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Abstract: Background and Motivation: The novel coronavirus causing COVID-19 is exceptionally
contagious, highly mutative, decimating human health and life, as well as the global economy, by
consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymerase
chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung
classification X-ray systems having viral, bacterial, and tubercular classes—including COVID-19—are
not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnos-
tic method. Method: Artificial intelligence (AI) has been shown to revolutionize all walks of life,
particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass de-
tection and classification of pneumonia from chest X-ray images that are readily available and highly
cost-effective. The study has designed and applied seven highly efficient pre-trained convolutional
neural networks—namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and
ResNet152—for classification of up to five classes of pneumonia. Results: The database consisted
of 18,603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16,
and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67%; sensitivity of 99.84%, 96.63%,
92.70%; specificity of 99.84, 96.63%, 92.41%; and AUC of 1.0, 0.97, 0.92 (p < 0.0001 for all), respectively.
Our system outperformed existing methods by 1.2% for the five-class model. The online system
takes <1 s while demonstrating reliability and stability. Conclusions: Deep learning AI is a powerful
paradigm for multiclass pneumonia classification.

Keywords: COVID-19; Omicron; chest X-rays; deep learning; transfer learning; convolutional
neural network

1. Introduction

COVID-19 is an extremely contagious disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [1]. The virus was first isolated from three pneumonia
patients with critical respiratory illness in December 2019 in Wuhan, China [2]. Within
a short period, the virus spread globally. On 11 March 2020, World Health Organization
(WHO) declared the disease a pandemic [3]. Coronaviruses (CoVs) are a tremendously
diverse family of enveloped positive-sense single-stranded RNA viruses [4]. The viruses
are highly pathogenic and transmissible viruses that spread via respiratory droplets or
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aerosol between individuals in close proximity [5], leading to several pathways [6] causing
damage to several organs such as heart [7] and liver [8], causing diabetes [9] and pulmonary
embolism [10,11]. In the majority of infected cases, the person begins to exhibit symptoms
such as cough, fever, fatigue, and loss of smell or taste. In numerous fatal instances, the
infection progresses to the lower respiratory system, including the lungs, causing illness
such as severe pneumonia followed by multi-organ dysfunction syndrome with several
secondary infections and shock [12–17].

Even after two years of the virus outbreak and almost 10,000 million doses of vaccina-
tion being administered, the disease continues to destroy human health, life, and the global
economy. The viruses are incredibly efficient in mutating fast and gradually converting
into more deadly variants [18]. After the severe damage of the Delta variant, a new variant
named Omicron was discovered. The WHO has already designated Omicron as a variant
of concern [19]. Several notable mutations in spike proteins of Omicron make it highly
transmissible. Moreover, there is still a risk of more new mutations in Cov-2 thereafter,
presenting potential for a more pernicious variant outbreaks.

COVID-19 infection is normally detected by a reverse transcriptase polymerase chain
reaction (RT-PCR) test, which is frequently followed by chest radiographs, such as X-rays
and computed tomography (CT) scans [20,21]. The reference technique for COVID-19
detection is RT-PCR; although, the procedure is laborious, complicated, rigorous, and
time consuming with a significant high error rate [20,22,23]. The RT-PCR kit, along with a
specific biosafety facility to host the PCR machine, is expensive. Consequently, there is a
substantial supply constraint. Many nations are experiencing problems with erroneously
positive COVID-19 cases caused by inadequacy in test kit supply, as well as delays in the
test results. These limitations of RT-PCR present major obstacles to restricting the control
of the disease as infection spreads among healthy populations [24].

To counteract the spread of COVID-19, patients must undergo prompt and effective
screening, as well as get appropriate medical attention. Several medical imaging modalities,
including chest X-ray (CXR) and computed tomography (CT), can help with this [25,26].
COVID-19 has recently been detected using CT imaging [25,27], however, the high pa-
tient dosage and screening expenses are principal disadvantages of using CT imaging for
diagnosis [28]. On the other hand, the CXR equipment is commonly accessible in hospi-
tals and diagnostic centers to create a 2D projection of the thorax quickly and affordably.
Radiologists already use the CXR modality to detect chest abnormalities in various lung
illnesses, including pneumonia and tuberculosis. COVID-19 detection has also been done
utilizing CXRs in a few patients [25,29]. COVID-19 patients reveal similar findings in radio-
graphs such as bilateral, peripheral, and basal predominant ground-glass opacities, septal
thickening, pleural effusion, bronchiectasis, and bilateral lymphadenopathy [27,30–35].
As a result, CXR scans might help in the early detection of COVID-19 in the suspected
person. However, one challenge is that the CXRs of various pneumonia are very similar;
therefore, it is tough to differentiate COVID-19 from other lung abnormalities manually.
Nonetheless, deep learning algorithms powered by Artificial Intelligence (AI) can efficiently
extract several image-based features that radiologists may be unable to observe manually
in the original CXR. Regarding image feature extraction and classification, convolutional
neural networks (CNNs) have proven their efficiency and are widely implemented by
the research community [36–56]. Nowadays, CNN-based solutions are widely utilized to
resolve a variety of health problems such as brain tumor identification [57–59], lung and
breast cancer detection [60–62], Alzheimer’s disease diagnosis [63], cardiovascular disease
predictions [64–70], pneumonia detection [71–75], and many more. With the promising
results in several applications, deep learning techniques for chest X-rays have been gain-
ing prominence in recent years. The transfer learning technique has made the operation
smoother by facilitating the quick retraining of a highly deep CNN [76–87].

