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Synapse is the basic structural and functional component for 
neural communication in the brain. The presynaptic terminal 
is the structural and functionally essential area that initiates 
communication and maintains the continuous functional 
neural information flow. It contains synaptic vesicles (SV) filled 
with neurotransmitters, an active zone for release, and 
numerous proteins for SV fusion and retrieval. The structural 
and functional synaptic plasticity is a representative charac-
teristic; however, it is highly vulnerable to various pathological 
conditions. In fact, synaptic alteration is thought to be central 
to neural disease processes. In particular, the alteration of the 
structural and functional phenotype of the presynaptic terminal 
is a highly significant evidence for neural diseases. In this 
review, we specifically describe structural and functional 
alteration of nerve terminals in several neurodegenerative 
diseases, including Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Amyotrophic lateral sclerosis (ALS), and 
Huntington’s disease (HD). [BMB Reports 2017; 50(5): 237-246]

INTRODUCTION

Synapse is a fundamental unit for brain function. Flow of 
neural information between neurons is ignited from 
presynaptic terminals by the release of a small chemical 
ingredient called neurotransmitter. This is stored in the small 
endosomal compartment (synaptic vesicle (SV)), and it’s 
released by the fusion of SV, facilitated by a series of 
neuronal-activity triggered action of molecular players in the 
release area (active zone) at the presynaptic terminals. 

The presynaptic terminal is composed of several structural 
and functional components. Cytomatrix proteins (Bassoon and 
Piccolo) and cytoskeletal protein (actin) provide the structural 
framework. The active zone (AZ) is the critical site for 
neurotransmitter release. Many essential molecular machineries 

are localized in the AZ, such as SNARE components for fusion, 
voltage-gated Ca2＋ channels, cell adhesion molecules, etc. 
Each nerve terminal possesses around 100-200 synaptic 
vesicles. The synaptic vesicle (SV), a tiny endosomal com-
partment (∼40 nm diameter), contains the neurotransmitter 
which associates directly and/or indirectly with more than a 
hundred proteins for proper functioning. For appropriate 
physiological functions, a number of proteins exist at the nerve 
terminals. Physiologically, the regulation and maintenance of 
neurotransmitter release remain critical questions. Several 
distinct SV pools distributed in the presynaptic terminal and 
SV exocytosis is tightly regulated by Ca2＋ and its molecular 
players. Subsequently, SV retrieval continuously maintains the 
synaptic communication via several endocytic pathways. 
However, the morphological and physiological intact is easily 
altered in various neurological diseases. From synaptic vesicle 
and synaptic protein depletion to neurotransmission and Ca2＋ 
dynamics impairment, a number of alterations in the structure 
and function of nerve terminals are exhibited in neurological 
diseases. Furthermore, these presynaptic dysfunctions are 
thought to be the very early symptoms of neuronal disorders. 

This review specifically describes the structural and func-
tional presynaptic alterations in neurodegenerative diseases. 
Alzheimer’s disease (AD) is a high impact neurodegenerative 
disease. Several pathogenic factors have been identified, such 
as amyloid beta (A) plaque, neurofibrillary tangle, and 
ApoE4. However, the exact pathological etiology requires to 
be further explored. It is important to understand synaptic 
alterations by these factors at the initial stage, before the 
eventual occurrence of neuronal cell death. Parkinson’s 
disease (PD) is the second most common neurodegenerative 
disease, exhibiting degeneration of dopaminergic neurons in 
the substantia nigra pars compacta. Consequently, this results 
in dopamine depletion in the brain, leading to several 
neurological symptoms, tremors, bradykinesia, and rigidity. A 
number of sporadic and familial factors have been discovered. 
Some of the evidences have reported that these factors are 
deeply implicated with presynaptic function, although it is still 
much less known how PD is initiated. Other neurodege-
nerative diseases, such as Huntington disease (HD) and 
amyotrophic lateral sclerosis (ALS), are also involved in 
synaptic dysfunction. We describe in depth normal and 
pathological phenotype of these factors at presynaptic terminals.
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Alzheimer’s disease

Factor Phenotype at presynaptic terminal Ref

Amyloid Precursor 
Protein (APP)

