanoma
cancer cell lines

Among the three different cancer types where PANoptosis
had significant prognostic impact, higher expression of key
cell death molecules involved in PANoptosis showed signif-
icant positive association with survival probability in pa-
tients with melanoma (SKCM). This suggests that induc-
ing the expression of the key cell death molecules associated
with these cancers may lead to PANoptosis and be a bene-
ficial treatment strategy for these cancers.

ZBP1 is a master regulator of PANoptosis. In murine
models, sensing of nucleic acids by the Z� domain of ZBP1

leads to its receptor-interacting protein homotypic inter-
action motif (RHIM) domain interacting with the corre-
sponding RHIM domain of RIPK3 to drive cell death (75–
78). ZBP1 has previously been identified as the key up-
stream sensor capable of activating the NLRP3 inflamma-
some, caspase-8, caspase-7, GSDMD and MLKL to pro-
mote PANoptosis (14,17,77), and we identified here that its
expression was positively associated with increased survival
in SKCM. Thus, we evaluated whether treatments that tar-
get the ZBP1-mediated PANoptosis pathway would be ef-
fective to induce cell death in melanoma cancer cell lines.

We selected two human melanoma cell lines, SK-MEL-
5 and RVH-421, based on their diversity in terms of gen-
der, tumor type as well as sample collection site. Moreover,
these two cell lines had a high PANoptosis score (Supple-
mentary Figure S8D) estimated using the ssGSEA tech-
nique, thereby suggesting a higher possibility of cell death
through the induction of PANoptosis. Previously, it had
been shown that nuclear export inhibitors induce ZBP1-
dependent PANoptosis in myeloid cells in the presence
of interferons (IFNs) (17). Therefore, to study the ZBP1-
dependent cell death in cancer cells, we treated the two dif-
ferent melanoma cells lines with nuclear export inhibitors
KPT-335 or leptomycin B (LMB) with or without IFN-�
and examined cell death. Cell death was substantially in-
creased in melanoma cell lines treated with KPT-335 plus
IFN-� or LMB plus IFN-� compared with individual trig-
gers or media alone (Figure 6A–D). We performed addi-
tional molecular characterization in the RVH-421 cell line
and found that these combination treatments induced ex-
pression of ZBP1 and led to the activation of PANoptotic
markers, including caspase-1, GSDMD, GSDME, caspase-
8, caspase-3 and caspase-7 (Supplementary Figure S9). To-
gether, these results indicate that treatments which pro-
mote the upregulation of ZBP1 can increase cell death in
melanoma cell lines. This suggests that the key PANoptosis
molecules identified by our framework are potential thera-
peutic targets in cancer and can drive the next generation of
clinical treatments.

DISCUSSION

PCD is important in the elimination of infected or damaged
host cells, and its dysfunction plays an important role in
cancers (79). While apoptosis is often considered to be key
in tumor suppression (80), the relationship between can-
cer and inflammatory PCD pathways such as pyroptosis,
necroptosis and PANoptosis is complex. Though the in-
duction of inflammatory cell death can inhibit the occur-
rence and development of tumors, pyroptosis and necrop-
tosis can also propagate tumorigenesis (81). While previous
studies have evaluated the roles of pyroptosis, apoptosis and
necroptosis independently in cancers (5–8), increasing evi-
dence suggests there is also a critical role for PANoptosis in
cancers (17,18,28). Thus, understanding the role of PANop-
tosis in cancer is of paramount importance for developing
more efficient patient stratification systems to guide tumor-
specific therapeutic strategies (82).