In this work, we have designed and applied seven different deep learning models
utilizing the transfer learning method to detect multiclass COVID-19 in CXR images. We
have performed the binary and multiclass classification into COVID-19 and other lung
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diseases—namely, viral pneumonia (VP), bacterial pneumonia (BP), tuberculosis (TB), and
normal images. Thereafter, we compared the results to get the best-suited model for their
usefulness in practice. Figure 1 shows the overall schematic diagram of the development of
the COVID-19 detection system.
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The whole work has been structured in a section-wise manner. In Section 2, we have
explored all the related work and contributions of different authors in this area. Section 3
explains the dataset, image-preprocessing, and deep learning models. In Section 4, results
of the experiments and their comparative performances have been provided. Section 5
deals with the model’s performance evaluation. Next, Section 6 presents the scientific
validation of the proposed models which has been done on another dataset. Further, in
Section 7, we have compared the proposed models with other existing state-of-the-art
methods. Finally, Section 8 concludes the study and presents the future scope.

2. Related Work

Recently, COVID-19 detection using deep learning techniques has become a very
popular area of research. Several researchers have proposed deep learning methods for the
detection of disease in CXR images. However, the majority of them employed a limited
dataset with a small number of COVID-19 samples. Consequently, their outputs may not be
generalized, and accuracy cannot be guaranteed with a larger dataset. Choudhury et al. [88]
applied eight different deep learning pre-trained CNNs for the classification of CXR images
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with three classes named COVID-19, viral pneumonia, and normal, with a total of 423, 1485,
and 1579 images for each class, respectively. The authors showed an accuracy of 97.74% by
CheXNet for three-class with the equivalent precision, sensitivity, and F1-score of 96.61%,
and specificity of 98.31%. Hemdan et al. [89] utilized 50 CXR images with 25 confirmed
COVID-19 and 25 normal for classification using pre-trained deep CNNs and achieved
a maximum accuracy of 90% using VGG16 and DenseNet201 models with the precision
of 83%, recall of 100%, and F1-score of 91% for both of the networks. Hussain et al. [90]
developed a novel deep neural network (DNN) named CoroDet. The authors used CXR
images under four classes named COVID-19, viral pneumonia (VP), bacterial pneumonia
(BP), and normal with an sample sizes of 500, 400, 400, and 800 for each class respectively.
They performed the classification experiment into two-class (COVID-19 vs. normal), three-
class (COVID-19, VP, and normal), and four-class (COVID-19, VP, BP, and normal) models
with maximum accuracies of 99.1%, 94.2%, and 91.2% for each experiment respectively.
Jain et al. [91] applied several pre-trained CNNs for the classification of CXR images into
three classes—COVID-19, VP, and normal. They utilized 490 COVID-19 images and got the
maximum accuracy of 97.97% using the Xception model. Mahdy et al. [92] recommended a
deep CNN-based methodology for COVID-19 detection from chest X-ray images with an
accuracy of 97.48%. Ioannis et al. [93] applied transfer-learning methods to classify CXR
images into COVID-19, BP, and normal classes with 224, 700, and 504 images for each class,
respectively. They attained 96.7% accuracy, 98.66% sensitivity, and 96.46% specificity for the
experiment. Sethy et al. [94] applied ResNet50 and SVM to classify CXRs into COVID-19,
pneumonia, and normal classes. They obtained an accuracy of 95.33% for the three-class
experiment. Ozturk et al. [95] introduced a novel network named DarkCovidNet. Using this
network, the authors received an accuracy of 98.08% for two-class classification and 87.02%
accuracy for three-class classification. Khan et al. [96] introduced a novel network: Coronet
inspired from Xception architecture. Using the Coronet model, the authors obtained
an accuracy of 95% for three-class classification into COVID-19, VP, and normal. They
also performed four-class classification into COVID-19, VP, BP, and normal with 89.6%
accuracy. Wang et al. [97] introduced a novel DNN, named COVID-Net, for the detection of
COVID-19. The authors utilized 13,975 CXR images for the classification and achieved an
accuracy of 83.5%. Afshar et al. [98] introduced COVID-CAPS, a capsule network to classify
small-sized data of CXR images. The authors obtained an accuracy of 95.7% using COVID-
CAPS. Yang et al. [99] applied transfer four different learning-based networks to classify
CXR images into binary and three-class. The authors obtained an accuracy of 99% for binary
(COVID-19 and pneumonia) and 97% accuracy for three-class (COVID-19, pneumonia,
and normal) classification, both by the VGG16 network. Nayak et al. [100] performed
binary classification into COVID-19 and normal class using 406 CXR images. The authors
applied eight different pre-trained neural networks using the transfer learning method and
obtained a maximum accuracy of 98.33% using ResNet34 network. When it comes to fusion
of machine learning and deep learning, Bhattacharya et al. [101] performed three-class
classification. This was aimed at classification of CXRs into COVID-19, pneumonia, and
normal class. The authors obtained a maximum accuracy of 96.6% using a combination of
VGG16 and binary robust invariant scalable key-points algorithm. Deb et al. [102] proposed
a multi-model deep CNN ensemble architecture for the classification of CXRs into binary
(COVID-19 and non-COVID-19) and three-class (COVID-19, pneumonia, and normal). The
authors obtained accuracies of 98.58% for binary and 93.48% for the three-class experiment.
Nikolaou et al. [103] developed a novel CNN by modifying pre-trained EfficientNetB0. This
network was applied for the binary (COVID-19 and normal) and three-class (COVID-19,
pneumonia, and normal) classification, obtaining an accuracy of 95% for binary and 93%
for three-class. Oh et al. [104] introduced a patch-based DNN, where the network was
applied for four-class classification of CXRs into COVID-19, BP, TB, and normal. Their
database consisted of 502 images, where 180 were COVID-19 images, and they obtained a
classification accuracy of 88.9%. AI-Timemy et al. [105] performed five-class classification
divided into COVID-19, VP, BP, TB, and normal class. They utilized 2186 images, including
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435 COVID-19 images, for the experiment. The authors applied a combination of DL and
ML methods and attained 91.6% accuracy.

