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Abstract: Most commercialized wound dressings are polymer-based. Synthetic and natural polymers
have been utilized widely for the development of wound dressings. However, the use of natural
polymers is limited by their poor mechanical properties, resulting in their combination with synthetic
polymers and other materials to enhance their mechanical properties. Natural polymers are mostly
affordable, biocompatible, and biodegradable with promising antimicrobial activity. They have been
further tailored into unique hybrid wound dressings when combined with synthetic polymers and
selected biomaterials. Some important features required in an ideal wound dressing include the
capability to prevent bacteria invasion, reduce odor, absorb exudates, be comfortable, facilitate easy
application and removal as well as frequent changing, prevent further skin tear and irritation when
applied or removed, and provide a moist environment and soothing effect, be permeable to gases,
etc. The efficacy of polymers in the design of wound dressings cannot be overemphasized. This
review article reports the efficacy of wound dressings prepared from a combination of synthetic and
natural polymers.

Keywords: hybrid wound dressings; synthetic polymers; skin regeneration; natural polymers; wound
healing; wounds; wound dressings; biomaterials

1. Introduction

Wounds are challenging to treat, especially when they have been invaded by mi-
crobes [1,2]. Wound healing involves complex mechanisms that require using appropriate
wound dressings to induce a timely wound healing process [3]. Polymers have played
a huge role in the design of potent wound dressings. Synthetic and natural polymers
are used to prepare wound dressings. Synthetic polymers are characterized by features
such as easy preparation resulting in controlled physicochemical properties and stability,
good mechanical stability with interesting mechanical properties, and degradation in a
controlled manner [4,5]. However, they can induce the risk of toxicity and are biologically
inert. Natural polymers, on the other hand, do not offer interesting mechanical properties,
are biocompatible, biodegradable with interesting biological activities, and can undergo
enzymatic degradation to produce by-products that do not trigger toxic reactions [6,7].
However, their high rate of degradation rates is usually challenging to control [5].

The combination of synthetic polymers together with natural polymers has been
widely employed to overcome shortcomings common with both types of polymers [8,9].
The combination of both polymers in the design of wound dressings results in hybrid-based
wound dressings. Hybrid wound dressings display excellent features such as improved
mechanical properties, accelerate wound healing, excellent flexibility, biocompatibility,
biodegradability, high adsorption capacity, etc. [10,11]. They are also appropriate for
treating high exuding, bleeding, and infected wounds. They are also suitable to promote
skin regeneration [12,13]. The further incorporation of bioactive agents and biological
molecules into hybrid-based wound dressing has resulted in materials that exhibit excellent
wound healing and skin regeneration [14,15]. This review reports the in vitro and in vivo
outcomes of hybrid-based wound dressings.
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2. Wound Healing Mechanisms

The physiological and architectural restoration of the skin after an injury is based on
four important phases: hemostasis, inflammation, proliferation, and remodeling
(Figure 1) [16,17]. Wound healing is complex and specialized cells are involved, such
as macrophages, fibroblasts, platelets, endothelial cells, etc. There is a significant interaction
between the cells and the extracellular matrix. Wound healing is also influenced by the
action of growth factors, chemokines, cytokines, chemokines, receptors, etc. [18,19].
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Hemostasis

This phase occurs immediately after an injury, whereby the damaged blood vessels
constrict rapidly with a blood clot formation to prevent excess loss of blood [20,21]. The
platelets play a crucial role in blood clot formation [22]. The constriction of the blood
vessels together with the formation of a blood clot results in the lack of oxygen, changes in
pH, and glycolysis [23]. After the narrowing of the blood vessels, the widening promotes
the invasion of the wound matrix by thrombocytes. The widening of the blood vessels
known as vasodilation is characterized by oedema and local redness of the wound [23].
The blood clot is composed of cytokines, fibrin molecules, growth factors, vitronectin,
thrombospondins, and fibronectin. The blood clot also acts as a shield against bacteria
invasion and as a reservoir for cytokines and growth factors for wound repair [24]. After
the formation of a blood clot, the coagulation process terminates to prevent excessive
thrombosis and platelet aggregation [24]. In this phase, the repair of smooth muscle cells
and endothelial cells also occurs due to the release of platelet-derived growth factors [25].
The platelet-derived growth factors recruit neutrophils and monocytes, which together
with transforming growth factor β (TGF-β) from the vasculature induce the inflammatory
response [26]. Fibroblasts are also recruited by platelet-derived growth factors, and they
migrate to the wound site followed by the production of collagen, glycosaminoglycans,
and proteins which promote cellular migration and set the stage for subsequent healing
events [23,24].

Inflammation

The inflammation phase overlaps with the hemostasis phase. In this phase, neutrophils
and monocyte infiltration in the wound bed prevent the invasion of microbes, foreign debris,
and tissue damage [27,28]. The neutrophils promote the process of phagocytosis of debris
and microbes to allow decontamination of the wound. The three known mechanisms
of neutrophils in the destruction of debris and bacteria are: directly ingesting followed
by destroying the foreign debris by a process known as phagocytosis; via the release of
toxic substances, e.g., lactoferrin, cathepsin, proteases, etc. to destroy bacteria and the
dead host tissue; and by the production of chromatin and protease ‘traps’ to capture and
destroy bacteria in the extracellular space [29,30]. The by-product of the neutrophil activity,
oxygen-free radicals, exhibit bacteriocidal properties to sterilize the wound. However,
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the oxygen-free radicals can exasperate inflammation of the microenvironment, thereby
resulting in delayed wound healing [29,31].

After the completion of the neutrophil activity, the neutrophils undergo apoptosis
and are phagocytosed by macrophages or can be sloughed from the wound surface [30].
Macrophages are attracted to the wound and are released from platelets and damaged cells.
In this phase, they can withstand the acidic wound environment [32]. Macrophages are
composed of significant amounts of growth factors, which include TGF-β and epidermal
growth factors, which are crucial in regulating the inflammatory response [30,33,34]. The
inflammatory phase of wound healing can be prolonged to remove excess bacteria and
debris from the wound. Prolonged inflammation can result in significant tissue damage and
delayed proliferation, resulting in the formation of a chronic wound [30]. Multiple factors
have been reported to affect the immune response such as lipoxins and the products of
arachidonic acid metabolism, thereby hindering the next phase of wound healing [35]. Fur-
thermore, the type of immune response plays a crucial role in the formation of hypertrophic
scarring or keloid formation. The differentiation of T-helper (Th) cells, major immune
mediators in the inflammatory phase to Th2 cell types, results in hypertrophic scarring [36].
In chronic non-healing wounds, the presence of an abundance of neutrophils makes them
become proteolytic environments composed of host-derived proteases. Excessive tissue
damage is caused by elevated inflammatory cytokines and collagenases [37].

Proliferation

In this phase, there is a complex simultaneous combination of fibroblast migration,
angiogenesis, and epithelialization together with a wound retraction [38]. A sufficient
supply of gas, blood, nutrients, and metabolites is required [38]. The release of vascular
endothelial growth factor (VEGF) and cytokines induces the endothelial cells to promote
angiogenesis, the formation of new blood vessels and the repair of damaged blood vessels
in the wound site. The migration of fibroblast results in the production of fibronectin and
collagen with a replacement of the clot with granulation tissue made up of different ranges
of collagen [29]. The fibroblasts are converted to myofibroblast phenotype, which is useful
in wound contraction. The myofibroblasts also induce angiogenesis, and the collagens
produced by the fibroblasts are responsible for providing strength to the tissues. However,
the formation of a hypertrophic scar can be induced by an overproduction of collagen [39].
Several macrophage-derived molecules, such as IL-1, β-bb (PDGF-bb), IL-6, etc. promote
pro-re-epithelialization molecules in the fibroblasts. In wounds without a macrophage-
derived molecule, IL-6, there is a lack of appropriate inflammatory response, resulting in
hampered collagen accumulation, angiogenesis, and re-epithelialization [40]. The migration
of the epithelial cells from the edges of the wound forms a sheet of cells that covers the
wound, and this process is known as epithelialization [41]. Epithelialization takes place
within 24 h in primary wounds, but in secondary closed wounds, the contraction of large
areas lacking epithelial cells occurs before complete epithelialization [29,30].

Remodeling

This last phase is characterized by a transition from granulation tissue to scar formation
with slow angiogenesis and a replacement of type III collagen with type I collagen that is
stronger [28]. This remodeling phase is significantly promoted by myofibroblasts developed
from fibroblasts, which are responsible for wound contraction [42]. Some reports have
shown that fat cells obtained from the differentiation of myofibroblasts replenish the
subcutaneous adipose tissue, and this is influenced by the neogenic hair follicles, resulting
in the activation of adipocyte transcription factors and bone morphogenic protein (BMP)
signaling [43].