• Negative regulator of synapse formation• Negative regulator for readily releasable pool of synaptic vesicle• Molecular Hub in presynaptic active zone (PAZ)   

3
3
4

Amyloid beta
(A)

• Downregulation of presynaptic protein expression • Increase release probability (soluble A- normal condition)• Disruption of vesicle fusion ability by inhibiting VAMP2 function (pathologic A)

5
7
9

BACE1 • Negative regulator for excitatory synaptic transmission (homeostatic synaptic plasticity) 15
-secretase/Presenilin • Presynaptic short-term plasticity, synaptic facilitation• Homeostatic synaptic scaling of excitatory synapses

17
18

Tau • Synaptic stability (presynaptic proteins, synaptic vesicle) 19, 20
ApoE4 • Downregulation of amount glutamate• Modulation of spontaneous vesicle release 

27
28

Table 1. Summary of presynaptic phenotype by AD genetic factors 

NERVE TERMINALS IN ALZHEIMER’S DISEASE

Alzheimer’s disease (AD), the most common type of dementia, 
is a rapidly emergent and prominent neurodegenerative 
disease. The patient progressively loses their memory with a 
decline in cognition, eventually reaching mortality due to 
death of the brain cells. Several causative genetic factors have 
been revealed. Oligomerization of the amyloid beta (A) 
plaque from amyloid precursor protein (APP) by BACE and 
-secretase, is a well-known factor for AD. Mutation or modi-
fication of the Tau protein aggregates to form neurofibrillary 
tangle (NFT) or paired helical filaments (PHF), called Tauopathy, 
which is also a known cause of AD. A critical genetic factor for 
late-onset AD is apolipoprotein E, particularly 4 isoforms 
(ApoE4). Although these genetic factors are identified and 
characterized, a number of complicities are still emerging, and 
remain elusive. Here, we describe the genetic factors involved 
in the function and dysfunction at the presynaptic terminals 
(Table 1). 

Amyloid precursor protein (APP) and Amyloid beta (A) 
Amyloid precursor protein (APP) is an essential source for 
amyloid beta 40 or 42 (A 40 or 42) which are known major 
pathogenic factors in AD. APP normally participates in 
presynaptic function, although primary function of APP is still 
not explored. APP is enriched in nerve terminals with Rab5 
positive large vesicular organelle (1) or a small set of synaptic 
vesicles (2), and is involved in structure and function of nerve 
terminals. APP modulates the initial nerve terminal formation. 
Cultured neurons from APP knock-out brain revealed up- 
regulation of synaptophysin, a presynaptic marker. Consistently, 
immunohistochemistry from a slice of APP KO brain showed a 
high intensity of synaptophysin, indicating that APP is a 
negative regulator of synaptic formation. Secondly, APP is also 
involved in physiological modulation of synaptic functions. 

APP KO neurons significantly increase the readily releasable 
pool (RRP) of synaptic vesicles (3). According to computational 
analysis of APP, it is likely to serve as a hub protein in the 
presynaptic active zone (PAZ), and is a context regulator in the 
hippocampal active zone network (4). 

Amyloid beta (A) is a fragment peptide from APP, cleaved 
by BACE and -secretase. Oligomeric aggregation of A 
peptide is a critical pathogenic factor in AD. Several reports 
exhibit the A tangle effects in nerve terminal phenotype. 
Treatment of A oligomer in neurons results in significantly 
decreasing the presynaptic protein expression, but not 
post-synapse (5), indicating that A affects the initial structural 
formation of presynaptic terminals. Physiologically soluble A 
binds to APP, inducing the APP-APP homodimer. Con-
sequently, there is a boost of Ca2＋ influx, eventually resulting 
in an increase in the release probability (6, 7), indicating that 
A is a positive regulator of neurotransmission at nerve 
terminal. However, in pathological conditions, increased A 
can perturbs the release probability by altering spike 
probability of neurons (8). Internalized A is localized at the 
nerve terminal, subsequently disrupting the synaptic vesicle 
protein VAMP2 function for vesicle fusion (9). In addition, it 
induces the depletion of presynaptic mitochondria and 
decreases its motility, thereby decreasing the size of synaptic 
vesicle pool.