In conclusion, several recent studies have been reported for COVID-19 and other
pneumonia classifications using CXR images. Most of them applied various CNN networks
and achieved promising results. However, in maximum cases, the dataset used has a
deficient number of images due to the scarcity of COVID-19 data. Hence, their results need
to be verified on a larger dataset. Additionally, the classification into relevant multiclasses
(>3 pneumonia) is rare. A rigorous experiment on classification for a larger dataset of
COVID-19 and other similar lung disorders is required. In this study, we have designed
and applied seven different deep learning models utilizing the transfer learning method for
the classification of four types of pneumonia including COVID-19. We have used almost
the largest data set of 18,603 CXR images which consists of 3611 COVID-19, 1345 viral
pneumonia, 2780 bacterial pneumonia, 700 tuberculosis, and 10,167 normal CXR images.

3. Methodology

We have designed and applied seven highly efficient pre-trained deep CNNs for the
binary and multiclass classification of pneumonia diseases. The approaches we have opted
for in this experiment are described in the five subsequent sub-sections.

3.1. Dataset

In this experiment, 18,603 CXR images were used, including both anterior-to-posterior
(AP)/posterior-to-anterior (PA). The dataset was prepared from three different publicly
available databases. COVID-19, viral pneumonia, and normal CXR images were taken
from the Kaggle: “COVID-19 Radiography Database”, i.e., winner of the COVID-19 Dataset
Award by Kaggle Community [106]. The tuberculosis images were taken from the Kaggle:
“Tuberculosis (TB) Chest X-ray Database” [107]. Finally, the bacterial pneumonia images
were taken from the Kaggle: “Chest X-Ray Images (Pneumonia)” [108].

3.1.1. COVID-19 Radiography Database

The COVID-19 radiography database includes CXR images of COVID-19 and viral
pneumonia patients along with healthy persons. The dataset was created by different
research groups and doctors in collaboration [88,109]. The first stage of release of the
dataset had 219 COVID-19, 1341 normal, and 1345 viral pneumonia chest X-rays. After two
updates, the current dataset has increased the number up to 3616 COVID-19, 10,192 normal,
and 1345 viral pneumonia images. The images were in Portable Network Graphics (PNG)
file format with a resolution of 299 × 299 pixels. We have taken all the COVID-19, viral
pneumonia, and normal images for our experiment.

3.1.2. Chest X-ray Pneumonia Images

The chest X-ray images (pneumonia) dataset contains 5863 CXR images with
2780 bacterial pneumonia and the rest with viral pneumonia and normal images. The CXR
images were taken from Guangzhou Women and Children’s Medical Center, Guangzhou,
China [110,111]. The images were in JPEG format with variable resolutions. We have taken
all the 2780 bacterial pneumonia images for our experiment.

3.1.3. Tuberculosis Chest X-ray Database

The tuberculosis chest X-ray database contained CXR images of tuberculosis patients
along with the healthy person. The dataset was created by several research groups along
with the collaboration of medical doctors [112]. There are 700 tuberculosis images in
Portable Network Graphics (PNG) file format with a resolution of 512 × 512 pixels. We
have taken all the 700 tuberculosis images for our experiment. Figure 2 shows sample CXR
images from each class. The images indicate that it is hard to determine the differences
between them manually.



Diagnostics 2022, 12, 652 6 of 32

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 33 
 

 

taken all the 700 tuberculosis images for our experiment. Figure 2 shows sample CXR im-
ages from each class. The images indicate that it is hard to determine the differences be-
tween them manually. 

 
Figure 2. Sample chest X-ray images from each class. 

3.2. Image Processing 
All the CXR images collected from the different data sources were first converted into 

Portable Network Graphics (PNG) file format. Out of 18,632, 29 images, i.e., <1%, were 
excluded from the experiment as outliers since they were missing details such as lung 
region. Some X-ray images containing avoidable body parts were cropped, displaying 
only chest and lungs. Image augmentation was done for each image included in the train-
ing process. During image augmentation, shearing and zooming were applied to 20%, 
typically adapted in the imaging industry [113–116]. Images were resized to 224 × 224 
pixels before the training process as required for the pre-trained model standards. 

Finally, a total of 18,603 CXR images including 3611 COVID-19, 1345 viral pneumo-
nia, 2780 bacterial pneumonia, 700 tuberculosis, and 10,167 normal images were utilized 

Figure 2. Sample chest X-ray images from each class.

3.2. Image Processing

All the CXR images collected from the different data sources were first converted into
Portable Network Graphics (PNG) file format. Out of 18,632, 29 images, i.e., <1%, were
excluded from the experiment as outliers since they were missing details such as lung
region. Some X-ray images containing avoidable body parts were cropped, displaying only
chest and lungs. Image augmentation was done for each image included in the training
process. During image augmentation, shearing and zooming were applied to 20%, typically
adapted in the imaging industry [113–116]. Images were resized to 224 × 224 pixels before
the training process as required for the pre-trained model standards.

Finally, a total of 18,603 CXR images including 3611 COVID-19, 1345 viral pneumonia,
2780 bacterial pneumonia, 700 tuberculosis, and 10,167 normal images were utilized for the
experiments. Table 1 shows the experimental steps and class-wise distribution of the images.
Out of the total, 80% (i.e., 14,879 images) including 2887 COVID-19, 1075 viral pneumonia,
2224 bacterial pneumonia, 560 tuberculosis, and 8133 normal images were utilized for train-
ing the models. Next, 10%, (i.e., 1862) randomly selected images including 362 COVID-19,
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135 viral pneumonia, 278 bacterial pneumonia, 70 tuberculosis, and 1017 normal images
were utilized for validation. Finally, 10%, (i.e., 1862) randomly selected images that were
not involved in training or validation were utilized to test the models. The test set in-
cluded 362 COVID-19, 135 viral pneumonia, 278 bacterial pneumonia, 70 tuberculosis, and
1017 normal images.

Table 1. Experimental steps and class-wise distribution of chest X-ray images.