Chronic Wounds

Chronic wounds are classified as non-healing wounds over a prolonged period, and
they can be classified as diabetic, vascular, diabetic, and pressure wounds [44]. Other
examples of chronic wounds are gangrenes, ischemia, etc. [45]. The most common type
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of chronic wound is the diabetic wound, and it affects 15% of the world population who
suffer from diabetes [46]. Due to the prolonged healing period of these types of wounds,
the patients usually require long medical care, amputation, and in some cases, long hospital
stay [47]. Factors that contribute to chronic wounds are reduced blood supply and re-
epithelialization, inflammatory responses that are not controllable, and bacterial infections.

There are complications associated with diabetes such as foot infections, etc. Un-
controlled diabetes reduces the tissue oxygen rate, thereby damaging blood vessels and
forming non-healing ulcers [48]. Venous ulcers are common in older patients and affect the
lower limbs due to a damaged deep venous system. It is also characterized by increased
blood pressure in the vessels, causing leakage and an accumulation of fibrin that blocks
the vascular pathway, reducing the flow of oxygen to the surrounding tissues [45,48]. Pres-
sure ulcers are also common in older and paralyzed patients. It occurs due to continuous
pressure on the skin, decreasing the diffusion of oxygen in the tissues [45].

Pathophysiology of Chronic Wounds

Chronic wounds remain in the inflammatory stage of wound healing due to the persis-
tent recruitment of neutrophils and macrophages in the wound bed, which also prolongs the
wound healing process (Figure 2) [45,49]. The high production of inflammatory molecules
and Reactive Oxygen Species (ROS) in chronic wounds affect the synthesis of collagen,
decreases proliferation, and causes an abnormal differentiation of keratinocytes [49]. The
altered pattern of cytokine in the wound also contributes to delayed wound healing in
diabetes patients. The abnormal expression of growth factors is observed in diabetic foot
ulcers that disrupt the healing process. Elevated levels of matrix metalloproteinases and
reduced levels of tissue inhibitors of metalloproteinases in chronic wounds also affect the
wound healing process [45,49]. Matrix metalloproteinases are crucial for the remodeling
of the matrix microenvironment by inducing healing responses, such as cellular migra-
tion, proliferation, and angiogenic induction. The high levels of protease results in the
damage of extracellular matrix (ECM) and growth factors degradation together with their
receptors [50]. The damaged ECM prohibits the wound healing process from moving to
the proliferative phase. The aforementioned factor results in an inflammation cycle where
more proteases are produced. The persistent inflammatory and hypoxic state of chronic
wounds induce a high production of ROS that also destroys the ECM proteins.
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The presence of senescent macrophages, keratinocytes, fibroblasts, and endothelial
cells in chronic wounds contributes to oxidative stress that results in the damage of de-
oxyribonucleic acid (DNA) cell cycle arrest and a defect in the intracellular biochemical
pathways including GSK-3β/Fyn/Nrf2 pathway, etc. [49,50]. Chronic wound healing is
characterized by reduced angiogenesis and tissue epithelialization [50]. The mesenchymal
stem cells also play an important role in wound healing and are recruited into circulation
when there is an injury. However, they are defective and deficient in chronic wounds. The
absence of effective receptors or promigratory matrix substrates inhibits cell migration and
proliferation in chronic wounds. The hallmarks of chronic wounds have been reported to
be impaired neovascularization and angiogenesis, resulting in an insufficient supply of
nutrients and oxygen for the cells in the wound bed, leading to non-healing wounds [49].
To accelerate the wound healing process of chronic wounds, researchers have employed the
use of microbial agents to treat persistent microbial infections [51,52], the delivery of healthy
donor-derived functional mesenchymal stem cells to deal with their deficiency [53], and
the administration of antioxidants to reduce the ROS to normal levels, thereby reversing
the chronic state of the wounds [54,55].

In the treatment of chronic wounds, debridement is performed to remove non-viable
tissues [56]. Anti-inflammatory agents are also employed to deal with prolonged inflamma-
tion [57], and the use of appropriate wound dressings that addresses the moisture imbalance
is crucial for treating chronic wounds [58]. To promote the formation of granulation tissue
and epithelialization, the use of growth factors has been used [59,60].

3. Hybrid Wound Dressings in Wound Healing

Hybrid-based wound dressings have been developed from the combination of natural
and synthetic polymers. Different types of hybrid-based wound dressings have been
developed, such as foams, hydrocolloids, hydrogels, nanofibers, films/membranes, etc.
Different preparation techniques have been employed. This section reports the preparation
techniques used as well as in vitro and in vivo biological outcomes.

3.1. Foams

The commonly used foam wound dressings are polyurethane foams used for moist
wound healing (Figure 3a,b) [61]. Silicone foams are not commonly used. Foam wound
dressings are characterized by a porous structure and a film-backing, and they are produced
with varied thicknesses [62]. They can be adhesive or non-adhesive. The permeability of
the film backings varies with a significant influence on water evaporation and gas exchange
capacity [62]. The contact of the wound with the foam products is crucial to facilitate the
absorption of the exudate. Their adhesion to the surrounding skin of the wound bed is
useful in keeping the dressing and preventing the leakage of the exudates that can cause
skin irritation [63]. They are suitable as primary or secondary wound dressings. Some of
their unique features include their ability to maintain moisture at the wound bed, to be
easily removed from the wound, to protect the wound from bacterial invasion, to provide
mechanical protection, and to conform to the body shape; they are also non-toxic, easy to
use, etc. [62]. Foams are effective for the management of acute and chronic with medium
to heavy exudate [64]. They have been prepared from a combination of synthetic and
natural polymers.

Most reported foam wound dressings are prepared from synthetic polymers [65,66].
Some are prepared from natural polymers only with high porosity but are prone to enzy-
matic degradation [67,68]. Hybrid-based foams have been prepared from polyurethane in
combination with natural polymers, such as chitosan, sodium alginate, and hydroxypropyl
methylcellulose, by Namviriyachote et al. The foams were loaded with silver nanoparticles
and asiaticoside. Foams prepared from alginate displayed a high release of silver nanopar-
ticles and asiaticoside. Using natural polymers for the preparation of the foams influenced
the compressive strength and absorption properties. The foams were non-cytotoxic and
compatible, and they improved the rate of wound closure with a significant formation of
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granulation tissue [69]. A multi-layer wound dressing comprising foam was developed
from polyvinyl alcohol with a surface mesh designed from sodium carboxymethylcellulose.
The wound dressing was loaded with stearyl trimethyl ammonium chloride, which is an
antimicrobial drug into the foam layer for the prevention and control of infection prepared
by He et al. The surface mesh was designed for hemostatic function. The foam layer
displayed excellent absorption capacity of excess exudate with a good inhibition effect
against E. coli and S. aureus with good hemostatic capability [70].
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3.2. Hydrocolloids

Hydrocolloid dressings are made up of an outer layer that is water-impermeable and
an inner layer of gel-forming material commonly prepared from biopolymers, such as
pectin, sodium carboxymethylcellulose, gelatin, etc. (Figure 4) [71,72]. They are useful
for moderate exuding wounds which include burn wounds, pressure sores, etc. [71,73].
They are easily removed without causing pain. When they come in contact with the
wound exudates, gels are formed, which provide an appropriate moist environment with
good absorption of the wound exudates [71–73]. They promote angiogenesis, induce
the formation of granulation tissue, and increase the number of dermal fibroblasts and
the amount of synthesized collagen [72]. Their capability to retain moisture is useful
in softening and rehydrating necrotic tissue and slough, thereby promoting autolytic
debridement [72]. However, they are not effective in the management of high-exuding
wounds [74].
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The gel formation when in contact with exudates makes hydrocolloid dressing easy to
remove, and also, reduces pain in the wound bed by protecting the nerve endings [72,74]. It
is cost-effective when compared to traditional wound dressings, such as gauze when used
for the treatment of pressure ulcers [75]. The frequency at which it is changed is 3–7 days
depending on the amount of exudate produced [72,76]. They are designed to be intact when
in contact with the wound without a breakdown into the wound and also prevent scarring.
They have been developed from a combination of biopolymers and synthetic polymers.

Hydrocolloids have been prepared from a combination of sodium carboxymethyl
cellulose, styrene–isoprene–styrene, and silk fibroin nanoparticles by Lee et al. [77]. The
addition of silk fibroin nanoparticles improved the water uptake, swelling ratio, and tensile
strength of the hydrocolloids. The hydrocolloids were non-toxic, improved the structural
integrity of wound tissue, supported the regeneration of the dermis layer, decreased the
burn wound size, and increased the density of collagen fibres in vivo. These findings
revealed the efficacy of combining a biopolymer with synthetic polymers for the design of
hydrocolloids [77]. Jin et al. prepared hydrocolloid wound dressings from a combination
of sodium alginate, styrene–isoprene–styrene copolymer and petroleum hydrocarbon resin
using the hot melting method [78]. The hydrocolloids were loaded with Centella Asiatica.
The hydrocolloids displayed excellent mechanical properties, and they provided a moist
environment for accelerated epithelialization and wound healing. The presence of sodium
alginate in the wound dressing played a crucial role in the accelerated rate of wound healing
in vivo. Hydrocolloids have also been prepared from a combination of styrene–isoprene–
styrene and carboxymethyl cellulose sodium salt followed by loading myrrh solution. The
tensile strength of the hydrocolloid was significant (1180.92 ± 84.05 kPa) when compared
to the commercial hydrocolloid (621.74 ± 96.52 kPa). The swelling capability of myrrh
plays a vital role in the mucoadhesive property, mechanical properties, and water uptake
of the fabricated hydrocolloids. They were biocompatible and induced accelerated collagen
deposition, and regeneration of dermis, mature epidermis, and hair follicles in vivo [78].
The combination of biopolymer with synthetic polymers for the design of hydrocolloids
resulted in biocompatible wound dressings that promoted accelerated wound healing.
However, there are very few studies on the effect of biopolymers in hydrocolloid-based
wound dressings.