Another important feature of the A at synapses is that the 
synaptic activity for neurotransmission and release of A is 
tightly correlated, and a nerve terminal is a major place for A 
release. The brain interstitial fluid (ISF) reveals that synaptic 
activity influences the A levels. The more the synaptic 
activity, higher is the A level in ISF. This result correlates with 
APP endocytosis. The cleavage of APP to produce Aoccurs 
in the endosomes or a small fraction of SV, and not on the 
surface of the plasma membrane (2). Synaptic vesicle 
exocytosis is thus required for more endocytosis of APP. 
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Hence, the production and release of A are modulated by 
activity-dependent synaptic transmission and endocytosis at 
the nerve terminals (10, 11). 

Beta-secretase (BACE) 
-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is 
a key enzyme that produces Amyloid beta under pathological 
conditions. Localized at the synaptic vesicles, BACE1 is 
important for synaptic functions. Numerous potential substrates 
have been identified, which contain several synaptic proteins, 
in addition to APP (12). Furthermore, BACE1 was bio-
chemically detected in the synaptic vesicle enriched fraction, 
indicating that synaptic vesicle is the likely location for APP 
processing (13, 14). BACE1 KO mice revealed that basal 
excitatory synaptic transmission was augmented. It is likely 
that the pathway downstream of BACE1 at the synapse was 
decreased, which could be due to the scaling of homeostatic 
synaptic plasticity (15). Synaptic adhesion protein Neuroligin1 
and voltage-gated sodium channel were also known substrates 
for BACE1; however, it is as yet unknown how BACE1 
regulates these substrates. 

-secretase and presenilin
-secretase, along with BACE1, is essential for the production 
of a 42 peptide of amyloid beta. Several functions of 
-secretase have been reported at synapses. Localization 
studies revealed that -secretase is present in the synaptic 
endosomal fraction of rat brain, which is highly overlapped 
with the localization of BACE1 protein (16). In neurons with 
conditional knockout of presenilin, one of the subunits of the 
-secretase complex, presynaptic short-term plasticity and 
synaptic facilitation were severely altered, mainly mediated by 
presynaptic functions; these impairments result from intra-
cellular Ca2＋ release at the presynaptic terminals (17). In 
addition, hippocampal neurons derived from presenilin KO 
mice failed to the homeostatic scaling of excitatory synapses 
(18). Collectively, presenilin regulates neurotransmission at the 
nerve terminals. 

Tau
Tau was originally discovered as a microtubule-associated 
protein. The neurofibrillary tangle (NFT) or paired helical 
filament (PHF) one of the major hallmarks of AD, is formed by 
Tau protein aggregation. However, studies report the func-
tioning of tau at synapses. Tau is involved in axonal transport 
and synaptic protein stability for regulation of microtubule 
stability (19). In addition, it also provides the structural support 
to form and maintain synapses (20). Truncated tau contains 
specific phosphor-pattern, and can be localized both at the 
pre- and post-synaptic compartments. Particularly, at the 
presynaptic terminal, it impairs the stability of microtubules, 
resulting in a reduction of synaptic vesicles (21). 

In pathological conditions, the Tau protein strongly 
influences synaptic dysfunction. The brain of the rTg4510 

mouse, a human mutant P301L tau overexpressed mouse 
model, revealed age-dependent synaptic loss at both the pre- 
and post- synaptic regions, subsequently resulting in synaptic 
dysfunction. Tauopathy exhibits a strong impairment of 
synaptic transmission, and in combination with APP models, 
the synaptic impairment was aggravated, suggesting that the 
two pathological protein (Tau and APP) act in concert with 
synaptic function and dysregulation (22, 23).

