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Abstract

Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the
underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is
believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3)
inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1b. The aim of the
present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1b pathway in cardiac fibroblasts
(CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-
talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1,
as well as the maturation (activation) and release of IL-1b. In addition, the genetic (small interfering ribonucleic acid [siRNA])
and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway.
Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs
to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in
cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of
endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with
LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the
NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.
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Introduction

Sepsis and septic shock are common entities encountered in

intensive care units and they are associated with high mortality

rates [4,39]. Mortality in septic patients is primarily due to

multiple organ failure (MOF) rather than from the initial infection

[1]. The heart is one of the organs affected in MOF and

myocardial dysfunction is associated with poor outcomes [23].

Myocardial dysfunction in septic patients has been attributed to an

exaggerated inflammatory response [23]. As the most important

functional cells within the heart, most experimental studies

addressing the mechanisms of sepsis-induced myocardial dysfunc-

tion have focused on the cardiomyocyte. For example, pro-

inflammatory cytokines released by cardiomyocytes during sepsis

play an important role in the induction of decreased myocardial

contractility [21]. While the cardiomyocytes make up ,50% of

the total cell population of the heart, cardiac fibroblasts (CFs)

account for up to 60%, [13,46]. Importantly, the two cell types are

spatially intermingled in the myocardium, with virtually every

cardiomyocytes bordering one or more CFs. This spatial

arrangement allows for cardiac fibroblast-myocyte communication

or ‘‘cross-talk’’. The cross-talk between the CFs and cardiomyo-

cytes can be mediated by paracrine signalling, direct cell–cell

contact via micro tubules, and through indirect interactions via the

extracellular matrix [46]. These interactions are not only

important in normal cardiac functioning, but they also play roles

in myocardial pathologies [13,31,46].

Interleukin (IL)-1b is a powerful cytokine that has been reported

to be involved in sepsis-induced myocardial dysfunction [5].

Proinflammatory stimuli induce the expression of pro-IL-1b,

which is an inactivated form of the cytokine. The maturation and

release of the active form of IL-1b are controlled by inflamma-

somes, which are intracellular multi-protein platforms [17].

Activation of the inflammasomes (by PAMPs or DAMPS) triggers
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the maturation (activation) and secretion of IL-1b, therefore

engaging in the inflammatory response [17,25].

The nucleotide-binding oligomerization domain-like receptor

containing pyrin domain 3 (NLRP3) inflammasome is one of the

most well characterized inflammasomes [25,36]. It consists of the

NLRP3 scaffold, which is a nucleotide-binding oligomerization

domain-like receptor with a pyrin domain 3, the ASC (PYCARD)

adaptor, and procaspase-1 [17]. The NLRP3 is an exceptional

sensor protein that responds to diverse physical and chemical

stimuli, as well as to cell stress signals, such as reactive oxygen

species (ROS), extracellular adenosine triphosphate (ATP) [9,22].

As a common substrate of various inflammasomes, pro-caspase-1

is converted to its active form, caspase-1 (consisting of p20 and p10

heterotetramers). Caspase-1 cleaves intracellular pro-IL-1b to

yield the mature, active IL-1b (p17), which is secreted into the

extracellular space [34].

The NLRP3 inflammasome is predominantly expressed in CFs,

while the levels of the NLRP3 inflammasome in the cardiomyo-

cytes are limited [27]. Inappropriate activation of the NLRP3

inflammasome in CFs has been implicated in ischemia/reperfu-

sion-induced myocardial injury [27]. In the present study, we

provide evidence indicating that the NLRP3 inflammasome in

CFs is activated in sepsis and increases IL-1b production. The CF-

derived IL-1b impacts on cardiomyocyte (cardiac fibroblast-

myocyte cross-talk) and impairs its contractile function.

Materials and Methods

Mice
C57BL/6 mice were obtained from Charles River Canada (St.

Constant, QC, Canada) and were housed in the Vivarium Service

of Victoria Research Laboratories with a 12-hr light/dark cycle and

free access to rodent chow and tap water. The mice were used for in
vivo experiments, and they served as a source for the isolation of

CFs. Mouse breeding pairs were used to generate neonatal mice for

the isolation of cardiomyocytes for the in vitro experiments. The

experimental protocols were approved by the Western University

Animal Care and Use Committee (protocol# 2006–111).