3.3. Hydrogels

Hydrogels represent a class of materials that are three-dimensional (3D) networks
composed of crosslinked polymers (Figure 5) [79,80]. They are insoluble and demonstrate
a remarkable potential to absorb aqueous media, making them suitable for wound dress-
ings. They are porous and allow oxygen diffusion appropriate for accelerated wound
healing [81,82]. Their hydrated 3D polymeric network promotes a high moisture content
on the wound bed by providing a soothing effect and reducing pains upon removal [83].
Their hydrophilic properties result from the crosslinking density of selected polar func-
tional groups, such as hydroxyl, amide, carboxyl, amino, etc. [84]. They can be tailored
into different sizes and shapes to cover irregularly shaped and deep bleeding wounds [85].
They can be loaded with bioactive agents, such as antibacterial agents, cells, growth factors,
etc. [86,87]. They resemble the extracellular matrix by providing a compatible environ-
ment for cellular proliferation and tissue regeneration, making them biocompatible and
appropriate for the management of wounds [88]. Hydrogels have been formulated to
display a stimuli-responsive manner for controlling drug release mechanisms, making
them interactive dressings [89]. However, their application as wound dressings is limited
by poor mechanical properties, making them unsuitable for the treatment of excessive
bleeding and the prevention of secondary damage [90]. Many researchers are currently
developing hydrogel dressings with high mechanical strength by combining synthetic
and biopolymers.
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Kong et al. developed poly (vinyl alcohol)/sodium alginate hydrogels loaded with 5-
hydroxymethylfurfural, an antioxidant and silver nanoparticles [91]. Loading 5-hydroxyme
thylfurfural effectively induced the proliferation and migration of human skin fibroblasts
and collagen production with a controlled release. The hydrogel displayed good compati-
bility and accelerated wound healing in vivo by increasing collagen production, enhancing
angiogenesis/vascularization, inducing re-epithelialization, and improving inflammation.
Increasing the content of sodium alginate in the hydrogel promoted a porous structure
when compared to the polyvinyl alcohol hydrogels that displayed a densely packed net-
work. The presence of sodium alginate also influenced the swelling capability of the
hydrogel network. The hydrogel wound dressings’ water retention capacity made it possi-
ble for the hydrogels not to cause a secondary injury upon removal from the wounds. The
hydrogels absorbed exudates from the wounds and also provided a moist environment for
the wounds. The hydrogels displayed controlled drug release, suppressed bacteria growth,
and modulated the inflammatory response [91].

Zubik et al. designed thermo-responsive hydrogels from a combination of poly(N-
isopropyl acrylamide) and cellulose nanocrystals via free-radical polymerization without
the use of additional crosslinkers (Figure 6) [92]. Increasing the content of cellulose crys-
tals decreased the thermal stability of the hydrogels. The elastic and viscous moduli of
hydrogels were improved by the amounts of cellulose crystals, revealing the enhanced
mechanical properties of the hydrogels. The thermo-responsive behaviour of the hydrogels
was evident between 36 and 39 ◦C, which is a physiological temperature. Loading the
hydrogel with metronidazole, an antibiotic, revealed a slow and sustained drug release at
37 ◦C [92].

Rasool et al. developed hydrogels from the combination of chitosan, poly (N-vinyl-2-
pyrrolidone), and poly acrylic acid (PAA) by the solvent-casting technique [93]. The hydro-
gels were thermally stable with good antibacterial activity against E. coli and biodegradable.
The swelling behaviour of the hydrogels was influenced by the content of poly (N-vinyl-2-
pyrrolidone). Increasing the content of poly (N-vinyl-2-pyrrolidone) decreased the swelling
capacity of the hydrogels. The hydrogel was loaded with silver sulfadiazine, which is an
antibiotic that displayed a 91.2% drug release in 1 h in a controlled manner [93]. Xue et al.
designed a quaternized chitosan–Matrigel–polyacrylamide hydrogel [94]. The hydrogel
displayed a high swelling ratio, excellent mechanical properties which include good ad-
hesiveness, excellent compressive and stretchable properties, and a modulus of 24.6 kPa
similar to human skin. In vivo studies showed that the hydrogel promoted collagen depo-
sition, induced skin adnexal regeneration, and accelerated wound healing. The addition
of Matrigel enhanced the pore sizes of the hydrogels. The porous nature is useful for
maintaining a moist environment for cellular proliferation and the formation of extracel-
lular matrix-like structures for accelerated wound healing. The mild adhesive capacity
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of 1.3 kPa of the hydrogel on porcine skin indicated their capability to prevent secondary
damage upon removal from the wound and their capability to protect the wound from
infection. The incorporation of quaternized chitosan contributed to the antimicrobial activ-
ity of the hydrogel. The hydrogels also displayed hemostatic, antimicrobial and adhesive
properties useful for full-thickness skin defects [94]. Khorasani et al. reported polyvinyl
(alcohol)/chitosan/nano zinc oxide hydrogels prepared by a freeze–thawing method [95].
Increasing the number of freeze–thawing cycles increased the hydrogel porosity appropri-
ate for the absorption of wound exudates. Increased elastic modulus and tensile strength,
with a decreased elongation at the breakpoint, were observed due to the increased number
of freeze–thawing cycles. The antibacterial properties of the hydrogels against E. coli and
S. aureus increased, revealing the synergetic effect of nano zinc oxide (nZnO) with chitosan.
The hydrogels were non-toxic, biocompatible, and potential wound dressings for treating
infected and exuding wounds [95]. Chen et al. encapsulated vascular endothelial growth
factor into benzaldehyde-terminated polyethylene glycol and dodecylmodified chitosan
hybrid hydrogel [96]. The hydrogel was prepared using a reversible Schiff base. The hy-
drogel displayed excellent tissue adhesion, hemostasis, and blood cell coagulation effects.
The loaded bioactive agent promoted cell proliferation together with tissue remodeling
and reduced inflammatory response suitable for promoting wound healing. An in vivo
study revealed the hydrogel’s capability to repair acute tissue injuries including vessel and
liver bleeding due to its excellent adhesion and hemostasis features. The dodecyl groups in
the hydrogel network exhibit a significant binding affinity to the cytomembranes on the
tissue surface. The hydrogels are integrated into the irregular wound bed, providing an
environment for the promotion of cell proliferation and the formation of new epidermis
This hydrogel is a good multifunctional hydrogel for infectious and bleeding full-thickness
skin defects [96].
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Masood et al. loaded silver nanoparticles into chitosan–poly ethylene glycol hydro-
gel to accelerate the healing of diabetic wounds [97]. The crosslinking of the hydrogel
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was performed using glutaraldehyde. The hydrogel displayed a high porosity, swelling
capability and water vapour transition rate. The porous network accelerated the rate of
healing, resulting from a high oxygen penetration to the wound bed and high absorption of
exudates, and it provided a suitable microenvironment for enhanced cell attachment. The
hydrogel antimicrobial and antioxidant properties were significant in vitro with improved
wound healing in vivo in diabetic rabbit models. The zone of inhibition of the hydrogel
against B. subtilis, E. coli, S. aureus, and P. aeruginosa was 15.5 ± 0.8, 20.2 ± 1.0, 21.5 ± 0.5,
and 21.8 ± 1.5 mm. The release of the nanoparticles was sustained for 7 days with slow
biodegradation [97].