Apolipoprotein (APOE)
ApoE is a lipoprotein mainly involved in the transport of 
lipoprotein, cholesterol, and lipid-related materials. It is well 
known that ApoE is strongly related to the pathology of AD, 
and is also associated with another AD factor, such as 
Amyloid-beta. Particularly, the apolipoprotein E4 (ApoE4) 
allele is the major causative allele of ApoE, having a functional 
role in nerve terminals. Hippocampal neurons with ApoE4 
allele expression have a high sensitivity to environmental 
factors that lower the levels of presynaptic proteins such as 
synaptophysin (24, 25), although the synaptic area in the 
dentate gyrus increases (26). In addition, ApoE4 targets the 
replacement mice, showed down-regulation of glutaminase 
which converts the glutamine to glutamate, and up-regulation 
of the vesicular glutamate transporter. Consequently, neurons 
replaced with ApoE4 release decreased levels of glutamate at 
nerve terminals (27). Interestingly, this effect on presynaptic 
terminals appear to be restricted only in ApoE4 alleles, and not 
in other E2 and E3 alleles, thereby suggesting that structural 
and functional regulation is specifically influenced by the 
ApoE4 allele. Recently, it has been discovered that several 
ApoE receptors (e.g. Apoer2 and Vldlr) are expressed at the 
nerve terminal membranes. Reelin, a ligand for ApoE receptor, 
signaled a transient increase of intracellular Ca2＋, resulting in 
elevation of spontaneous vesicle release by VAMP7 mediated 
fusion (28). 

Also, ApoE4 and amyloid beta were closely associated in 
AD pathogenesis. In a patient with AD, the ApoE4 was 
colocalized with oligomeric A, and enhanced the synaptic 
localization of oligomeric A. These findings suggest that 
ApoE4 is a stimulator for oligomeric A toxicity for synapses 
(29). The proteomic response in nerve terminals is more 
susceptible than in the cell body, suggesting that ApoE has a 
nerve terminal region-specific functional effect. 

NERVE TERMINALS IN PARKINSON’S DISEASE

Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder. It is a movement disorder characterized 
by bradykinesia, postural instability, and rigidity, following the 
progressive loss of dopaminergic neurons in the midbrain. 
Pathogenesis of PD is classified into sporadic and familial 
cases, which develop due to environmental and genetic 
factors. About two dozen genetic factors of PD have been 
identified so far. Few genetic factors, including -synuclein, 
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Parkinson’s disease

Factor Phenotype at presynaptic terminal Ref

-synuclein • Impairment of dopamine release in SNpc• Impairment of synaptic vesicle endocytosis and reclustering• Reduction of synaptic vesicle recycling pool 

38
39,40

41
LRRK2 • Impairment of release and decreased DA uptake in SNpc• Impairment of synaptic endocytosis in presynaptic terminals

48
45

Parkin • Reduction of dopamine release• Impairment of synaptic plasticity in striatal cells
55
53

PINK1 • Impairment of synaptic plasticity and release of dopaminergic neuron 62
DJ-1 • Defect of LTD through inhibitory effects of D2 receptor 68
Synaptojanin1 • Slowed endocytosis rate for small stimulation by defect of phosphatase activity 74,75
Endophilin • Regulation of Parkin expression 76

Table 2. Summary of presynaptic phenotype by PD genetic factors 

LRRK2 (Leucine-rich repeat kinase 2), Parkin, PINK-1 (PTEN 
Induced Putative Kinase 1) and DJ-1, have been thoroughly 
researched in the pathogenesis of PD. Accumulating evidence 
shows that genetic factors of PD are associated with alteration 
of the synaptic functions (30, 31) (Table 2). 

-synuclein
-synuclein is a small protein containing 140 amino acids, and 
contributes to early-onset PD (32). Generally, -synuclein 
localizes at the presynaptic terminal. It is associated with 
synaptic vesicles, controlled synaptic vesicle trafficking, and 
SNARE complex formations at the nerve terminal (33-35). In 
pathological conditions, -synuclein is implicated in the 
alteration of synaptic functions. Human -synuclein overex-
pressing animal models show protein aggregations at the nerve 
terminals (36, 37), and overexpression of human -synuclein 
by viral vector injection into substantia nigra in animal models 
leads to impaired dopamine release (38). Furthermore, 
neurotransmission inhibition might be related to the impair-
ment of synaptic vesicle endocytosis (39) or synaptic vesicle 
reclustering after synaptic vesicle endocytosis (40). In addition, 
the overexpressing pathogenic mutants of -synuclein (A30P 
and A53T) in primary midbrain neurons, led to abnormal 
neurite growth and reduced the recycling pool of synaptic 
vesicles (41). This evidence suggests that -synuclein aggre-
gation alters synaptic formation and functions. 