Preparation of CFs and cardiomyocytes
CFs were derived from adult mice, as previously reported, with

minor modifications [24,30,35]. In brief, heart tissue was dissected

enzymatically (Collagenase II, 160 U/ml). After performing

washing steps, the cell suspension was passed through a nylon

filter (70 mm), and endothelial cells were removed with a magnetic

beads technique [26]. Cells were subsequently placed in a

humidified incubator gassed with 5% CO2 at 37uC for 1 hr.

The adherent cells were mainly CFs, and the non-adherent cells

(cardiomyocytes) were removed. Finally, the CFs were cultured

with Dulbecco’s Modified Eagle’s Medium (DMEM)-F12 supple-

mented with 10% fetal calf serum (FCS), 20 mM L-glutamine and

100 U/ml penicillin G, and 100 mg/ml streptomycin. This

method yielded a 95% purity of CFs, as identified by the positive

staining of a fibroblast marker (ER-TR7) [32]. Cells of one

through three passages were used for the experiments.

Neonatal cardiomyocytes were isolated and cultured, as

previous described [44]. Briefly, hearts were harvested, minced,

and digested with Collagenase II. After a washing step, the cells

were suspended in M199 with 10% FCS. The myocytes were

enriched by a pre-plating approach (to remove contaminating

cells) before being seeded into cell culture plates. After 72 hrs in

culture, the cells had formed a confluent monolayer consisting of

95% myocytes beating in synchrony, and they were used in the

experiments at this time.

Endotoxemia/sepsis models
To study the role of NLRP3 inflammasome in myocardial

inflammation and myocardial dysfunction, a mouse model of

endotoxemia was induced by the intraperitoneal (i.p.) injection of

0.5 ml of normal saline containing lipopolysaccharides (LPS,

10 mg/kg) to 3-month-old mice, as previously described [41]. As

an in vitro correlate of the mouse model of endotoxemia, CFs were

exposed to DMEM F12 with LPS (LPS, 1 mg/ml). In addition, a

multimicrobial sepsis model was established using feces-induced

peritonitis (FIP) approach. The FIP was induced by an injection

(i.p.) of 0.5 ml of pooled fecal material (30 mg/ml in normal

saline) to 3-month-old mice [43]. As this was a more severe model,

pain control was managed with subcutaneous injection of

buprenorphine (50 mg/Kg, every 12 hrs).

NLRP3 inflammasome blockade. Both pharmacologic and

genetic blockade approaches were used to assess the role of

NLRP3 inflammasome in the endotoxemia/sepsis models. Gly-

buride is a sulfonylurea drug used for the treatment of type 2

diabetes. It inhibits adenosine triphosphate (ATP)-sensitive K+

channels, and it is the first identified compound to inhibit the

NLRP3 inflammasome [16]. In addition, NLRP3 silencing

approach was employed using small interfering RNA (siRNA).

Experimental protocols
Mice (16 mice per group) were randomly allocated to the

following 4 groups: sham, LPS, LPS with glyburide as well as

glyburide only. Glyburide (Invivogen, San Diego, CA, USA) was

given (1 mg/Kg, i.p.) 30 min before the LPS challenge. Equiva-

lent volume (2 ml, i.p.) of vehicle (dimethyl sulfoxide, DMSO) was

administered to sham and LPS group. The mice were sacrificed

8 hours after LPS injection, and plasma as well as myocardial

tissue was harvested for assay. Alternatively, the mice were

subjected to myocardial function evaluation 24 hours after LPS

injection. FIP mice were used to assess whether inhibition of

NLRP3 inflammasome could afford a survival benefit. The FIP

mice were randomly divided into two groups (10 mice/group),

which were injected i.p. daily with either glyburide (1 mg/Kg.) or

the equal volume of DMSO in 300 ml PBS, with the first dosing

being 30 min prior to FIP. The mice were monitored hourly up to

72 hrs for the following 5 parameters: general appearance

(abnormal posture, lethargy, depressed appetite, hypothermia,

swelling, ruffled fur, piloerection), dehydration, weight loss,

labored respiration, behaviour and activity (interest in surround-

ings, gettingt up without prompting, normal gait, steady on feet,

ability to access food and water). Each parameter scored from 0

(normal) to 4 (very abnormal). Mice with a score of 10 were

monitored more frequently to identify deteriorating conditions.

Mice with a score of 20 were considered to be moribund and were

humanely euthanized with cervical dislocation.