Jangde et al. prepared a multiphase hydrogel loaded with quercetin-loaded lipo-
somes [98]. The hydrogel was prepared using 15% carbopol and different ratios of gelatin
ratio. In vivo studies on albino rats revealed accelerated wound healing with a significant
wound closure time. The hydrogel displayed a good water vapour transmission rate of
1477.64 g/m2/24 h and a swelling ratio of 3.24 ± 0.23. Increasing the content of gelatin
increased the water vapour transmission rate, hemocompatibility and swelling ratio [98].
Xuan et al. reported injectable self-healing hydrogels prepared from a combination of
carboxymethyl chitosan and aldehyde functionalized sodium alginate through a Schiff-
based reaction [99]. Nanofibers were embedded in the prepared hydrogels, and they had
no significant influence on the self-healing capability of the hydrogels. The hydrogels
displayed excellent self-healing capability and were easily injectable. The hydrogel pro-
moted wound healing in vivo in a full-thickness wound model. The hydrogels facilitated
re-epithelialization together with vascularization and skin regeneration. The mechanical
properties were improved due to the dual crosslinking. The hydrogels have potential appli-
cation for the repair of full-thickness skin wounds [99]. Li et al. developed self-healing hy-
drogel, poly-(ethylene glycol)–chitosan via the Schiff base. Its ability to change shape with
fluidlike mobility made it an excellent drug carrier, which was adapted to the internal tissue
environment, covered irregularly shaped wounds, and displayed a good hemostatic effect
in vivo [100]. Kaur et al. designed poly(vinyl)alcohol–sodium alginate-based hydrogels
crosslinked using boric acid and calcium ions to overcome antibiotic-resistant pathogens,
which is a challenge in the treatment of infected burn wounds [101]. The content of sodium
alginate in the polymer network influenced the gel fraction by increasing it significantly.
The maximum tensile strength of hydrogel decreased when the content of sodium algi-
nate increased. However, Young’s modulus and elongation at break were improved. The
hydrogel was hemocompatible, non-hemolytic and displayed good self-adherence, high
swelling capability and antibacterial effect. In vivo studies on Methicillin-resistant S. aureus
(MRSA)-induced murine burn wound model revealed the efficacy of minocycline-coated
hydrogel against drug-resistant bacterial infection [101]. Yin et al. prepared hydrogels using
arginine-based poly(ester urea urethane) and glycidyl methacrylate-modified chitosan. The
hydrogels displayed a microporous network structure with high water absorption ability
and biodegradation with no cytotoxic effect and good antibacterial activity. They exhibited
an excellent antibacterial effect by eliminating 91.81% of E. coli and 85.59% of S. aureus [102].

A hybrid hydrogel designed for diabetic wounds was reported by Li et al. [103].
The hydrogel was prepared from a combination of methacrylic anhydride, hyaluronic
acid, and polyhexamethylene biguanide. The hydrogel was loaded with sodium alginate–
salidroside microspheres for the sustained release of salidroside, which is useful to induce
angiogenesis. The hydrogel was prepared by photocrosslinking and was effective against
E. coli (97.85%) and S. aureus (98.56%). In vivo studies using diabetic rat models revealed
that the hydrogel promoted the high formation of granulation tissue together with the
formation of subcutaneous capillary and high collagen deposition when compared to
the blank control, suggesting accelerated wound healing. Polyhexamethylene biguanide
was loaded into the hydrogel to induce antibacterial activity. Salidroside is known to
exhibit anti-inflammatory, angiogenic, and antioxidant activities. The combination of
an antibacterial agent together with an angiogenic agent in the hydrogel accelerated the
healing of diabetic wounds [103]. There is a need for more exploration of the combination
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of antibacterial and angiogenic agents in wound dressings for the treatment of chronic
wounds. Hyaluronic acid has also been explored for the design of hydrogels for wound
healing. Arginine-poly(ester amide) was photocrosslinked with hyaluronic acid to form
hybrid hydrogels. An increase in the content of arginine–poly(ester amide) in the hydrogels
improved the physicochemical properties of the hydrogels significantly. The hydrogels
induced keratinocytes and accelerated re-epithelialization. Re-epithelialization of the
wound bed was significant on the eighth day after post-surgery with a high density of the
new tissue formation, resulting from the collagen deposition of fibroblasts. On day 12 of
the post-surgery, a matured thick layer of the new epidermis around the wound was visible
with a uniform density of collagen deposition [104].

Hybrid hydrogels composed of poly(vinyl alcohol) and hydroxypropyl cellulose were
prepared by successive freezing/thawing. Varied amounts of bovine serum albumin were
added together with reduced glutathione. The hydrogels were characterized by an inter-
connected porous structure with an average pore size in the range of 20.7–26.7 µm. The
excellent swelling degree and hydrophilicity of the hydrogel were noted. The stability
and porosity of the hydrogels were influenced by the content of bovine serum albumin.
The release of neomycin trisulfate from the hydrogels was controlled and also suitable
for treating infected wounds. Glutathione in the hydrogels played a crucial role in the
wound healing capability of the hydrogels by retaining the functional integrity of the
hydrogel [105]. Hybrid-based hydrogels were prepared from a combination of polyvinyl
alcohol and sodium alginate followed by the incorporation of microspheres designed from
polycaprolactone loaded with basic fibroblast growth factor (bFGF) for an accelerated
wound healing process. The hydrogel was developed via the freeze–thawing method, and
the microspheres were prepared by a double-emulsion solvent evaporation technique. An
increase in the content of sodium alginate influenced the porosity, degradation, swelling
ability, and elasticity of the hydrogels. However, the increased content of sodium alginate
in the hydrogel reduced the elongation at break and maximum strength. The loaded micro-
spheres in the hydrogel provided a sustained release of bFGF but reduced the mechanical
strength of the hydrogels. In vivo studies on a burn-wound rat model revealed accelerated
wound closure, cell-induced tissue regeneration and wound healing. The hydrogels were
also effective against S. aureus and E. coli growth [106].

Tajik et al. fabricated hybrid hydrogels from a combination of polyvinyl pyrrolidone
and fibrous protein keratin via UV irradiation. The hydrogel composed of 3:1 (polyvinyl
pyrrolidone: keratin) induced antibacterial properties against both Gram-negative and
Gram-positive bacteria, confirming their potential applications in wound dressing. The
swelling and tensile strength of the hydrogel were the highest compared to other hydrogels.
The release of lavender loaded in the hydrogel was a two-phase profile, an initial burst
release from the swollen hydrogel, and a second phase resulting from the extract diffusion
and hydrogel degradation [107]. Lavender oil has antibacterial and antifungal effects and
is useful for wound healing, promoting the accelerated formation of granulation tissue,
collagen synthesis and inducing the differentiation of fibroblasts [108,109]. A multifunc-
tional hybrid hydrogel prepared from a combination of polyvinyl alcohol, sodium alginate,
and dopamine was loaded with bis-quaternary triphenyl-phosphonium salt (BTPP+). The
hydrogels were prepared by a freeze–thawing method and displayed prolonged antimi-
crobial properties [110]. The addition of dopamine enhanced the antibacterial effect of the
hydrogel. The combination of dopamine and BTPP+ promoted the aggregation of platelet
and erythrocyte on the hydrogels, thereby enhancing the hydrogel’s hemostasis effect.
Preparing the hydrogels without the use of initiators or crosslinking agents is important for
the safe application of the hydrogels. The good mechanical features of the hydrogel and
its long-term stability resulting from electrostatic interactions and hydrogen bonds in the
hydrogel network are crucial. In vivo studies in a full-thickness cutaneous infected wound
model revealed the hydrogel’s capability to accelerate over 95% of wound healing within
two weeks [93]. The development of hydrogels with long-term antimicrobial effects and
efficient hemostasis effects is appropriate for infected wounds.
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3.4. Nanofibers

Nanofibrous wound dressings are characterized by a highly porous structure useful
for the effective permeability of oxygen, water, and nutrients [111,112]. They also display
a high surface area that is important for enhanced hemostasis. They protect the wound
from infections by providing excellent conformability and coverage of the wound [111,113].
Their high surface area is useful for high drug loading. Nanofibers designed for wound
dressings are classified based on cladding as uni-axial, coaxial and tri-axial nanofiber [114].
The uni-axial nanofibers are prepared by the facile electrospinning technique. Recently,
there are several reports of drug-loaded nanofibers via a coaxial electrospinning technique
comprising a core of shell structure where the drug is loaded and released depending on
the thickness of the shell, biodegradability, porosity, etc. [114] Coaxial nanofibers retain the
loaded drug, minimizing high burst release effects. Coaxial nanofibers are classified into
four types namely: nanofibers with different polymers in the core and sheath; biological
molecules loaded in the core and the sheath in the polymer; drug-loaded nanofibers
in the core and polymer in the sheath; and hybrid nanofibers loaded with more than
one drug in the core or the core and sheath [115]. The nanofibers are further classified
into five classes: nanofibers comprising a pristine synthetic or natural polymer; polymer
blend nanofibers prepared from more than one polymer; polymer nanofibers loaded with
biological molecules, e.g., growth factor, cells; polymer nanofibers loaded with drug; and
hybrid nanofiber loaded with a combination of drug or a drug and biological molecule [114].

Nanofibers are prepared by several methods such as phase separation, self-assembly,
electrospinning, etc. [115]. However, electrospinning is a widely reported method used
to develop nanofibers due to its cost-effectiveness, simplicity, and versatility [116]. The
3D structure of nanofibers imitates the skin’s ECM and is crucial in cellular adhesion
and proliferation [117]. There are several reports on the design of nanofibers for wound
healing. Some of them are prepared from biopolymers such as chitosan, alginate, hyaluronic
acid, gellan gum, cellulose, gelatin, keratin, pectin, and xanthan gum in combination
with synthetic polymers. Most biopolymers exhibit excellent properties useful in the
design of wound dressings. However, their high surface tension and viscosity make them
unsuitable for electrospinning in their natural form. They are combined with known
synthetic polymers, resulting in materials with interesting features.