Experimental
Steps Normal COVID-19 Viral

Pneumonia
Bacterial

Pneumonia Tuberculosis Total

Training 8133 2887 1075 2224 560 14,879

Validation 1017 362 135 278 70 1862

Testing 1017 362 135 278 70 1862

3.3. Experimental Setup

The whole experiment was organized into three phases. During the first phase of
the experiment, we classified the images into two classes as: (i) COVID-19 and normal,
(ii) COVID-19 and viral pneumonia, (iii) COVID-19 and bacterial pneumonia, and (iv)
COVID-19 and tuberculosis. In the second phase of the experiment, we performed the
three-class classification into viral diseases i.e., COVID-19, viral pneumonia and normal. In
the third and final phase of the experiment, five-class classification was done into viral and
bacterial diseases—i.e., COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis,
and normal. The experimental protocol consisted of 80% training, 10% validation, and
10% testing. The experiment was performed utilizing Python 3.8 on a computer with Intel
Core i7 8th Generation Processor, 16 GB RAM, and 8 GB NVIDIA Quadro P4000 graphics
processing unit (GPU).

3.4. Model Architectures

Transfer learning is a machine learning approach in which a model developed for one
job is used as the foundation for another task. It uses a trained model from a large dataset.
Pre-trained weights are then used to train the network more quickly for an application with
a smaller dataset. This eliminates the need for a large dataset and shortens the training time
that a deep learning system requires when created from scratch. In this work, utilizing the
transfer learning approach we applied seven highly efficient pre-trained CNNs—namely,
VGG16, VGG19, Xception, InceptionV3, Densenet201, NasnetMobile, and Resnet152—for
the experiment. The architecture of each network is shown in Figure 3a–g. The Densenet
offers a superior architecture design when it comes to layering process. The feature maps of
the preceding layers are utilized in all the subsequent layers. This reduces the complexity
drastically, thereby improving the performance. In a conventional network, there are M
connections for M layers, unlike in the dense layer there are M(M + 1)/2 direct connections,
hence it is powerful and efficient. The loss function applied for two-class was binary
cross-entropy and for multiclass was categorical cross-entropy (CE). The activation function
applied for the dense layer was sigmoid for binary and softmax for multiclass classification.
The output layer was modified according to the number of classes. The models were trained
for 25 epochs with a batch size of 16 images.
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3.5. Cross-Entropy Loss Function for Models

Binary cross-entropy loss function can be defined as in Equation (1) [67].

LBCE =
−1
N ∑N

i=1[(yi × log ai) + (1− yi)× log(1− ai)] (1)
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where, yi is the input GT label 1, (1 − yi) is GT label 0, ai represents the Softmax classifier
probability.

Categorical cross-entropy loss function can be defined as in Equation (2) [67].

LCCE =
1
N ∑N

i=1 ∑C
c=1 1yi∈Cc log amodel(yi ∈ Cc) (2)

where, N is the total number of observations (images), C is the number of categories or
classes, 1yi∈Cc term indicates the ith observation that belongs to the cth category.

3.6. Performance Metrics Used for Classification Evaluation

The performances of the proposed models were evaluated by the following different
matrices:

(a) Accuracy: Accuracy is the most significant criterion for the analysis of the convo-
lutional neural network’s performance. Accuracy is the sum of true positive and
true negative values divided by the entire component of the confusion matrix. It is
represented as given in Equation (3) [88].

Accuracy =
True Positives + True Negatives

Total number of cases
(3)

(b) Precision: Precision is an important measure of the results of the CNN models. It
counts how many correct positive predictions have been made. Precision is evaluated
as the ratio between true positive predicted components and the sum of positive
predicted components. It is represented as given in Equation (4) [88].

Precision =
True Positive

True Positive + False Positive
(4)

(c) Recall (Sensitivity): Recall is another important metric for the analysis of the classifier’s
performance. It is defined as the ratio between the true positive predicted components
and the sum of true positive and false negative predicted components. It is represented
as given in Equation (5) [91].

Recall =
True Positive

True Positive + False Negative
(5)

(d) F1-score: The F1-score is an important measure for assessing the test’s accuracy. It
is the harmonic mean between precision and recall. It is defined as twice the ratio
between multiplication of precision and recall to the sum of precision and recall. It is
represented as given in Equation (6) [91].

F1− score =
2 × Precision × Recall

Precision + Recall
(6)

4. Results

Three different phases of the experiment were performed to compare the results of
each classification possibility. In the first phase, we performed binary, then three-class, and
finally five-class classification experiments.

4.1. Binary Classification

The binary classification experiment deals with the classification of images into COVID-
19 and other classes separately. We endeavored to know how accurately the models could
classify the images of different classes from the COVID-19 class. The binary experiment was
stepped into four different sub-phases as COVID-19 vs. normal, COVID-19 vs. viral pneu-
monia, COVID-19 vs. bacterial pneumonia, and COVID-19 vs. tuberculosis classification.
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4.1.1. Binary Class Case 1: COVID-19 vs. Normal

The comparative performances of different CNNs for the binary classification into
COVID-19 and normal images are shown in Table 2. Using Equations (3)–(6), we evaluated
the performance of the VGG 16 network, and it demonstrated the greatest efficiency with
the highest accuracy, precision, recall, and f1-score among all networks. The VGG16
achieved a test accuracy of 97.24% with weighted averages of precision, recall, and f1-score
of 97.26%, 97.24%, and 97.21%, respectively. The DenseNet201 performed as the second
most efficient network with an accuracy of 96.01%. The performance of ResNet152 was least
efficient with an accuracy of 78.75%. Figure 4 shows the training and validation accuracies
and Figure 5 shows the training and validation loss for the best performing VGG16 model.
The graphs indicate improved accuracy and reduced loss with successive epochs. Figure 6
shows the confusion matrix of test data classification by the VGG16 model. The confusion
matrix specifies that, out of 362 COVID-19 images, 331 were correctly classified, and 31
were misclassified as normal images. Whereas, out of 1017 normal images, 1010 were
correctly predicted, and seven were misclassified as the COVID-19 images.