As an in vitro model of endotoxemia, CFs were challenged with

LPS; saline (vehicle) was added to the media as a control. To

identify the optimal time window for activation of NLRP3

inflammasome, the cells were treated with LPS for 4, 8, 12 and

24 hrs. Based on the results, a 24-hour period of LPS challenge

was used in the following experiments. To study the role of

NLRP3 inflammasome in LPS-induced IL-1b production, glybur-

ide (50–200 mM) or equal volume of DMSO was added to the CFs

30 min prior to LPS treatment.

Western blot
Protein levels of NLRP3, pro-caspase-1, caspase-1 p10 (activat-

ed caspase), pro-IL-1b, and mature IL-1b were assessed in either

tissue or cells using Western blot [41]. Briefly, CFs were lysed or

mouse myocardial tissue were homogenized in lysis buffer (10 mM
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Tris [pH 7.4], 150 mM NaCl, 5 mM EDTA, 1% Triton X-100,

10 mM NaF, 1 mM Na3VO4, 10 mg/ml leupeptin, 10 mg/ml

aprotinin, and 20 mM PMSF). The supernatants were processed

using the BCA method, and 10-50 mg total protein for each

sample was separated on 10–15% sodium dodecyl sulfate (SDS)-

polyacrylamide gels (PAGE) and transferred to polyvinilide

fluoride (PVDF) membranes. After blocking with 3% bovine

serum albumin (Wisent Inc, St-Bruno, QC, Canada), the

membranes were probed with primary antibodies against mouse

NLRP3 (Adipogen, San Diego, CA, USA) at 1:500 dilution, pro-

caspase-1, caspase-1 p10 (Santa Cruz, Dallas, TX, USA) at 1:200,

or pro-IL-1b, IL-1b (R and D Systems, Minneapolis, MN, USA) at

1:500, or tubulin (abcam, Toronto, ON, Canada) at 1:2000. After

being incubated with relevant secondary antibodies, the specific

bands were visualized with an enhanced chemiluminescence

(ECL) detection system, and quantified with an Imaging Densi-

tometer (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

ELISA
IL-1b in culture supernatants, mouse plasma or myocardial

homogenates was detected with a BD OptEIA mouse IL-1b ELISA

kit (BD Biosciences, San Diego, CA, USA) according to the

manufacturer’s instructions. Culture medium was centrifuged at

500 g for 5 min, and the supernatant was collected and stored at 2

80uC until assay. Blood samples from left common carotid artery

were collected and plasma was obtained by centrifugation at 4,000 g

for 10 min. Myocardial tissue from the left ventricle was homoge-

nized in PBS containing a protease inhibitor cocktail. The

homogenates were centrifuged at 10,000 g for 30 min to remove

debris and insoluble material, and aliquots of the supernatants were

ready for IL-1b measurements. The data are expressed at pg/mg

protein, with protein concentration determined using the BCA

method.

NLRP3 siRNA
For the small interfering RNA (siRNA) assay, CFs were

transiently transfected with 40 nM scrambled siRNA or NLRP3

siRNA (Life Technologies, Burlington, ON, Canada) using

Lipofectamine 2000 (Life Technologies, Burlington, ON, Canada)

according to the manufacturer’s instructions [43]. Successful

down-regulation of LPS-induced NLRP3 expression in CFs in all

experiments was confirmed by Western blot analysis. 48 hrs after

the procedure, the CFs with siRNA were used in the experiments

involving the role of NLRP3 inflammasome in LPS-induced IL-1b
production and the role of NLRP3 inflammasome in mediating

CFs-cardiomyocytes interaction.

Intracellular cyclic adenosine monophosphate (cAMP)
An increase in intracellular cAMP in cardiomyocytes/myocar-

dial tissue in response to b-adrenergic agonist stimulation is

generally associated with enhanced myocardial contractility and

an impaired cAMP response to b-adrenergic agents has been

reported in both in vitro and in vivo septic models [28,29]. Thus,

the role of NLRP3 in modulating the cAMP response to the b-

adrenergic agonist, dobutamine in isolated cardiomyocytes was

assessed. Firstly, CFs were pre-transfected with NLRP3 siRNA, or

pre-treated with glyburide (200 mM), followed by a LPS challenge

for 24 hrs. The various supernatants derived from LPS- or vehicle-

conditioned CFs were harvested and transferred to naı̈ve

cardiomyocytes and incubated for an additional 24 hrs. The

potential role of IL-1b on cAMP accumulation was studied by

adding IL-1b (5 ng/mL) (Millipore, Billerica, MA, USA) to naı̈ve

cardiomyocytes as indicated. To block the effect of IL-1b, IL-1

receptor antagonist (IL-1Ra, 5 mg/ml) (Millipore, Billerica, MA,

USA) was simultaneously added to the cardiomyocytes as needed.