Chitosan in combination with selected synthetic polymers has been used to prepare
nanofibers for wound healing, which was reported between 2020 and 2022. Chitosan–
polyethylene oxide nanofibers loaded with silver and zinc oxide nanoparticles exhibited
enhanced antibacterial activity against E. coli, S. aureus, and P. aeruginosa with a high
antioxidant effect. No cytotoxic effects of the nanofibers were visible on the fibroblast
cells in vitro. The nanofibers displayed good blood compatibility, fibroblast migration, and
proliferation on the wound margin in vitro. The combination of the nanoparticles produced
a synergistic antibacterial effect. The nanofibers displayed good tensile strength [118].
Polyurethane–chitosan nanofibers were designed for the treatment of diabetic wounds.
The nanofibers were loaded with different concentrations of linezolid. In vivo studies
in streptozotocin-induced diabetic rats showed that the nanofibers comprising linezolid
promoted the healing of diabetic wounds. The nanofibers displayed good mechanical
features and high porosity effective for cellular attachment, differentiation, and proliferation
with an increase in wound contraction [119]. Chitosan–polyethylene oxide nanofibers
loaded with teicoplanin (2 and 4 w/v%) were evaluated as potential wound dressings for
the treatment of infections in orthopaedic surgery. The drug release was sustained for
12 days. The antibacterial effect of the drug-loaded nanofibers on S. aureus was significant
with no cytotoxic effect on human fibroblast. In vivo study on a rat full-thickness wound
model revealed accelerated wound closure for nanofibers containing 4% teicoplanin [120].

Due to the therapeutic efficacy of silica in collagen creation and the capability of
its degraded products to accelerate wound healing, it has been loaded into nanofibers
for wound healing. Chitosan–polyethylene oxide–silica nanofibers were prepared by a
combination of the sol-gel and electrospinning techniques. Ciprofloxacin was loaded into
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the nanofibers. The nanofibers were effective against S. aureus and E. coli with no cytotoxic
effects against HFFF2 human foreskin and L929 mouse fibroblasts. In vivo evaluation
using the dorsal cutaneous wounds of the Balb/C mice showed reduced infection and
inflammation. The nanofiber accelerated skin regeneration, which was confirmed by
increased fibroblast cells and angiogenesis [121]. Chitosan–polyethylene oxide nanofibers
were also loaded with Manuka honey, propolis, Calendula officinalis infusion, insulin, and
L-arginine [122]. The nanofibers were biodegradable with improved hemocompatibility
and reduced cytotoxic effect. The nanofibers loaded with a combination of propolis and
Calendula officinalis infusion displayed an improved hemolysis index of 2.92 ± 0.16%, non-
toxic and radical scavenging effects, and increased antimicrobial effects against S. aureus
compared to other nanofibers [122]. Calendula officinalis extract was loaded into chitosan–
polyethylene oxide nanofibers prepared by electrospinning. The nanofiber diameter was
in the range of 143–252 nm. The nanofibers’ antibacterial effects were high against Gram-
positive and Gram-negative bacteria with 96% and 94% reduction, respectively. The wound
dressings accelerated wound healing with 87.5 % wound closure in 14 days. Improved
collagen synthesis, re-epithelialization, and remodeling of the wound dressings revealed
their usefulness in the treatment of skin wounds [123]. Vancomycin was loaded into
chitosan–poly ethylene oxide nanofibers via a blend-electrospinning process. In vivo
wound healing of the drug-loaded nanofibers in full-thickness skin wounds of rats showed
accelerated wound healing. The nanofiber containing 2.5% of the drug displayed a higher
Young’s modulus and tensile strength with the fastest wound healing [124].

Chitosan–polycaprolactone nanofiber has been developed for wound dressings. Poly-
caprolactone is biodegradable and non-toxic, but it is hydrophobic with no interaction
with native body cells [125]. It is combined with biopolymers to enhance biocompatibility.
Melilotus officinalis (MO) extract was loaded into the nanofiber. The tensile strength was
11.45 ± 0.12 MPa with Young’s moduli of 31.57 ± 0.83 MPa, which is appropriate for
normal skin. The nanofiber was effective against Bacillus and Shigella with no toxicity [126].
Curcumin-loaded chitosan–polycaprolactone nanofibers were prepared by electrospin-
ning followed by electrospraying of curcumin–chitosan nanoparticles into the nanofibers.
The nanofibers displayed improved antibacterial activity against MRSA and increased
antioxidant activity. The nanofibers with electrospray nanoparticles induced 96.4% wound
healing in MRSA-infected wounds. A complete wound healing process was observed on
day 15 [127]. Quercetin and rutin were loaded into chitosan–polycaprolactone as wound
dressings for burn wounds. The presence of chitosan in the scaffold improved the hy-
drophilicity, water absorption capacity and the specific surface area. The nanofiber loaded
with quercetin exhibited superior features. The nanofibers displayed good biocompatibility,
showed promising antibacterial activity, and were found to be useful for the treatment of
burn wounds [128].

Hyaluronic acid has been employed in the design of nanofibers for wound dressings.
It has been combined with polyvinyl alcohol and L-arginine [129] and in combination with
polyvinyl alcohol and polyethylene oxide [130]. Hyaluronic acid-poly vinyl alcohol-L-
arginine nanofibers were loaded with cellulose nanocrystals as nanofiller and L-arginine
to accelerate wound healing. The cellulose nanocrystals improved the mechanical and
swelling properties of the nanofibers significantly. It exhibited excellent hemocompatibility
together with the significant cellular proliferation of normal human skin melanocytes.
The release of arginine from the nanofibers was sustained with 90% release in 48 h. The
antibacterial activity against K. pneumonia was significant [129]. Hyaluronic acid-poly
vinyl alcohol-polyethylene oxide nanofibers were loaded with a combination of zinc oxide
nanoparticles and cinnamon oil. The nanofibers’ antibacterial activity against S. aureus
was significant. In vivo studies showed high antibacterial activity of the nanofibers in
full-thickness wounds inoculated with S. aureus with accelerated healing [130]. Hyaluronic
acid-poly ethylene oxide nanofibers were loaded with different natural-based bioactive
agents such as L-arginine, propolis, Calendula officinalis infusion, and Manuka honey. The
nanofiber membranes loaded with propolis and Calendula officinalis displayed outstand-
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ing cytocompatibility, antioxidant, and antimicrobial activities (against pathogen E. coli,
S. aureus, and P. aeruginosa). The water vapour transmission rate of the nanofibers was
in the range of 4634 g/m2.24 h–5122.6 g/m2.24 h, indicating their capability to prevent
wound dehydration. The combination of propolis and Calendula officinalis induced syner-
gistic antibacterial effects [131]. Polygalacturonic acid–hyaluronic acid nanofibers loaded
with silver nanoparticles via electrospinning displayed excellent antibacterial activity and
accelerated wound healing in the albino rat model with high wound epithelization and
collagen deposition on day 14 after administration [132].

Movahedi et al. reported core–shell polyurethane–starch–hyaluronic acid nanofibers
prepared via a coaxial electrospinning technique. The average fiber diameter was
428 ± 78.32 nm with an average porosity of 3.186 ± 0.401 µm. The nanofibers were non-
toxic and biocompatible. Modification of nanofibers with hyaluronic acid significantly
enhanced the adhesion of cells to the nanofibers in vitro, making nanofibers suitable for
skin regeneration [133]. An ethanolic extract of propolis has been loaded into polyurethane–
hyaluronic acid nanofibers for wound dressing. The nanofibers loaded with 1% and 2%
of the extract displayed enhanced antibacterial activity against S. aureus and E. coli. The
nanofibers containing a 1% extract displayed excellent biocompatibility on L929 fibroblast
cells with accelerated wound healing and closure, which was visible with improved devel-
opment of dermis, hair follicles, and deposition of densely packed collagen on the healed
wound area [134].

Gelatin has been employed for the design of nanofibers. Combining multiple drugs
to overcome multidrug-resistant pathogens was performed by loading ciprofloxacin and
tetracycline hydrochloride into coaxial polycaprolactone–gelatin nanofibrous wound dress-
ings. Ciprofloxacin was loaded into the core layer of polycaprolactone, while tetracycline
hydrochloride was loaded into the gelatin shell layer. The release of ciprofloxacin was
sustained for five days with over 80.71%, and the release of tetracycline hydrochloride
was rapid in 12 h with over 83.51% release. The antibacterial activity of the nanofiber
against E. coli and S. aureus was excellent with outstanding biocompatibility on human
skin fibroblast cells [135]. Epigallocatechin-3-O-gallate was loaded into poly (L-Lactic-
co-caprolactone)–gelatin–core-shell nanofiber membrane prepared using coaxial electro-
spinning technology. The nanofibers facilitated accelerated wound closure with good
tissue organization and excellent hemostatic ability. The nanofibers provided suitable struc-
tural features to accelerate the healing process [136]. ZIF-8@gentamicin were loaded into
polyacrylonitrile–gelatin nanofibers for wound healing. Synergistic antibacterial effects
were significant with accelerated wound healing time in 16 days [137]. Hibiscus rosa–
Sinensis leaves mucilage–polyvinyl alcohol–pectin nanofibers accelerated wound healing
on Swiss albino mice model with rapid epithelization in 8 days. Their hemocompatibility
and biodegradability nature further reveal the efficacy of combining synthetic and biopoly-
mers [138]. Keratin has been used in combination with synthetic polymers to prepare
nanofibers. The nanofibers exhibited appropriate mechanical properties such as modulus
and mechanical strength similar to the natural skin. Improved cell–scaffold adhesion and
the proliferation of fibroblast cells of the nanofibers revealed their capability to support
wound healing. The antibacterial activity against Gram-negative and Gram-positive strains
of bacteria was promising [139–141].