Table 2. Weighted average of performance metrics by different deep learning models for COVID-19
and normal classification.

CNN Models Accuracy Precision Recall F1-Score

VGG16 97.24 97.26 97.24 97.21

VGG19 94.85 94.94 94.85 94.72

Xception 88.69 90.03 88.69 87.58

InceptionV3 93.33 93.32 93.33 93.32

DenseNet201 96.01 96.00 96.01 95.96

NasnetMobile 92.39 92.60 92.39 92.06

ResNet152 78.75 82.85 78.75 73.02
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4.1.2. Binary Class Case 2: COVID-19 vs. Viral Pneumonia

Table 3 shows the comparative performances of different CNNs for binary classifica-
tion into COVID-19 and viral pneumonia. The NasnetMobile network performed most
efficiently with the highest accuracy, precision, recall, and f1-score among all networks. The
model achieved an accuracy of 99.80% with the equivalent weighted average of precision,
recall, and f1-score of 99.80% each. VGG16 model performed as the second most efficient
network with an accuracy of 99.60%. The performance of the ResNet152 model was least
efficient, with an accuracy of 97.79%.

Table 3. Weighted average of performance metrics by different deep learning models for COVID-19
and viral pneumonia classification.

CNN Models Accuracy Precision Recall F1-Score

VGG16 99.60 99.60 99.60 99.60

VGG19 99.20 99.20 99.20 99.19

Xception 99.40 99.40 99.40 99.40

InceptionV3 98.99 99.01 98.99 99.00

Densenet201 99.40 99.40 99.40 99.40

NasnetMobile 99.80 99.80 99.80 99.80

Resnet152 97.79 97.80 97.79 97.77
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Figure 7 shows the training and validation accuracy and Figure 8 shows the training
and validation loss for the best performing NasnetMobile model. The graphs show how
accuracy improves and loss reduces with successive epochs. Figure 9 shows the confusion
matrix of the test data classification by the NasnetMobile model. The confusion matrix
reveals that, out of 362 COVID-19 images, 361 were correctly predicted, and one was
misclassified to the viral pneumonia class. Furthermore, our model correctly predicted all
135 viral pneumonia images without any false prediction.
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4.1.3. Binary Class Case 3: COVID-19 vs. Bacterial Pneumonia

The comparative performance metrics of different CNNs for binary classification into
COVID-19 and bacterial pneumonia are shown in Table 4. The DenseNet201 performed
most efficiently with the highest accuracy, precision, recall, and f1-score among all networks.
The model achieved an accuracy of 99.84% and an equivalent weighted average of precision,
recall, and f1-score of 99.84% each. The InceptionV3 and NasnetMobile performed as the
second most efficient network with the equivalent accuracy of 99.53%. The ResNet152
performed least efficiently with an accuracy of 98.59%.

Table 4. Weighted average of performance metrics by different deep learning models for COVID-19
and bacterial pneumonia classification.

CNN Models Accuracy Precision Recall F1-Score

VGG16 99.22 99.22 99.22 99.22

VGG19 98.75 98.76 98.75 98.75

Xception 99.06 99.08 99.06 99.06

InceptionV3 99.53 99.53 99.53 99.53

Densenet201 99.84 99.84 99.84 99.84

NasnetMobile 99.53 99.53 99.53 99.53

Resnet152 98.59 98.60 98.59 98.59

Figure 10 shows the training and validation accuracy, and Figure 11 shows the training
and validation loss for the best performing DenseNet201 model. The graphs show that
accuracy improves and loss reduces with successive epochs.
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Figure 12 shows the confusion matrix of the test data classification by the DenseNet201
model. The confusion matrix specifies that out of 362 COVID-19 images, 361 were correctly
predicted and one image was misclassified to bacterial pneumonia class. However, the
model correctly predicted all 278 bacterial pneumonia images without any false predictions.
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4.1.4. Binary Class Case 4: COVID-19 and Tuberculosis

The comparative performance metrics of different CNNs for binary classification into
COVID-19 and tuberculosis CXR images have shown in Table 5. VGG16 performed most
efficiently with an accuracy of 99.31%, weighted average of precision and recall of 99.31%,
and f1-score of 99.30%. VGG19 and Xception both performed as the second most efficient
models with the equivalent accuracy of 99.07%. ResNet152 performed least efficiently with
an accuracy of 91.20%.

Table 5. Weighted average of performance metrics by different deep learning models for COVID-19
and tuberculosis classification.

CNN Models Accuracy Precision Recall F1-Score

VGG16 99.31 99.31 99.31 99.30

VGG19 99.07 99.07 99.07 99.07

Xception 99.07 99.07 99.07 99.07

InceptionV3 98.38 98.47 98.38 98.40

Densenet201 98.84 98.88 98.84 98.85

NasnetMobile 93.75 95.15 93.75 94.09

Resnet152 91.20 92.25 91.20 91.56

Figure 13 shows the training and validation accuracy and Figure 14 shows the training
and validation loss for the best performing VGG16 model. The graphs indicate improved
accuracy and reduced loss with successive epochs. Figure 15 shows the confusion matrix
of the test data classification by the VGG16 model. The confusion matrix reveals the model
correctly classified all 362 COVID-19 CXR images. Furthermore, out of 70 tuberculosis CXR
images, 67 were correctly predicted, and three were misclassified as COVID-19 images.
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4.2. Three-Class Classification into Viral Diseases

The comparative performance metrics of different CNNs for three-class classification
into COVID-19, viral pneumonia, and normal images have shown in Table 6. VGG16
network performed most efficiently with an accuracy of 96.63% and equivalent weighted
average of precision, recall, and f1-score of 96.63% each. The DenseNet201 network per-
formed as the second most efficient network with an accuracy of 95.51%. The performance
of ResNet152 model was the least efficient with an accuracy of 77.21%.
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Table 6. Weighted average of performance metrics by different deep learning models for three-class
classification into COVID-19, viral pneumonia, and normal.