LRRK2
LRRK2 is a large multidomain protein which includes kinase, 
GTPase, and protein-protein interaction domains. It is one of 
the prominent familial PD factors, particularly the gain-of- 
function mutant of LRRK2 (G2019S) is strongly associated with 
familial PD as well as sporadic PD (42, 43). Several studies 
report that LRRK2 is implicated in the structural and functional 
regulation of synapses through kinase-dependent mechanisms. 
It regulates the presynaptic and postsynaptic morphology by 

the phosphorylation-dependent interaction of Futsch and 
4E-BP in fly models (44). LRRK2 participates in synaptic 
vesicle endocytosis by phosphorylating endophilin (45), which 
is related with delayed endocytosis of synaptic vesicles, and 
subsequently affecting the neurotransmission impairment (46). 
LRRK2 also phosphorylates the NSF (N-ethylmaleimide-Sensitive 
Factor) D2 domain (Threonine 645), which plays a key role in 
SNARE complex disassembly after synaptic vesicle exocytosis. 
NSF phosphorylation by LRRK2 exhibits an elevated rate of 
SNARE disassembly (47). BAC transgenic animals for LRRK2 
G2019S mutation, characterized by elevated kinase activity, 
show impairment of striatal dopamine release and a decrease 
of dopamine uptake, without dopaminergic neuron loss in the 
substantia nigra pars compacta (SNpc) (48). Furthermore, a 
neuron with LRRK2 G2019S expression shows elevated 
release probability with increased synaptic density (49), and 
altered glutamatergic synaptic plasticity (50). 

Parkin
Parkin is an E3 ubiquitin ligase, and has an important role in 
cellular homeostasis due to its regulation of mitophagy and 
protein degradation. However, the loss-of-function mutation of 
Parkin is associated with juvenile-onset PD (51, 52). Parkin has 
been implicated in the modulation of synaptic functions. 
Parkin KO mice show decrease of evoked dopamine release in 
the striatum, and the striatal medium spiny neuron exhibit 
impairments of synaptic plasticity, which are long-term 
depression and long-term potentiation (53). Parkin also 
negatively regulates the number and strength of excitatory 
synapse (54), and neurotransmission is impaired by reduced 
AMPA receptor endocytosis due to loss of function of Parkin 
(55). Several studies report that functional loss of Parkin 
impaired degradation of synaptic proteins, including 
-synuclein, synphilin-1, and CDCrel-1, thereby contribute to 
protein aggregation (56-58). 
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ALS and Huntington’s disease

Factor Phenotype at presynaptic terminal Ref

ALS SOD-1 • Axonal transport• Synaptic degeneration
83

84,85
TDP-43 • Expression regulation of presynaptic protein• Attenuation of synaptic transmission

88
89

FUS • Active zone formation, synaptic transmission 93
HD HTT • Synaptic transmission, release probability• Synaptic vesicle dynamics

94
95,96

Table 3. Summary of presynaptic phenotype by ALS and HD genetic 
factors 

PINK1
Inherited nonsense and missense mutation of PINK1 
(PTEN-induced putative kinase1) is a known early-onset 
familial PD factor (59). PINK1 has a N-terminal mitochondrial 
targeting motif and a conserved kinase domain (60), and is 
closely related to mitochondrial function and mitochondrial 
quality control (61). Pathologic mutation of PINK1 results in 
abnormal morphology of mitochondria. In addition, there is 
impairment of dopamine release, which presumably relates to 
synaptic mitochondrial dysfunction by pathogenic PINK1 (62). 
Loss of PINK1 also impairs the normal development of 
dopaminergic neuron, consequently leading to locomotor 
dysfunction (63). PINK1-deficient mice show normal number 
of dopaminergic neurons, but the release of dopamine is 
significantly decreased, suggesting that PINK1 has a role in 
synaptic transmission (64). 