At 24 hrs post treatment, the cardiomyocytes were washed once

and incubated for 15 min in physiological buffer at 37uC.

Subsequently, the myocytes were treated with 7.5 mM dobutamine

(Sigma-Aldrich, St. Louis, MO, USA) or vehicle for 10 minutes;

after which the buffer was aspirated and replaced with 0.1 M HCl.

The cell lysates were used to detect the intracellular cAMP with a

cAMP direct immunoassay kit (BioVision, Milpitas, CA, USA) as

per the manufacturer’s instructions.

Myocardial contractile function
24 hrs after the injection of LPS or saline, mice were anesthetized

with ketamine (150 mg/kg) and xylazine (5 mg/kg), which were

administered subcutaneously. A Millar tip transducer catheter

(Model SPR-839, 1.4 Fr.) was advanced into the left ventricle (LV)

via the right carotid artery. Pressure-volume (PV) measurements

were taken during quiet respiration and recorded using a Millar PV

Conductance Unit (Model MPCU-200) and Power Lab Data

Acquisition System (ADInstruments). The raw pressure and volume

data collected in text files by the MPCU-200 unit and Chart/

Powerlab software were imported into the PVAN software (Millar

Instruments, Houston, TX). LV pressure–volume loops were

generated by occlusion of the inferior caval vein [11,41]. The LV

end-systolic pressure-volume relation (ESPVR) was calculated and

used as an index of myocardial contractile function [41,42].

Statistical analysis
All data are expressed as the mean 6 standard error of the

mean. Statistical analysis was performed using analysis of variance

and Student’s t-test (with a Bonferroni correction for multiple

comparisons), as well as with the Kaplan–Meier test.

Results

Challenging CFs with LPS activates NLRP3 inflammasome
and results in caspase-1 activation and increased IL-1b
maturation and release

The NLRP3 inflammasome is a molecular platform that is

activated upon cellular infection or stress and triggers the

maturation (activation) and secretion of IL-1b, to engage the

inflammatory response [17]. In order to determine whether LPS

treatment activates the NLRP3 inflammasome and subsequent

processing and secretion of IL-1b in CFs, we measured the

intracellular levels of NLRP3, pro-caspase-1, caspase-1 p10, pro-

IL-1b, as well as the intracellular and released IL-1b. As shown in

Figure 1, levels of intracellular NLRP3, pro-caspase-1, and pro-

IL-1b following the LPS treatment of CFs were increased

(Figures 1A, 1B and 1D). Moreover, LPS treatment resulted

in caspase-1 activation, as indicated by increased intracellular

caspase-1 p10 (Figure 1C) and IL-1b maturation and release into

the extracellular milieu (Figures 1E and 1F). These results are

consistent with the NLRP3 inflammasome/caspase-1 pathway

being operative in LPS-challenged cardiac fibroblasts.

To investigate the role of the NLRP3 inflammasome in LPS-

induced IL-1b production by the CFs, the cells were transfected

with siRNA, which was specific for NLRP3, or CFs were pretreated

with glyburide (an inhibitor of NLRP3 inflammasomes) prior to the

LPS challenge [16]. Transfection of the CFs with siRNA specific to

NLPR3 blocked the LPS-induced increase in intracellular NLRP3

expression by approximately 70% (Figure 2A). Moreover, the

NLPR3 siRNA prevented the LPS-induced activation of caspase-1

(Figure 2B), as well as the maturation and release of IL-1b
(Figures 2C and 2D). Further, pretreatment of the CFs with

glyburide had no effect on LPS-induced increases in the intracel-
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lular expression of NLRP3, pro-caspase-1 and pro-IL-1b (Figur-
es 3A, 3B and 3D). However, glyburide prevented LPS-induced

caspase-1 activation (Figure 3C), and it attenuated the LPS-

induced IL-1b maturation and release by the CFs (Figures 3E
and 3F) in a dose-dependent manner.

Activation of NLRP3 inflammasome in CFs by LPS
negatively regulates intracellular cAMP response to
dobutamine in cardiomyocytes

Since the contractile activity of cardiomyocytes in our culture

system was not amenable to quantitation, an indirect index of

myocyte contractile function was assessed, i.e., intracellular cAMP.

cAMP elevation, particularly through b-adrenergic receptor (b-

AR) stimulation, has crucial positive cardiac inotropic effect.