3.5. Nanogels

The three-dimensional hydrogel materials in the nanoscale size range are known as
nanogels [142]. They are prepared from a combination of bio- and synthetic polymers.
Their features such as charge, size, porosity, degradability, etc. can be tailored by modifying
the chemical composition [143]. They are hydrophilic, biocompatible, and support a high
drug loading capacity. They protect the loaded drugs from degradation. They are useful in
extending the circulation half-lives of the loaded drug and are suitable for the combination
and delivery of drug molecules [144]. Commonly reported synthesis methods of nanogels
include the polymerization of monomers in a homogenous phase or heterogeneous system,
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physical self-assembly, crosslinking of preformed polymeric chains, and template-assisted
nanofabrication. The most employed method is the physical self-assembly [145].

Fasiku et al. developed injectable nanogel to deliver a combination of antimicrobial
peptide and nitric oxide. The nanogel was prepared by crosslinking divinyl sulfone with
hyaluronic acid. Nitric oxide release from the nanogel was sustained for 24 h. The antibac-
terial activity of the nanogel was broad with antibiofilm activity. The MIC values of the
nanogel were 0.39, 0.78, and 1.56 µg/mL against P. aeruginosa, methicillin-resistant S. aureus,
and E. coli, respectively. The antibiofilm efficacy of the nanogel showed a 12.5 and 24-fold
reduction in the biofilms of MRSA and P. aeruginosa [146]. Amato et al. designed nanogel
from the combination of poly-L-lysine, hyaluronan, and berberine by the ionotropic gelation
method. The release of berberine was rapid with a 50% release in 45 min in vitro followed
by a sustained release of 50% in 24 h. The swelling capability of the nanogel was significant,
indicating its capability to promote the release of the drug. The burst berberine release is
useful for good drug concentration in situ. The wound-closure properties of the nanogels
in vitro revealed a higher closure rate for the blank than the drug-loaded nanogel. The
reduced wound closure of the drug-loaded nanogel is attributed to electrostatic interactions
occurring between the drug, berberine and hyaluronan, resulting in a significantly reduced
availability of hyaluronan needed to promote wound closure [147].

Nanogels have been designed and incorporated into hydrogels for wound dressing
applications. Rusu et al. incorporated nanogels prepared from a combination maleoyl-
chitosan and poly(aspartic acid) into hydrogel prepared from thiolated hyaluronic acid
for wound dressings. Amoxicillin was loaded into the nanogels. The incorporation of
the nanogel into the hydrogel reduced its swelling capacity and also controlled its rate of
degradation, and it enhanced the rapid release of the drug at a pH of 5.4. The stability of the
nanogel in physiological conditions was promoted by incorporation into the hydrogel. The
formulation was biocompatible in vivo, revealing its capability to support cell proliferation
and differentiation together with promoting a rapid wound healing process [148]. Zhu et al.
incorporated nanogel into a hydrogel to overcome the rapid release profile that is associated
with hydrogels. The nanogel prepared from a combination of lysine and di-p-nitrophenyl
adipate was loaded with chlorhexidine diacetate. Incorporating the nanogel into the
hydrogel prepared from a combination of aminoethyl methacrylate hyaluronic acid and
methacrylated methoxy polyethylene glycol prolonged the drug release period of the drug
for 240 h and also extended the antibacterial activity for 10 days. The hydrogel incorporated
with the nanogel promoted rapid hemostasis and accelerated wound healing in vivo [149].

3.6. Films/Membranes

Film-based wound dressings are impermeable to liquid and bacteria but permeable to
gas [150]. They are used for drug delivery to the wound site. They are flexible and conform
easily to the skin around areas, such as the joints. They reduce pain, support moisture
evaporation, inhibit external contamination, and are transparent for the inspection of the
wound bed. However, their use is limited by their ability to induce pain upon removal
and their inability to absorb excess exudate in high-exuding wounds [151]. Methods used
for the preparation of films are solvent casting, salt leaching, spin-coating, microfluidic
spinning, and 3D printing [151]. Membranes, on the other hand, display similar structures
as films. However, they can absorb excess exudate and maintain a moist environment
suitable for the accelerated wound healing process. Their excellent flexibility, stretchability,
softness, and providing comfort are interesting features they exhibit [152,153]. Film-based
wound dressings prepared from the combination of bio- and synthetic polymers have been
reported by several researchers between 2019 and 2022.

Colobatiu et al. used the solvent casting method to prepare films from the combina-
tion of chitosan and poly(vinyl alcohol). The film was loaded with an alcoholic extract
containing a mixture of Arnica montana, Geum urbanum, Plantago lanceolata, Symphytum
officinale, Tagetes patula, and Calendula officinalis. The films provided moisture to the wound
bed, thereby decreasing dehydration and accelerating wound closure. It also displayed
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a good proliferative effect and antioxidant activity. The films were biocompatible and
induced wound contraction. In vivo studies on a streptozotocin-induced diabetic rat model
showed that the films induced wound contraction with a complete re-epithelialization
and a deposition of dense collagen [154]. Films have been prepared from a combination
of sodium carboxymethylcellulose and hydroxypropylmethylcellulose via crosslinking
using citric acid. The films were loaded with a combination of zinc oxide complex and
grapefruit seed extract. The elongation (%) of the films was in the range of 34–60%, and
the antioxidant activity of films was in the range of 25–79%. The release of grapefruit seed
extract and zinc from films was sustained. The film’s antibacterial activity against S. aureus
and E. coli was significant. The loading of the grapefruit seed extract decreased the tensile
strength of the films. The film with the lowest value of tensile strength was 7.69 ± 1.14 MPa
for the film loaded with 1% of the extract. The extract and zinc oxide in the films influ-
enced the antibacterial and antioxidant activity [155]. The temperature-responsive film was
prepared from pullulan and the monomer, N-isopropyl acrylamide, was prepared via a
free radical polymerization method. Two different concentrations of silver nanoparticles
(15 ppm and 30 ppm) were loaded into the films. The release of silver from the films was
sustained for 48 h. The films exhibited excellent swelling properties, which is a feature
useful for the absorption of wound exudates. The antibacterial activity of the films was
effective against S. aureus and E. coli. Cytotoxicity evaluation on HeK293 cells showed
the good biocompatibility of the films. The temperature-responsive nature of the films
influenced the release of the nanoparticles when the temperature of the wound exudate
was higher than normal [156]. Alruwaili et al. prepared film dressings from arabinoxylan
and carboxymethylcellulose via a solvent-casting method. The films were loaded with an
antibiotic, amikacin. The drug release at the wound site was rapid for 4 h followed by a
sustained release for 24 h for accelerated wound healing. The films were swellable, flexible,
and cytocompatible with a prolonged-drug release profile. The SEM images showed a
plain surface morphology, indicating homogenous dispersion of the drug in the films
(Figure 7). The features of the films showed that they are appropriate for infected and
exuding wounds [157].
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Elastomer film was prepared from a combination of tributyl ammonium alginate and
cationic polyurethane for full-thickness wounds. The surface-modified polyurethane film
with alginate displayed enhanced hydrophilicity, tensile strength (2.6 MPa), Young elastic
modulus (1.8 MPa), and high stretchability. The film’s antibacterial activity was significant
against E. coli and S. aureus. The films promoted rapid healing with enhanced deposition
of collagen and the formation of mature blood vessels [158]. Films have been prepared
by 3D printing from the combination of bio- and synthetic polymers, i.e., chitosan with
poly ethylene glycol via crosslinking with genipin. In vitro mucoadhesion studies showed
that the 3D-printed film adheres to the epithelial surface and is non-cytotoxic on human
skin fibroblast cell lines with over 90% of cells being viable after 48 h. The film prepared
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in a 1:1 ratio of chitosan:polyethylene glycol exhibited high flexibility and adhered to a
mucosal surface in vitro. The film’s good swelling capability is useful for the absorption
of wound exudate and maintaining a moist environment. The films were not toxic but
were biocompatible. The 3D-printed films are promising dressings for chronic wound
healing [159]. Hybrid-based membranes have also been prepared and displayed promising
features for the treatment of chronic and acute wounds.