Here, we have established a systematic framework to
elucidate the prognostic impact of PANoptosis gene ex-
pression based on a pancancer cohort of 32 distinct can-
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Figure 5. Single cell transcriptomics provides evidence for PANoptosis in individual cells in LGG and SKCM datasets. (A) Expression profiles of PANop-
tosis genes across different cell types in the LGG dataset. (B) PANoptosis activity across different cell types in the LGG dataset estimated using ssGSEA.
(C) Expression profiles of PANoptosis genes across different cell types for the SKCM dataset. (D) PANoptosis activity across different cell types in the
SKCM dataset estimated using ssGSEA.

cer types from the TCGA. We established a PANoptosis
gene signature-based patient stratification system that in-
forms differential associations with OS. We further found
three cancer subtypes where PANoptosis has a significant
prognostic impact and characterized the specific PANopto-
sis genes of clinical relevance through a two-step filtering
procedure encompassing (a) differential expression analy-
sis and (b) survival analysis. These analyses allowed us to

perform a comprehensive validation of the prognostic rel-
evance of PANoptosis in a series of out-of-box unseen test
sets of relevant cancer lineages. We further applied our iden-
tified biomarkers in a proof-of-concept experiment to illus-
trate that PANoptosis caused cell death in melanoma cells.

We initially considered 27 genes in our PANoptosis gene
set based on evidence from the literature that these genes
play a role in inducing PANoptosis in response to vari-
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Figure 6. Proof-of-concept – activation of ZBP1-mediated PANoptosis induced cell death in melanoma cells. (A) Representative images of cell death by
propidium iodide (PI) staining in SK-MEL-5 (top) and RVH-421 (bottom) cell lines treated with KPT-335 in the presence or absence of IFN-� . Red mask
denotes dead cells. (B) Quantification of cell death by PI staining in SK-MEL-5 (top) and RVH-421 (bottom) cell lines treated with KPT-335 in the presence
or absence of IFN-� . (C) Representative images of cell death by PI staining in SK-MEL-5 (top) and RVH-421 (bottom) cell lines treated with leptomycin
B (LMB) in the presence or absence of IFN-� . (D) Quantification of cell death by PI staining in SK-MEL-5 (left) and RVH-421 (right) cell lines treated
with LMB in the presence or absence of IFN-� . ****P-value < 0.0001.
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ous pathogens and stimuli (16,17,31–33,71,83,84). As more
evidence of crosstalk and functional redundancies emerge
among the molecular components of pyroptosis, apoptosis
and necroptosis (85,86), and more molecules of relevance
are identified (87), the PANoptosis gene set may need to be
expanded further to fully understand its potential for prog-
nostic prediction. Using our computational framework, we
identified cancer types where increased expression of the
PANoptosis genes is significantly beneficial for OS (SKCM)
and where increased expression of the PANoptosis genes
is significantly detrimental for OS (LGG and KIRC). Re-
cent work using a relatively simplistic modeling technique
(LASSO) shows that individually, pyroptosis and necrop-
tosis are prognostic for SKCM, stomach adenocarcinoma
(STAD), LGG and KIRC cancers based on the TCGA co-
hort (56,88–90). Moreover, immunologically cold tumors
for LGG and KIRC have better survival prognosis in com-
parison to immunologically hot tumors (52,53); this has
generally been attributed to tumor signaling including path-
ways known to be associated with immune suppression such
as transforming growth factor beta (TGFB) (91). These re-
sults align with our finding that high expression of genes as-
sociated with inflammatory cell death, PANoptosis, is detri-
mental in these tumors.

While previous modeling approaches have attempted to
understand the impact of individual inflammatory PCD
pathways on cancer prognosis (56,88–90), our modeling ap-
proach overcomes key limitations faced in previous studies.
The majority of these approaches filter the initial gene set
using a LASSO-based regularized cox regression model to
determine a reduced set of genes as the final prognostic set
(56,88–90). However, there is a strong correlation between
the genes in the initial gene set, and the LASSO-based lin-
ear survival models can suffer from degenerate solutions,
i.e., the model will identify a different set of genes as impor-
tant and with non-zero coefficients when built with different
random initializations (92). To circumvent this limitation,
we used an elastic-net regularized cox regression analysis
model (GLMnet), which can attenuate some of the draw-
backs of the LASSO model through an L2 regularization
term, and we ran our GLMnet models 100 times. Then, the
relevant prognostic markers were identified as those which
have non-zero coefficients in at least 50% of the models. Fur-
thermore, by using a non-linear RFS model, our approach
can handle correlated sets of genes. This is because RFS em-
ploys a random sampling of the correlated genes to build
its decision trees and ensembles them. The RFS model also
provides variable importance with confidence intervals, i.e.,
it can rank the genes based on their importance for survival.