Further, the NLRP3 inflammasome is predominantly expressed in

CFs, while the levels of the NLRP3 inflammasome in the

cardiomyocytes are limited [27]. To determine the role of NLRP3

inflammasome activation in CFs on the function of cardiomyo-

cytes, the cardiomyocytes were challenged with the supernatants of

CFs that were conditioned with different challenges. Subsequently,

the intracellular levels of the cAMP of cardiomyocytes in response

to dobutamine were assessed. As shown in Figure 4A, cAMP

levels in cardiomyocytes more than doubled after challenge with

dobutamine compared with control. Supernatants of the CFs pre-

conditioned with LPS blunted the dobutamine-induced elevation

of intracellular cAMP by 80% (Figure 4A). This inhibitory effect

was partially reversed (<60% reversal) by the pretreatment of the

LPS-conditioned CFs with either NLRP3 siRNA or glyburide

(Figure 4A). These data indicate that the activation of the NLRP3

inflammasome in CFs negatively affects the cardiomyocyte cAMP

response to dobutamine.

Figure 1. Treatment of cardiac fibroblasts (CFs) with LPS activates the NLRP3 inflammasome and results in the maturation
(activation) and release of IL-1b. Mouse CFs were challenged with LPS (1 mg/ml) or saline (control). At the times indicated, the CFs were collected,
lysed, and processed for the measurement (Western blot) of intracellular NLRP3 (A), pro-caspase-1 (B), activated caspase-1 p10 (C), pro-IL-1b (D), and
IL-1b (E). Released IL-1b was also assessed by ELISA of the supernatants (F). For A through E, representative blots and densitometric analyses are
shown. n = 3 for all experiments (A–F), *p,0.05, compared with control.
doi:10.1371/journal.pone.0107639.g001
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In another series of experiments, either IL-1Ra (5 mg/ml) was

introduced to the supernatant of LPS-conditioned CFs, or IL-1b
(5 ng/ml) was directly added to the culture medium of cardiomy-

ocytes. As shown in Figure 4B, the negative impact of the

supernatants from the LPS-conditioned CFs on the cardiomyo-

cytes response to dobutamine was partially reversed by IL-1Ra

(<55% reversal). Moreover, IL-1b prevented the dobutamine-

induced increase in intracellular cAMP in cardiomyocytes. The

inhibitory effect of the IL-1b was also partially reversed by IL-1Ra

(<55% reversal) (Figure 4C). The results suggest that the NLRP3

inflammasome/IL-1b axis mediates the CF–cardiomyocyte inter-

action, and can inhibit the increase in cAMP induced by

dobutamine.

Activation of the NLRP3 inflammasome contributes to
myocardial contractile dysfunction in endotoxemic mice

To determine whether studies using isolated CFs and cardio-

myocytes could be translated to an in vivo setting, mice were

either challenged with LPS (10 mg/kg) or LPS with glyburide

(1 mg/kg). Mice challenged with vehicle served as the control.

Myocardial NLRP3 inflammasome activation, myocardial and

circulating IL-1b, and cardiac function were assessed. As shown in

Figure 5, the levels of myocardial NLRP3 increased 8 hrs post

LPS challenge in mice. Although pro-caspase-1 levels were

unaltered, caspase-1 p10 levels were increased indicating that

the NLRP3 inflammasome was activated. Further, LPS increased

myocardial levels of activated IL-1b as well as circulating IL-1b.

Glyburide prevented 1) the LPS-induced activation of the

myocardial capsase-1 and IL-1b, indicating a reduction in NLRP3

inflammasome activity, as well as 2) the increase in myocardial and

circulating IL-1b. Moreover, myocardial contractility was de-

creased in endotexemic mice (LPS-challenged), as indicated by the

decrease in LV 6dP/dt, stroke work and ESPVR (Figure 6).

Glyburide treatment attenuated the development of myocardial

dysfunction in mice with LPS (Figure 6).

To assess whether the NLRP3 inflammasome/caspase-1

pathway would be activated in a polymicrobial model of sepsis

we used the FIP model. In line with the LPS-induced endotoxemia

model, the levels of myocardial NLRP3 and pro-IL-1b were also

increased 8 hrs post-FIP induction (Figure 7). Activation of

NLRP3 inflammasome was evidenced by the increased myocar-

dial levels of caspase-1 p10 and IL-1b as well as circulating IL-1b.