CNN Models Accuracy Precision Recall F1-Score

VGG16 96.63 96.63 96.63 96.63

VGG19 91.94 92.49 91.94 91.63

Xception 91.68 91.64 91.68 91.54

InceptionV3 92.54 92.47 92.54 92.43

Densenet201 95.51 95.61 95.51 95.44

NasnetMobile 92.93 93.32 92.93 92.96

Resnet152 77.21 84.70 77.21 78.57

Figure 16 shows the training and validation accuracy and Figure 17 shows the training
and validation loss for the best performing VGG16 model. The graphs indicate improved
accuracy and reduced loss with successive epochs.
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Figure 18 shows the confusion matrix of the test data classification by the VGG16
model. The confusion matrix specifies that out of 362 COVID-19 images, 339 were correctly
classified, and 23 were misclassified as 21 to normal and two images to the viral pneu-
monia class. Next, out of 1017 normal images, 994 were correctly predicted, and 23 were
misclassified with 18 as COVID-19 and five images as viral pneumonia class. Further, out
of 135 viral pneumonia images, 130 were correctly classified, and five were misclassified as
normal images.
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Figure 18. Confusion matrix for three-class classification by VGG16.

4.3. Five-Class Classification into Viral and Bacterial Diseases

The comparative performance metrics of different networks for classification into five
classes: COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, and normal images
are shown in Table 7. The VGG16 model performed most efficiently with an accuracy of
92.70% and weighted averages of precision, recall, and f1-score of 92.41%, 92.70%, and
92.47%, respectively. The DenseNet201 performed as the second most efficient model with
an accuracy of 89.10%. The performance of ResNet152 network was least efficient, with an
accuracy of 74.70%.

Table 7. Weighted average of performance metrics by different deep learning models for five-class
classification into COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, and normal.

CNN Models Accuracy Precision Recall F1-Score

VGG16 92.70 92.41 92.70 92.47

VGG19 89.04 90.37 89.04 87.00

Xception 83.35 84.83 83.35 80.61

InceptionV3 84.00 85.54 84.00 83.44

Densenet201 89.10 89.80 89.10 88.42

NasnetMobile 87.76 88.05 87.76 86.65

Resnet152 74.70 76.80 74.70 71.60

Figure 19 shows the training and validation accuracy and Figure 20 shows the training
and validation loss for the best performing VGG16 model. The graphs indicate that accuracy
improves and loss reduces with successive epochs. Figure 21 shows the confusion matrix
of the test data classification by the VGG16 model. The confusion matrix reveals that,
out of 362 COVID-19 images, 336 were correctly predicted and 26 were misclassified as
24 to normal, one to bacterial pneumonia, and one to tuberculosis class. Next, out of
278 bacterial pneumonia images, 238 were correctly classified and 40 were misclassified as
14 normal and 26 viral pneumonia images. Furthermore, out of 1017 normal, 1002 were
correctly predicted and 15 were misclassified as 12 COVID-19, two as bacterial pneumonia,
and one as a viral pneumonia image. Afterward, out of 70 tuberculosis images, 69 were
correctly classified and one image was misclassified to normal class. Finally, out of 135 viral
pneumonia images, 81 were correctly predicted, and 54 were misclassified as 37 bacterial
pneumonia, 16 normal, and one COVID-19 image.
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5. Performance Evaluation

We are able to design a multiclass system for COVID-19 classification and detection.
The results of each experiment show very encouraging numbers. However, the system
needs some performance evaluation to prove its robustness against all odds. Therefore, we
obtained the receiver operating characteristic (ROC) curve and the area-under-the-curve
(AUC) for the best performing model in all classification experiments.

The ROC curves are drawn using inference values and true labels for each class.
Figure 22 shows the four ROC curves and AUC values for best performing models in two-
class experiments. Figure 23 shows ROC curves and AUC values for the best performing
model (VGG16) in three-class experiments. Similarly, Figure 24 shows ROC curves and
AUC values for the best performing model (VGG16) in five-class experiments.
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6. Scientific Validation

Scientific validation is a significant integrated part of system design. The goal of
optimal model validation is to ensure that the model is also functioning well and delivering
comparable results on different dataset domains. In this work, we verified all of our
models on the facial biometric dataset named Faces95 from Libor Spacek’s Facial Images
Databases [117]. Several articles in the literature demonstrate the use of a well-known
and standardized Faces95 database [118]. The database contains 72 individual images
with various expressions and positions sat at a fixed distance from the camera. There are
72 classes for both men and women, with a total of 1440 photographs. The sample images
from the first eight classes are shown in Figure 25.
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The experiments were performed under a similar experimental condition as for CXR
images classification. The loss function applied was categorical cross-entropy. The ac-
tivation function used for the dense layer was softmax. The models were trained for
25 epochs with a batch size of 16 images. The training, validation, and testing were done
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on 80%, 10%, and 10% of the randomly selected images, respectively. The performances
were also evaluated in terms of accuracy, precision, recall, and F1-score. Table 8 shows the
comparative performance of the models. The VGG16 model performed most efficiently
with an accuracy of 98.61% and precision, recall, and F1-score of 99.07%, 98.61%, and
98.52%, respectively. Figure 26 shows the training and validation accuracy and Figure 27
shows the training and validation loss for the best performing VGG16 model. The graphs
indicate improved accuracy and reduced loss with successive epochs. The results support
our system performing excellently on other datasets too, along with the medical images,
providing outstanding results in each scenario.

Table 8. Weighted average of performance metrics by different deep learning networks for facial
images classification.