Poly (vinyl alcohol)–carboxymethyl chitosan-based membranes prepared by a solution
casting technique displayed a porous network. The membranes were effective against
E. coli and Staphylococcus bacteria. They were also biocompatible on fibroblasts and
keratinocytes in vitro, revealing their non-toxicity. The membrane’s flexibility was useful
in keeping it over the wound throughout the healing process. The crosslinker and chitosan
used influenced the mechanical properties of the membranes [160]. The incorporation
of graphitic carbon nitride into PVA–starch membranes resulted in excellent mechanical
and thermal stability, swelling capability, hydrophilicity, moisture retention capacity and
water vapour transmission [161]. Incorporating titania and silver nanoparticles into the
membranes imparted excellent antibacterial activity against S. aureus and E. coli with a
maximum zone of inhibition of 33.25 and 37.33 mm, respectively. The membranes displayed
a sustained drug release profile with complete healing in seven days in vivo in partial
and full thickness excision wounds [162]. The incorporation of gentamicin into chitosan–
methoxy polyethylene glycol–polycaprolactone wound dressing membranes inhibited
S. aureus and E. coli growth. The membranes were thermally stable with high moisture
content and swelling capability. The above-mentioned features are useful for accelerated
wound healing [163].

A pH-sensitive membrane, 2-(dimethylamino)ethyl methacrylate-polyethylene oxide,
was prepared in the ratio of 50:50% v/v via crosslinking with γ-irradiation (20 kGy).
The antibiotics, colistin, gentamicin, and neomycin, were loaded into the membrane for
improved antimicrobial activity. The drug release of colistin and neomycin was high at
pH 4 and high for gentamicin at pH 7 [164]. Membranes for wound dressings have been
prepared by grafting polyglutamic acid to the surface of carboxylated halloysite nanotubes
followed by co-blending with collagen matrix and crosslinking with sodium alginate oxide.
The elongation at the break and the tensile strength of the membranes were enhanced. The
membrane was non-toxic and displayed the potential to promote cell proliferation and
migration appropriate for wound healing [165].

Propolis has also been loaded into poly (vinyl alcohol)/chitosan membranes crosslinked
with genipin. The loaded propolis reduced the contact angle of the membrane but en-
hanced the cell proliferation rate of the membrane, water uptake, and hydrophilicity.
The membrane displayed good genotoxic potential and was suitable for wound healing
applications [166]. A summary of hybrid-based wound dressings is shown in Table 1.

Table 1. A summary of hybrid-polymer-based wound dressings.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Foam Wound Dressings

Polyurethane Chitosan, sodium alginate, and
hydroxypropyl methylcellulose

Silver nanoparticles
and asiaticoside

Non-cytotoxic, compatible
and accelerated wound
closure, and the formation
of granulation tissue.

[69]

Polyvinyl alcohol Sodium carboxymethylcellulose Stearyl trimethyl
ammonium chloride

An excellent absorption
capacity of excess exudate,
good inhibition effect
against E. coli and S. aureus
with good
hemostatic capability.

[70]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Hydrocolloids

Styrene–isoprene–
styrene Sodium carboxymethyl cellulose Silk fibroin

nanoparticles

Non-toxic, supports the
regeneration of the dermis
layer, decreased the burn
wound size and increased
the density of collagen
fibers in vivo.

[77]

Styrene–isoprene–
styrene copolymer
and petroleum
hydrocarbon resin

Sodium alginate Centella Asiatica

Biocompatible, induced
accelerated collagen
deposition, regeneration of
dermis, mature epidermis,
and hair follicle in vivo

[78]

Hydrogel

Poly (vinyl alcohol) Sodium alginate
5-hydroxymethylfurfural
and silver
nanoparticles

Induced proliferation and
migration of human skin
fibroblasts and collagen
production. Good
compatibility and
accelerated wound healing
in vivo by increasing
collagen production,
enhancing angiogene-
sis/vascularization,
inducing
re-epithelialization, and
reducing inflammation.

[91]

Poly(N-isopropyl
acrylamide) Cellulose nanocrystals Metronidazole Slow and sustained

drug release. [92]

Poly (N-vinyl-2-
pyrrolidone) and poly
acrylic acid

Chitosan Silver sulfadiazine Controlled drug release [93]

Polyacrylamide Chitosan -

Promoted collagen
deposition, induced skin
adnexal regeneration, and
accelerated wound healing.

[94]

Polyvinyl (alcohol) Chitosan Nano zinc oxide

A significant antibacterial
activity against E. coli and
S. aureus, non-toxic,
biocompatible, and
effective for treating
infected and
exuding wounds.

[95]

Benzaldehyde-
terminated
polyethylene glycol

Chitosan Vascular endothelial
growth factor

Excellent tissue adhesion,
hemostasis, and blood cell
coagulation effects.

[96]

Polyethylene glycol Chitosan Silver nanoparticles

The high absorption
capacity of the exudates
and good antimicrobial
and antioxidant properties
in vitro. Improved wound
healing in vivo in diabetic
rabbit models.

[97]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Carbopol Gelatin Quercetin
Accelerated wound healing
with a significant wound
closure time in vivo.

[98]

- Sodium alginate,
carboxymethyl chitosan -

Promoted wound healing
in vivo in a full-thickness
wound model. Facilitated
re-epithelialization
together with
vascularization and
skin regeneration.

[99]

Poly(ethylene glycol)- Chitosan -
Covered irregularly shaped
wounds with good
hemostatic effect in vivo.

[100]

Poly(vinyl alcohol) Sodium alginate Minocycline

Hemocompatible,
non-hemolytic, and
antibacterial effects
in vivo against
methicillin-resistant
S. aureus (MRSA)-induced
murine burn
wound model.

[101]

Arginine-based
poly(ester urea
urethane)

Glycidyl methacrylate-modified
chitosan -

Non-cytotoxic effect and
excellent antibacterial
activity (eliminated 91.81%
of E. coli and 85.59% of
S. aureus).

[102]

Polyhexamethylene
biguanide Hyaluronic acid Salidroside

Effective against E. coli
(97.85%) and S. aureus
(98.56%). In vivo studies
using diabetic rat models
revealed that the hydrogel
promoted the high
formation of granulation
tissue together with the
formation of subcutaneous
capillaries and high
collagen deposition.

[103]

Arginine–poly(ester
amide) Hyaluronic acid -

Induced keratinocytes
and accelerated
re-epithelialization with a
uniform density of collagen
deposition in vivo.

[104]

Poly(vinyl alcohol) Hydroxypropyl cellulose
Bovine serum albumin,
glutathione, and
neomycin trisulfate

Controlled drug release [105]

Polyvinyl alcohol Sodium alginate

Polycaprolactone
microspheres loaded
with fibroblast growth
factor (bFGF)

A sustained release of
bFGF. Accelerated wound
closure, cell-induced tissue
regeneration and wound
healing in vivo in a
burn-wound rat model.
Effective against S. aureus
and E. coli.

[106]



Polymers 2022, 14, 3806 20 of 31

Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Polyvinyl
pyrrolidone Keratin Lavender oil Controlled and tailored

drug release profiles. [107]

Polyvinyl alcohol Sodium alginate

Bis-quaternary
triphenyl-
phosphonium
salt

Prolonged antibacterial
activity and good
hemostasis effect with
accelerated wound healing.

[110]

Nanofibers

Polyethylene oxide Chitosan Silver and zinc
oxide nanoparticles

Exhibited enhanced
antibacterial activity
against E. coli, S. aureus,
and P. aeruginosa with a
high antioxidant effect.
Good blood compatibility
with good fibroblast
migration and proliferation
on the wound margin
in vitro.

[118]

Polyurethane Chitosan Linezolid
Promoted healing in
streptozotocin-induced
diabetic rats in vivo.

[119]

Polyethylene oxide Chitosan Teicoplanin

Sustained drug release
with antibacterial effect
against S. aureus.
Non-cytotoxic effect and
accelerated healing on a
rat full-thickness
wound model.

[120]

Polyethylene oxide Chitosan Ciprofloxacin

Effective against S. aureus
and E. coli with no
cytotoxic effect on HFFF2
human foreskin and L929
mouse fibroblasts.
Reduced infection and
inflammation in vivo in
dorsal cutaneous wounds
of the Balb/C mice.

[121]

Polyethylene oxide Chitosan

Manuka honey,
propolis, Calendula
officinalis infusion,
insulin, and L-arginine

Biodegradable with
improved
hemocompatibility and
reduced cytotoxic effect.
Significant radical
scavenging effects and
increased antimicrobial
effects against S. aureus.

[122]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Polyethylene oxide Chitosan Calendula officinalis

High antibacterial effects
against Gram-positive and
Gram-negative bacteria
with 96% and 94%
reduction, respectively.
Accelerated wound healing
with 87.5% wound closure
in 14 days. Improved
collagen synthesis,
re-epithelization and
remodeling.