Glyburide prevented the FIP-induced activation of the myocardial

NLRP3 inflammasome as well as FIP-induced increase in

myocardial and circulating IL-1b (Figure 7).

Previous studies have demonstrated that NLRP32/2 mice are

resistant to LPS-induced lethality [20]. In accord with the role of

NLRP3 inflammasome in endotoxemia, glyburide significantly

delays LPS-induced lethality in mice [16]. In order to determine

whether the inhibition of the NLRP3 inflammasome has beneficial

effects on a multimicrobial (peritonitis) mouse model of sepsis, we

used the FIP model. As shown in Figure 8, all FIP mice in

vehicle-treated group died within 48 hrs after induction of FIP,

while FIP mice treated with glyburide daily showed a significant

increase in survival rate.

Figure 2. siRNA knock down of NLRP3 prevents LPS-induced caspase-1 activation and IL-1b production by cardiac fibroblasts (CFs).
CFs were transfected with siRNA specific to NLRP3 or with scrambled siRNA. Forty eight hrs after transfection, the cells were challenged with LPS
(1 mg/ml) or vehicle for 24 hrs. The cells were lysed for the detection of intracellular NLRP3 (A), caspase-1 p10 (B), and intracellular IL-1b (C) with
Western blot. The supernatants were harvested for the detection of released IL-1b with ELISA (D). For A, B, and C, representative blots and
densitometric analyses are shown. n = 3 for all experiments (A–D). *p,0.05 compared with control (no LPS challenge); #p,0.05 compared with the
scrambled siRNA in the LPS-challenged CFs.
doi:10.1371/journal.pone.0107639.g002
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Discussion

Myocardial dysfunction frequently accompanies severe sepsis

and septic shock. It is now clear that cardiac dysfunction, as

evidenced by biventricular dilatation and reduced ejection

fraction, is present in most patients with severe sepsis [23].

Myocardial dysfunction does not appear to be due to myocardial

hypoperfusion, but rather to an exaggerated inflammatory

response [23]. However, the mechanisms and signaling pathways

involved in eliciting the sepsis-induced inflammatory response

remain elusive. An increasing body of evidence indicates that the

NLPR3 inflammasome/caspase-1/IL-1b pathway may be in-

volved. For instance, IL-1b is increased in both human and animal

models of sepsis and septic shock [10] and an IL-1 antagonist

attenuates the hemodynamic and metabolic manifestations of

septic shock [6,7]. Further, genetic deletion or pharmacological

inhibition of caspase-1 protects against endotoxemic shock in

rodents [2,18]. Finally, mice deficient in components of the

inflammasome complex (ASC or NLPR3) are more resistant to the

lethal effects of endotoxin [19,20]. Although these isolated

observations support a potential role for the NLRP3 inflamma-

some/caspase-1/IL-1b pathway, the present study is the first to

provide a systematic assessment of this pathway in endotoxemia/

sepsis both in vivo and in vitro. Further, we show that blockade of

the NLRP3 inflammasome/caspase-1/IL-1b pathway can afford

protection against lethality in a model of polymicrobial sepsis.

Finally, we provide evidence for cardiac fibroblast-myocyte cross-

talk in the development of the sepsis-induced inflammatory

response.

Figure 3. Inhibition of the NLRP3 inflammasome with glyburide (Glyb) prevents caspase-1 activation and IL-1b production by LPS-
challenged cardiac fibroblasts (CFs). CFs were pretreated with either vehicle or glyburide (50 mM or 200 mM) 30 min before the LPS (1 mg/ml)
challenge. Twenty-four hrs after LPS stimulation, the cells were harvested and processed for the measurement (Western blot) of intracellular NLRP3
(A), pro-caspase-1 (B), activated caspase-1 p10 (C), pro-IL-1b (D), and mature IL-1b (E). The supernatants were harvested for the detection of released
IL-1b with ELISA (F). The basal levels of the various components of the NLRP3 inflammasome/IL-1b axis were not affected by glyburide. For A through
E, representative blots and densitometric analyses are shown. n = 3 for all experiments (A–F). *p,0.05 compared with controls; #p,0.05 compared
with LPS treatment alone.
doi:10.1371/journal.pone.0107639.g003
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Both IL-1b and TNF-a appear to play important roles in

endoxemia/sepsis-induced myocardial dysfunction. A concentra-

tion-dependent depression of contractility induced by IL-1b or

TNF-a has been reported in in vitro or ex vivo studies in human

and animal myocardial tissue [3,8,15,37]. The focus of the present

study was on the NLRP3 inflammasome/caspase-1/IL-1b path-

way. Of relevance, immunoabsorption of IL-1b can ameliorate

cardiomyocyte depressant activity of human septic serum [15].