DJ-1
Generally, DJ-1 acts as a sensor for cellular redox homeostasis 
(65). However, functional mutation of DJ-1 is a causative 
familial factor for autosomal recessive early-onset PD (66). 
Localization studies reveal that DJ-1 is localized in the 
synaptic membrane. The binding affinity for synaptic 
membrane reduces with pathogenic DJ-1 compared to WT 
DJ-1 (67), indicating that it is likely involved in synaptic 
functions. In fact, DJ-1 depleted mice show signs of LTD 
(long-term depression), through the inhibitory effects of the D2 
receptor by loss of DJ-1 (68). 

Synaptojanin-1
Synaptojanin-1, a known phosphoinositide phosphatase, has a 
role in endocytosis process. It interacts with several endocytic 
proteins such as dynamin, Dap160/intersectin, and BAR 
proteins including endophilin and amphiphysin (69, 70), 
suggesting a key role in synaptic vesicle recycling processing, 
particularly clathrin-coated pit uncoating (71). Recently, the 
Sac1 domain mutation of synaptojanin-1 (p.Arg258Gln) has 
been reported in a family with early-onset progressive Parkin-
sonism (72, 73). Although synaptojanin-1 mutation mediated 
pathogenesis of PD has been less explored, the pathogenic 
phenotype is exhibited in mutations of synaptojanin-1 
associated with PD, as well as early onset refractory seizures 
and neurological decline (74, 75), suggesting that the 
loss-of-function of synaptojanin-1 may contribute to the 
pathogenesis of PD and other neurological diseases by 
impaired synaptic vesicle recycling.

Endophilin
Endophilin is a key factor in synaptic vesicle recycling. 
Recently, however, some papers report that it is related to PD 
genetic factors, including LRRK2, parkin, and synaptojanin-1 
(45, 76, 77). Endo-A, a fly ortholog of endophilin, is a 
substrate for LRRK2. BAR domain (Serine75) in Endo-A is 
phosphorylated, and recruitment of Endo-A to the endocytic 

complex during endocytosis gets modulated. Consequently, 
hyper-phosphorylation of BAR domain of Endo-A in LRRK2 
G2019S mutant shows impairment of synaptic endocytosis in 
presynaptic terminals (45). In addition, endophilin phospho-
rylation by LRRK2 increases the recruitment of atg3 to the 
membrane area of presynaptic terminals, resulting in 
macroautophagy induction, affecting the membrane curvature 
induction for autophagy (78). Interestingly, endophilin mutant 
mice exhibited strongly increased parkin expression, 
suggesting that endophilin genetically interacts with parkin 
(76). 

NERVE TERMINALS IN OTHER NEURODEGENERATIVE 
DISEASES

ALS
Amyotrophic lateral sclerosis (ALS) is a motor neuron disorder 
characterized by progressive loss of motor neurons in the 
cortex, brainstem and spinal cord. The loss of motor neuron 
leads to muscle atrophy and weakness, thereby eventually 
resulting in death. Superoxide dismutase-1 (SOD-1), one of the 
most prominent ALS genetic factors, is an antioxidant enzyme 
involved in the conversion of free superoxide radicals to 
oxygen and hydrogen peroxide. Both, a dominant and a 
recessive mutation of SOD-1, have been identified in ALS 
patients (79-81). It has been reported that the mutations of 
SOD-1 were implicated in synaptic dysfunctions. Both wild 
type of SOD-1 and pathogenic SOD-1 were localized at the 
pre and post-synapse. The G93A SOD-1 mutant, one of the 
pathogenic SOD-1 mutants, shows mislocalization in pre-
synaptic terminals as well as post-synapse, thereby impairing 
axonal transport and contributing neuronal cell death (82, 83). 
SOD1 mutant mice also show length-dependent axonopathy 
with synaptic degeneration (84), and decreased synaptophysin- 
positive presynaptic bouton in the remaining motor neurons 
(85). Mutation of TDP-43, a DNA-/RNA-binding protein which 
modulates RNA splicing and micro RNA biogenesis (86, 87), 
has been identified in familial ALS. Transgenic animals of the 
mutant with human TDP-43 exhibit reduced levels of 
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Fig. 1. Summarization of diagram for 
alteration of presynaptic terminals in 
various neurodegenerative diseases.