In this work, we aimed to determine the role of PANop-
tosis in cancer patient stratification and establish its clinical
relevance, as well as devise a systematic mechanism to iden-
tify key therapeutic targets for cancers of interest. However,
in-depth molecular characterization of these PANoptosis
clusters is needed. Additionally, characterization of the mu-
tational profile, genomic stability, immune composition and
pathway activity of the patients stratified into groups should
be performed. This has previously been useful when using a
gene set-based signature to understand the differential prog-
nosis with respect to the gene set of interest (8,52), and it can
also provide complimentary evidence driving the prognosis.

For instance, the role of immune composition (percentage
of different immune cell types identified through deconvolu-
tion of bulk RNA-Seq data) has been found to complement
the prognostic value of the inflammasome clusters (8). Sim-
ilarly, the enrichment of tumor intrinsic pathways may de-
termine the prognostic and predictive value of the immuno-
logic constant of rejection signature when used for strati-
fication of patient tumors (8,52). Furthermore, differential
analysis through network-based techniques such as differ-
ential network analysis (93–95) and master regulator analy-
sis (96–98) can provide insights about the molecular mecha-
nisms underlying PANoptosis activity in modulating innate
immunosurveillance in the cancer lineages of interest.

Additionally, further studies using proteomic data will
also be important. A limitation of our current work is
that the signature is based on gene expression profiles of
PANoptosis genes. A high gene expression does not neces-
sarily denote a high activation of its corresponding protein.
Post-transcriptional and post-translational modifications
can impact the protein expression and activity of PANop-
tosis genes. However, recent estimates of correlations be-
tween whole genome mRNA levels and protein abundance
by state-of-the-art proteome quantification techniques are
>0.8 (99), suggesting gene expression can be informative
for protein expression. Finally, through analysis of two
scRNA-seq datasets, we illustrated PANoptosis activity at
single cell resolution. In both the datasets, we consistently
observed reduced expression of PANoptosis genes in the
tumor cells within the tumor microenvironment, and fur-
ther studies will be needed to determine whether this is sug-
gestive of intrinsic resistance to PCD. In the future, spa-
tial transcriptional analysis can also be employed which
could enable characterization of human tumors undergo-
ing PANoptosis with higher fidelity, and microscopy can be
used to confirm the activation of PANoptosis in individ-
ual cancer cells. Recent studies have successfully observed
PANoptosome formation in single cells using confocal mi-
croscopy (16,84,100), and specifically in response to the
therapeutic combination of a nuclear export inhibitor and
IFN (100), which we used in this study to activate ZBP1-
mediated PANoptosis. The activated PANoptosis biochem-
ical markers observed in the RVH-421 cell line indicate that
a multiprotein PANoptosome is forming, and imaging these
cells in the future would provide important information
about the state of PANoptosis in human cancer cells.

Overall, our work provides a systematic framework to an-
alyze and identify key innate immune biomarkers that could
be targeted to improve patient outcomes in cancer. By ana-
lyzing the prognostic value of PANoptosis clusters and de-
termining the minimal gene set responsible for the major-
ity of the prognostic capability, our models provide a solid
foundation for the identification of targetable molecules
that can be modulated in cancer therapies.
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Raimondi,A., Rinchai,D., Frigè,G., Belfiore,A. et al. (2022)
Fasting-mimicking diet is safe and reshapes metabolism and
antitumor immunity in patients with cancer. Cancer Discov., 12,
90–107.

56. Shao,W., Yang,Z., Fu,Y., Zheng,L., Liu,F., Chai,L. and Jia,J. (2021)
The pyroptosis-related signature predicts prognosis and indicates
immune microenvironment infiltration in gastric cancer. Front. Cell
Dev. Biol., 9, 676485.
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