The cellular sources of IL-1b within the heart remain unclear at

present. Inflammatory cells (e.g. macrophages, neutrophils) are

well-documented sources of IL-1b production [45,47]. In addition

to these inflammatory cells, our data indicate that CFs are

important cells within the heart that produce IL-1b. This finding is

consistent with emerging evidence that CFs share many similarities

with inflammatory cells in terms of how NLRP3 inflammasome/

IL-1b axis is activated and functions [14,27,33]. Although CFs

comprise two-thirds of the cell population in the heart, they have

not attracted much attention except in relation to processes related

to myocardial fibrosis and remodeling. In recent years, however,

several studies have demonstrated CFs could act as ‘‘sentinel’’ cells

that sense danger signals and interact with other cells such as

cardiomyocytes, vascular cells, and inflammatory cells in a

paracrine manner [14,27]. Our observations provide strong

support for the contention that CFs are the major cellular source

of locally produced IL-1b.

Herein, we provide evidence that the IL-1b secreted by CFs can

impact on cardiomyocyte function. Since a quantitative assessment

of myocyte contractile activity in our in vitro system was not

possible, we used an indirect approach, i.e. assessment of

intramyocyte cAMP levels. An increase in cAMP levels is

associated with the increase in myocyte contractility induced by

b-adrenergic agonists and has previously been used as an index of

cardiomyocyte contractility. Impaired accumulation of cAMP in

cardiomyocytes/myocardial tissue has been reported in in vitro
and in vivo septic models [12,40]. In a similar vein, we show

herein that IL-1b blunted the dobutamine-induced increase in

intracellular cAMP in cardiomyocytes; an effect ameliorated by

IL-1Ra. Cytokine-enriched supernatant from LPS-conditioned

CFs also hampered cAMP accumulation in cardiomyocytes.

Importantly, the role of CF NLRP3 inflammasome was highlight-

ed because the decrease in cAMP production could be attenuated

by pretreatment of the LPS-conditioned CFs with either NLRP3

siRNA or glyburide. However, it must be noted that the reversal

afforded by inhibition of the NLRP3 inflammasome pathway was

only partial. Thus, other, as yet unidentified, factors/agents

generated by LPS (or IL-1b) are likely to be involved in

attenuating the dobutamine-induced increase myocyte cAMP.

In general, the basal level of NLRP3 is not sufficient for NLRP3

inflammasome activation [17]. Therefore, most of the previous

studies probing the mechanisms involved in the activation of the

NLRP3 inflammasome have employed two-step approaches: a

priming step (LPS treatment) followed by an activation stimulus

(ATP treatment in general) [17,27,29]. The priming approach

using LPS increases the intracellular levels of NLRP3 and pro-IL-

1b. The second activation step triggers both the formation of the

inflammasome complex and the activation of caspase-1.

Figure 4. Supernatants from LPS-challenged cardiac fibroblasts (CFs) can inhibit the increase in cardiomyocyte (CM) cAMP induced
by dobutamine; an effect dependent on an intact NLRP3 inflammasome/IL-1b axis in CFs. In panels A–C, CM were challenged with
supernatants from LPS- or vehicle- conditioned CFs.(CFRCM). In Panel A, the CFs were transfected with NLRP3 siRNA or glyburide (200 mM) prior to
challenge with LPS for 24 hrs. Subsequently, the supernatants were added to CM monolayers and thereafter, the cardiomyocytes were stimulated
with vehicle or dobutamine (7.5 mM) for 10 min. The CM were harvested for the measurement of intracellular cAMP. In Panel B, CM were challenged
with supernatants from LPS- or vehicle- conditioned CFs, with or without IL-1Ra (5 mg/ml) and intracellular cAMP assessed after dobutamine
treatment. In panel C, CM were challenged with IL-1b (5 ng/mL) or IL-1b plus IL-1Ra (5 mg/mL) for 24 hrs. Subsequently, the CM were challenged with
dobutamine and cAMP of CM was assessed. For all experiments, n = 3 and *, #, +p,0.05 compared with previous bar in the histogram.
doi:10.1371/journal.pone.0107639.g004

NLRP3 Inflammasome in Cardiac Fibroblasts in Sepsis

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e107639



Interestingly, in the present study, we demonstrated that a single

LPS challenge itself is sufficient in activating the NLRP3

inflammasome/caspase-1/inflammasome pathway in CFs. The

precise explanation for the discordant observations is not readily

apparent. One potential explanation is that the treatment of the

CFs in the present study resulted in the simultaneous increase in

NLPR3 and its activation signals, such as ROS or DAMPs.