synaptophysin (a presynaptic protein) in the brain, as well as 
cognitive and motor deficits in behavioral tests (88); also, the 
synaptic transmission was attenuated (89). FUS (Fused-in- 
Sarcoma) is also one of the DNA/RNA-binding proteins having 
a similar structure and functions as TDP-43 (90). The mutation 
in nuclear localization signal (NLS) of FUS leads to increased 
cytoplasmic FUS position, which induces the aggregation of 
FUS mutants, as a pathogenesis of ALS (91, 92). FUS mutations 
were also linked to synaptic dysfunctions. Overexpression FUS 
mutant disrupts formation of presynaptic active zones, con-
sequently reducing the synaptic transmission with decreased 
quantal size (93) (Table 3). 

Huntington’s disease
Huntington’s disease (HD) is an inherited autosomal dominant 
neurodegenerative disorder. It is mainly caused by mutation of 
the huntingtin (htt) protein, which has an abnormally high 
copy of polyglutamine (polyQ) repeat at the N-terminus. 
General symptoms of HD are motor dysfunction and cognitive 
deficits, which correlate with the neurodegeneration of 
specific regions such as the striatum and cerebral cortex. Some 
of the presynaptic alterations in HD have been reported in 
various genetic models. An HD model system expressing 128 
polyQ expansion in Drosophila, revealed that it had 
significantly higher neurotransmitter release and release 
probability (94). Presynaptic specific protein alterations are 
also reported. For example, rabphilin 3A expression level 
decreased (95); however, levels of SCAMP5, one of the 
synaptic vesicle proteins was increased (96), suggesting that 
these alterations of presynaptic protein levels result in an 
impairment of synaptic vesicle fusion or endocytosis process 
(Table 3). 

CONCLUSION

We here reviewed the structural and functional alterations of 
presynaptic terminals by genetic factors in several neuro-
degenerative diseases (Fig. 1). In AD, APP, an original source 
for A peptide, is a molecular hub in PAZ. It negatively 
regulates the nerve terminal formation and readily releasable 
synaptic vesicle pool. Pathological A (aggregate A) strongly 
inhibits the synaptic vesicle fusion machinery; however, 
soluble A increases the release probability. BACE1 and 
presenilin are also important regulators for presynaptic 
physiology. In addition, other genetic factors for AD (Tau and 
ApoE4) are also involved in synaptic stability and synaptic 
release. In PD, numerous studies for the genetic factors has 
revealed the implication in presynaptic functions. -synuclein 
expression controlled the release probability and recycling 
pool size, and LRRK2 modulates dopamine release and 
synaptic vesicle endocytosis by phosphorylating several 
endocytic proteins (e.g. endophilin). Interestingly, recently 
accumulating reports show that endocytic proteins (e.g. 
synaptojanin1, endophilin) are strongly related in PD, 
indicating that the synaptic vesicle endocytosis process might 
be an important pathway related in the pathogenesis of PD. 

A number of the genetic factors for neurodegenerative 
diseases are closely related with synaptic function and its 
alteration. However, most studies just display the phenotype 
of synaptic dysfunctions, without detailed mechanisms of how 
the genetic factors result in these dysfunctions. By far, most 
studies for the pathogenesis of neurodegenerative diseases 
tend to focus on mechanisms of how neuronal cell death or 
neurodegeneration occur. Most of the neurodegenerative 
diseases are generally thought to be chronic diseases. 
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Ultimately, neurons are likely to die after experiencing a 
number of abnormal processes during neurodegeneration. 
Synapses possess high variability and plasticity, and are also 
highly vulnerable to pathological conditions. It is likely to 
reveal abnormal phenotype or alteration of the synaptic 
function at the early onset of neurodegeneration, suggesting 
that an in depth investigation for synaptic dysfunction may 
provide a new approach to the understanding of the early 
pathogenesis of neurodegenerative diseases. 
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