CNN Models Accuracy Precision Recall F1-Score

VGG16 98.61 99.07 98.61 98.52

VGG19 96.53 97.45 96.53 96.34

Xception 93.06 93.75 93.06 92.18

InceptionV3 95.83 97.22 95.83 95.56

DenseNet201 96.53 97.69 96.53 96.30

NasnetMobile 93.06 95.60 93.06 92.82

ResNet152 75.69 76.50 75.69 80.13Diagnostics 2022, 12, x FOR PEER REVIEW 24 of 33 
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7. Discussion

The coronavirus pandemic and its fast spread has put the world in a very tough
situation. The quality of life due to COVID-19 has gotten worse, including increased
anxiety and depression [119]. The chaotic behavior of COVID-19 has caused it to spread as
a nonlinear infection throughout different parts of the world [120]. Certain places of the
world have a larger number of infections, while some have lower numbers. Furthermore,
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some have greater intensity and severity, while at some places it has smaller intensity and
severity. Additionally, regarding cases related on a daily basis, studies have shown no
significant correlation in the diffusion of disease in the different parts of the world [121].
Thus, it makes it difficult to predict, prepare, and combat the outbreak of the disease
variants. To find solutions and overcome limitations—such as unavailability of RT-PCR
tests, delayed results, and high costs—our strategy of deep learning-based transfer models
for the classification of chest X-ray images to detect COVID-19 is proving to be most
effective. We utilized 18,603 CXR images, with 3611 having COVID-19 and remainder
of the sample being composed of patients with viral pneumonia, bacterial pneumonia,
and tuberculosis disease classes along with normal images. We organized our experiment
into three phases: (i) binary classification (COVID-19 and other classes separately); (ii)
three-class classification into viral diseases (COVID-19, viral pneumonia, and normal); and
(iii) five-class classification into viral and bacterial diseases (COVID-19, viral pneumonia,
bacterial pneumonia, tuberculosis, and normal). To achieve optimal performance, we
applied seven highly efficient pre-trained CNNs—VGG16, VGG19, DenseNet201, Xception,
InceptionV3, NasnetMobile, and ResNet152—for the classification of the CXR images.

7.1. Principal Findings

For binary classification, we achieved the best performance by the DenseNet201
model with an accuracy of 99.84% for COVID-19 and bacterial pneumonia classification.
Thereafter, the second-best performing model was NasnetMobile which provided 99.80%
accuracy for the classification of COVID-19 and viral pneumonia. Finally, the VGG16 model
performed third-best with 99.31% and 97.24% accuracies for classification into COVID-19
vs. tuberculosis and COVID-19 vs. normal class respectively. For three-class and five-class
experiments, the VGG16 model performed best with accuracies of 96.63% and 92.70%
respectively. The AUC for binary classification was best for COVID-19 vs. viral pneumonia
and COVID-19 vs. tuberculosis class with the value of 1.0. Next, the AUC achieved
for COVID-19 and tuberculosis was 0.98 and for COVID-19 and normal class was 0.95.
Furthermore, for three-class and five-class classification, the AUC values achieved were
0.97 and 0.92 respectively.

7.2. Benchmarking

Table 9 shows the benchmarking table, presenting existing state-of-art classification
methods and comparing them against the proposed method. Each row in the table shows
different authors’ work in this area and the columns show the methods, number of X-ray
images used, and results of the experiment. We used the highest number of images for our
experiment compared with any other work in this area. To the best of our knowledge, our
NasnetMobile model achieved the highest accuracy of 99.80% among all existing methods
for binary classification of COVID-19 vs. viral pneumonia. Additionally, for the first time
ever, we have performed the binary classification into COVID-19 vs. bacterial pneumonia
and COVID-19 vs. tuberculosis disease classes with remarkable accuracies of 99.84% by
Densenet201 and 99.31% by VGG16 model, respectively. Our results are very consistent
with the previous studies on Densenet [122–125]. These studies have shown superior
performance of Densenet169 applied to COVID CT/X-rays. The key advantages of the
Densenet are its ability to alleviate the fundamental problem of vanishing-gradient. As
a result, the feature extraction process is boosted up for its reuse, thereby reducing the
number of parameters.
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Table 9. Benchmarking table showing state-of-the-art methods and comparing them against the
proposed model.

Author and Year Method and
Models

Number of
Images Used

Classification Accuracy
AUC 1

Two-Class Three-Class 2 Four-Class 3 Five-Class 4

Nayak et al.
(2020) [100]

Method: CNN
with transfer

learning
Model:

ResNet-34

C 5: 203
Total: 406 C 5 & N 6: 98.33% NA 7 NA NA C & N: 0.98

Choudhury et al.
(2020) [88]

Method: CNN
with transfer

learning
Model: CheXNet

C: 423
Total: 3487 NA 97.74% NA NA NA

Jain et al.
(2020) [91]

Method: CNN
with transfer

learning
Model: Xception

C: 490
Total: 6432 NA 97.97% NA NA NA

Bhattacharyya
et al. (2021) [101]

Method: ML 8 +
DL 9

DL model:
VGG-19

ML model:
Random Forest

C: 342
Total: 1029 NA 96.6% NA NA NA

Nikolaou et al.
(2021) [103]

Method: CNN
with transfer

learning
Model:

EfficientNetB0

C: 3616
Total: 15,153 C & N: 95% 93% NA NA NA

Yang et al.
(2021) [99]

Method: CNN
with transfer

learning
Model: VGG16

C: 3616
Total: 8461

C & N: 98%
C & VP 10: 99% 97% NA NA NA

Khan et al.
(2020) [96]

Method: deep
learning

Model: Coronet
(novel CNN)

C: 284
Total: 1251 NA 95% 89.6% NA NA

Hussain et al.
(2020) [90]

Method: deep
learning

Model: CoroDet
(novel CNN)

C: 500
Total: 2100 C & N: 99.1% 94.2% 91.2% NA NA

Oh et al.
(2020) [104]

Method: CNN
with transfer

learning
Model:

ResNet-18

C: 180
Total: 502 NA NA 88.9% NA NA

Timemy et al.
(2021) [105]

Method: ML +
DL

DL model:
ResNet-50

ML model: ESD
11

C: 435
Total: 2186 NA NA NA 91.6% NA

Proposed work
(Nillmani et al.)