Figure 5. Inhibition of the NLRP3 inflammasome prevents LPS-induced increase in myocardial and circulating IL-1b in mice. Mice
were injected (i.p.) with saline (sham), LPS (10 mg/kg), LPS with glyburide (1 mg/Kg), or glyburide alone. Eight hours later, myocardial tissue was
harvested for measurement (Western blot) of NLRP3, pro-caspase-1, activated caspase-1p10, pro-IL-1b and IL-1b. Representative Westerns shown in
panel A and densitometric analyses in panels B–F. Mature (activated) Il-1b in myocardial homogenates and plasma assessed with ELISA, panels F and
G, respectively. n = 5 for all experiments; *p,0.05 compared with sham, #p,0.05 compared with LPS.
doi:10.1371/journal.pone.0107639.g005

Figure 6. Inhibition of the NLRP3 inflammasome prevents myocardial contractile dysfunction in LPS-challenged mice. Mice were
injected (i.p.) with saline (sham) or LPS (10 mg/Kg), or with LPS plus glyburide (1 mg/Kg). Myocardial contractile function (+dP/dt, -dP/dt, stroke work,
and ESPVR) were assessed 24 hrs after LPS challenge with a mouse pressure–volume analysis system. N = 6 for each group; *p,0.05 compared with
sham, #p,0.05 compared with LPS-challenged mice.
doi:10.1371/journal.pone.0107639.g006
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Although our findings strongly support a role for the NLRP3

inflammasome/caspase-1/ IL-1b pathway of CFs in the myocar-

dial dysfunction, as well as, lethality in sepsis, extrapolation to the

human condition is rather tenuous. Aside from the limitations of

animal and cell models, i.e., humans are more sensitive to LPS

than rodents [38], myocytes in culture may not represent the

situation in situ [14], etc., a role for IL-1b in the clinical setting is

unclear at present. Clinical trials using IL-1-based therapies have

been disappointing with no clear or consistent benefit in sepsis

demonstrated [6,7]. It has been suggested that grouping patients

with heterogeneous conditions under the same diagnosis of ‘‘severe

sepsis’’ contributed difficulty in reproduce results from pre-clinical

experiments in clinical trials [28]. Further, the issue of synergy

among various cytokines present in the ‘‘cytokine storm’’ of sepsis

may cloud the issue. Cytokine synergy has been posited in sepsis-

induced myocardial depression in previous studies [3,15]. The

combination of IL-1b and TNF-a may cause cardiomyocyte

depression at concentrations 50–100 times lower than would be

required if applied individually [3,15]. In short, caution must be

used in extrapolating data from pre-clinical experimental studies in

cells and animals to the situation present in septic patients in the

ICU. None the less, our observations suggest that the NLRP3

inflammasome may be a potential therapeutic target for the

treatment of sepsis-induced myocardial dysfunction.
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Figure 7. Sepsis-induced increases in myocardial and circulating IL-1b is reduced by inhibition of the NLRP3 inflammasome.
Polymicrobial sepsis (FIP) was induced by i.p. injection of 0.5 ml of fecal material (30 mg/ml). Myocardial tissue was harvested for measurement
(Western blot) of NLRP3, pro-caspase-1, activated caspase-1 p10, and pro-IL-1b. Representative Westerns are shown in panel A and densitometric
analyses in panels B-E. Mature (activated) IL-1b in myocardial homogenates and plasma assessed with ELISA, panels F and G, respectively. n = 5 for all
experiments; *p,0.05 compared with sham, #p,0.05 compared with FIP.
doi:10.1371/journal.pone.0107639.g007

Figure 8. Sepsis-induced lethality is diminished by inhibition of
the NLRP3 inflammasome. Polymicrobial sepsis (FIP) was induced by
i.p. injection of 0.5 ml of fecal material (30 mg/ml) in 20 mice; 10 of
these mice also received glyburide (1 mg/Kg, i.p. daily). The mice were
monitored hourly for up to 72 hrs, and the survival rate was calculated.
The survival rate of the two groups was compared with the Kaplan–
Meier test, p = 0.024.
doi:10.1371/journal.pone.0107639.g008
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