[123]

Poly(ethylene oxide) Chitosan Vancomycin
Accelerated wound healing
in full-thickness wound
models in vivo.

[124]

Polycaprolactone Chitosan - Biodegradable and
non-toxic. [125]

Polycaprolactone Chitosan Melilotus officinalis
Effective against Bacillus
and Shigella with
no toxicity.

[126]

Polycaprolactone Chitosan Curcumin

Improved antibacterial
activity against MRSA and
increased antioxidant
activity. Induced 96.4%
wound healing in
MRSA-infected wounds.

[127]

Polycaprolactone Chitosan Quercetin and rutin

Improved the
hydrophilicity, water
absorption capacity and
the specific surface area.
Good biocompatibility and
antibacterial activity.

[128]

Polyvinyl alcohol Hyaluronic acid Cellulose nanocrystals,
arginine

Accelerated wound
healing. Excellent
hemocompatibility and
antibacterial activity
against K. pneumonia.

[129]

Polyethylene oxide Hyaluronic acid
Zinc oxide
nanoparticles and
cinnamon oil

High antibacterial activity
in full-thickness wounds
inoculated with S. aureus
with accelerated healing.

[130]

Poly ethylene oxide Hyaluronic acid

L-arginine, propolis,
Calendula officinalis
infusion, and
Manuka honey

Outstanding
cytocompatibility,
antioxidant, and
antimicrobial activities
(against pathogen E. coli, S.
aureus, and P. aeruginosa).

[131]

Polygalacturonic acid Hyaluronic acid Silver nanoparticles

Excellent antibacterial
activity and accelerated
wound healing on the
albino rat model with high
wound epithelization and
collagen deposition

[132]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Polyurethane Starch and hyaluronic acid - Non-toxic and
biocompatible. [133]

Polyurethane- Hyaluronic acid Ethanolic extract of
propolis

Enhanced antibacterial
activity against S. aureus
and E. coli. Excellent
biocompatibility on L929
fibroblast cells with
accelerated wound healing
and closure with improved
development of dermis,
hair follicles, and
deposition of densely
packed collagen on the
healed wound area.

[134]

Polycaprolactone Gelatin
Ciprofloxacin and
tetracycline
hydrochloride

Sustained drug release
with excellent antibacterial
activity against E. coli and
S. aureus with
biocompatibility on human
skin fibroblast cells.

[135]

Poly (L-Lactic-co-
caprolactone) Gelatin Epigallocatechin-3-O-

gallate

Facilitated accelerated
wound closure with good
tissue organization and
excellent hemostatic ability.

[136]

Polyacrylonitrile Gelatin ZIF-8@gentamicin
Synergistic antibacterial
effects with accelerated
wound healing time.

[137]

Polyvinyl alcohol Pectin Hibiscus rosa–Sinensis
leaves

Accelerated wound healing
on Swiss albino mice
model with rapid
epithelization in 8 days.

[138]

Poly (vinyl alcohol),
poly (E-caprolactone) Keratin -

Improved cell-scaffold
adhesion and proliferation
of fibroblast cells of the
nanofibers. Good
antibacterial activity
against Gram-negative and
Gram-positive strains of
bacteria.

[139–141]

Nanogels

Divinyl sulfone Hyaluronic acid S-Nitroso-N-acetyl-DL-
penicillamine

Significant antibacterial
activity against
P. aeruginosa,
methicillin-resistant
S. aureus, and E. coli,
respectively.

[146]

Poly-L-lysine Hyaluronan Berberine Accelerated wound closure
in vivo. [147]

Poly(aspartic acid) Maleoyl–chitosan Amoxicillin
Good stability in
physiological conditions
and biocompatible in vivo

[148]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Methacrylated
methoxy
polyethylene glycol

Aminoethyl methacrylate
hyaluronic acid Chlorhexidine diacetate

Prolonged drug release
and extended antibacterial
activity. Promoted rapid
hemostasis and accelerated
wound healing in vivo.

[149]

Membrane/Films

Poly(vinyl alcohol) Chitosan

An alcoholic extract
containing a mixture of
Arnica montana, Geum
urbanum, Plantago
lanceolata, Symphytum
officinale, Tagetes patula
and Calendula officinalis

Good proliferative effect
and antioxidant activity,
biocompatible and induced
wound contraction with
a complete
re-epithelialization and a
deposition of dense
collagen in vivo on a
streptozotocin-induced
diabetic rat model.

[154]

Sodium
carboxymethylcellulose and
hydroxypropylmethylcellulose

Zinc oxide complex
and grapefruit seed
extract

The release of grapefruit
seed extract and zinc from
the films was sustained.
Good antibacterial activity
against S. aureus and E. coli
was significant.

[155]

N-isopropyl
acrylamide Pullulan Silver nanoparticles

The antibacterial activity of
the films was effective
against S. aureus and E. coli.
Good biocompatibility on
HeK293 cells
and temperature-
responsive nature.

[156]

- Carboxymethylcellulose and
arabinoxylan Amikacin

Initial rapid drug release
followed by a
sustained release.

[157]

Polyurethane tributyl ammonium alginate -

Good antibacterial activity
against E. coli and S. aureus.
Promoted rapid healing
with enhanced deposition
of collagen and the
formation of matured
blood vessels.

[158]

Polyethylene glycol Chitosan -

Non-cytotoxic on human
skin fibroblast cell lines
with over 90% of the cells
being viable. High
flexibility and adherence to
a mucosal surface in vitro.

[159]

Poly (vinyl alcohol) Carboxymethyl chitosan -

Effective against E. coli and
Staphylococcus bacteria.
They were also
biocompatible with
fibroblasts and
keratinocytes in vitro.

[160]
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Table 1. Cont.

Synthetic Polymer Biopolymer/Semisynthetic
Polymers Bioactive Agents Therapeutic Outcomes References

Poly (vinyl alcohol) Starch Carbon nitride

Excellent mechanical and
thermal stability, swelling
capability, hydrophilicity,
moisture retention capacity,
and water
vapor transmission.

[161]

Poly (vinyl alcohol) Starch Titania and silver
nanoparticles

Excellent antibacterial
activity against S. aureus
and E. coli with a
maximum zone of
inhibition of 33.25 and
37.33 mm, respectively.
Complete healing in seven
days in vivo in partial and
full thickness
excision wounds.

[162]

Methoxy
polyethylene glycol
and polycaprolactone

Chitosan Gentamicin

Inhibited S. aureus and E.
coli growth. Thermally
stable with high moisture
content and
swelling capability.

[163]

2-
(dimethylamino)ethyl
methacrylate-
polyethylene
oxide

Colistin, gentamicin,
and neomycin

The drug release of colistin
and neomycin was high at
pH 4 and high for
gentamicin at pH 7.

[164]

Polyglutamic acid Sodium Alginate -
Increased elongation at the
break, tensile strength,
and biocompatibility.

[165]

Poly (vinyl alcohol) Chitosan Propolis

Improved cell proliferation
rate, water uptake and
hydrophilicity. The good
genotoxic potential is
suitable for wound
healing applications.

[166]

4. Future Perspective and Conclusions

Hybrid-based wound dressings developed from the combination of natural and synthetic
polymers in the form of foam, hydrocolloid, hydrogel, nanofibers, and films/membranes
have displayed promising features appropriate for accelerated wound healing. There are
few reports on hybrid-based foam wound dressings. The reported hybrid-based foams
are non-cytotoxic, compatible and accelerate the rate of wound closure in vivo. Their
significant hemostatic and antibacterial effects due to the incorporation of bioactive agents
are useful for bleeding and infected wounds. However, the limitations associated with
foams that require future modification include the need for frequent changes and low
exudates absorption capability. There is a need to improve the absorption capacity of foams.

In the design of hybrid-based hydrocolloid wound dressings, the presence of biopoly-
mers plays a significant role in accelerating wound healing, exudate absorption capability,
and biocompatibility of the wound dressings. However, there is limited study on the
capability of hydrocolloids to support skin regeneration. There are numerous studies on
the design of hybrid hydrogels with excellent features for accelerating wound healing.
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However, most of the studies were evaluated at the in vivo stage, and there is a need for
these studies to reach the clinical trial stage.

Most of the wound dressings were loaded with synthetic antibiotics that are character-
ized by drug resistance and adverse side effects. The conventional approach for treating
microbial infections associated with wounds involves using antibiotics. However, the per-
sistent use of antimicrobials can induce multidrug-resistant bacteria, which poses a serious
threat to human health [167]. Incorporating antibiotics into wound dressings will promote
sustained and controlled drug release, thereby overcoming the risk of the development of
drug-resistant microbes. There is also a pressing need to explore extensively essential oils
and naturally occurring bioactive agents by incorporating them into wound dressings to
further improve the biocompatibility of wound dressings. The use of chemicals such as
crosslinkers in the preparation of some wound dressings is a disadvantage due to their
capability to release toxic by-products that can induce adverse side effects [168,169]. Fur-
thermore, the optimization of the large-scale production of some of these wound dressings
is challenging [168].
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