Method: CNN
with transfer

learning
Model: VGG16,
NasnetMobile,
DenseNet201

C: 3611
Total: 18,603

C & N: 97.24% 12

C & VP: 99.80% 13

C & BP 14: 99.84% 15

C & T 16: 99.31% 12

96.63% 12 NA 92.70% 12

C & N: 0.95 12

C & VP: 1.0 13

C & BP: 1.0 15

C & T: 0.98 12

Three-class 2: 0.97 12

Five-class 4: 0.92 12

1 Area under the ROC Curve; 2 COVID-19, viral pneumonia and normal; 3 COVID-19, viral pneumonia, bac-
terial pneumonia, and normal; 4 COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, and normal;
5 COVID-19; 6 Normal; 7 Not applicable as authors have not performed such type of experiment; 8 Machine
learning; 9 Deep learning; 10 Viral pneumonia; 11 Ensemble subspace discriminant; 12 Acheived by VGG16; 13

Acheived by NasnetMobile; 14 bacterial pneumonia; 15 Acheived by DenseNet201; 16 tuberculosis.

The CoroDet model by Hussain et al. [90] performed slightly better than our VGG16
model for binary classification between COVID-19 and normal. The authors achieved an
accuracy of 99.1% in comparison to 97.24% by our model. However, our VGG16 model beat
the CoroDet for three-class classification with an accuracy of 96.63% in comparison to 94.2%.
Our model performed very close to the 97.97% of accuracy by the best performing Xception
network for three-class classification applied by Jain et al. [91]. However, an advantage of
our VGG16 network is that it is faster and takes less time for training. Furthermore, for
the five-class classification, our VGG16 model outperformed other existing models with an
accuracy of 92.70%.
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7.3. A Special Note on Multiclass Frameworks for Pneumonia Classification

To date, most of the classification experiments for COVID-19 detection have been
according to binary or three-class models. However, beyond COVID-19, a wide range of
pneumonia exist among the population—including viral, bacterial, and tubercular. There-
fore, it is vital to distinguish the COVID-19 from other diseases. A multiclass approach was
apparently needed to classify COVID-19 from other pneumonia for the correct diagnosis of
the patient. Our system is trained with the highest number of CXR images to date, includes
most of the relevant pneumonia types, and is able to distinguish COVID-19 from other
lung diseases with excellent accuracy.

7.4. Strengths, Weaknesses, and Extensions

The major strength of our system is its ability to detect COVID-19 very rapidly and it
takes just a few seconds to provide results. Furthermore, the system is very cost-effective,
as it requires only a patient’s chest X-ray scan which low-cost and readily available. Addi-
tionally, we have done six different types of classification experiments with consistently
good accuracy that support our system’s robustness for practical applications.

One of the limitations of our system is its inability to detect the severity of the infection,
partially due to collimator noise. One can adopt denoising methods [126] as part of
preprocessing. Furthermore, predicting severity may help the physicians in treatment
selection and thus in the fast and secure recovery of the patient. In addition, since we
had a large database of CXR images, we did not perform k-fold cross-validation in which
all images take part in training and testing at least once. In the extension of the work,
we will make an effort for the advancement of the system, as it could be able to detect
COVID-19 as well as the severity of the disease. In addition, we will include the heatmap
images [127–129] of the disease, which will show the affected areas of the lungs. Broader
advanced one-pass machine learning such as extreme learning machines [130] can be
explored as more data are collected along with pruning methods [131–133] to lower the
storage and improve the speed. This can also be extended for severity estimation [134] and
application of an advanced image analysis solution such as stochastic imaging [135].

8. Conclusions

COVID-19 has become the foremost global challenge to save human life. Several
healthcare organizations are struggling to discover effective solutions. However, artificial
intelligence applications in computer-aided diagnosis (CAD) have proven their efficiency
and importance in resolving several medical problems. Due to the presence of various
types of pneumonia—such as viral, bacterial, tubercular, as well as COVID-19—a system
was apparently needed for multiclass classification as current methods offer less reliable
solutions. In this work, we have designed and applied seven highly efficient pre-trained
convolutional neural networks—namely, VGG16, VGG19, DenseNet201, Xception, Incep-
tionV3, NasnetMobile, and ResNet152—for classification of up to five classes by utilizing a
large database of chest X-ray scans. For the first time ever, we have performed the binary
classification into COVID-19 vs. bacterial pneumonia and COVID-19 vs. tuberculosis
disease classes and achieved powerful accuracies of 99.84% by Densenet201 and 99.31% by
VGG16 model, respectively. Our NasnetMobile and VGG16 models outperformed other
existing methods for the binary (COVID-19 vs. viral pneumonia) and five-class (COVID-19,
viral pneumonia, bacterial pneumonia, tuberculosis, and normal) classification with an
accuracy of 99.80% and 92.70%, respectively. Performing with a remarkably high level
of accuracy, the proposed models can provide an alternative to the current diagnostic
methods for COVID-19 with a more accurate, cost-effective, and readily available system.
The system may promisingly contribute to the fast diagnosis of patients, consequently
lowering the medical load.
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Abbreviation

AI Artificial intelligence
AUC Area-under-the-curve
BP Bacterial pneumonia
CAD Computer-aided diagnosis
CNN Convolution neural network
COV Coronavirus
CT Computed tomography
CXR Chest X-ray
DL Deep learning
DNN Deep neural network
ESD Ensemble subspace discriminant
FC Fully connected
GPU Graphics processing unit
JPEG Joint photographic expert group
ML Machine learning
Nasnet Neural search architecture network
PNG Portable network graphics
RAM Random-access memory
ReLU Rectified linear unit
ResNet Residual neural network
RNA Ribonucleic acid
ROC Receiver operating characteristic
RT-PCR Reverse transcriptase polymerase chain reaction
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TB Tuberculosis
VGG Visual geometry group
VP Viral pneumonia
WHO World health organization
2-D Two-dimensional
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