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ABSTRACT: In this work, we demonstrate how to efficiently compute
the one- and two-body reduced density matrices within the spin-adapted
full configuration interaction quantum Monte Carlo (FCIQMC)
method, which is based on the graphical unitary group approach
(GUGA). This allows us to use GUGA-FCIQMC as a spin-pure
configuration interaction (CI) eigensolver within the complete active
space self-consistent field (CASSCF) procedure and hence to
stochastically treat active spaces far larger than conventional CI solvers
while variationally relaxing orbitals for specific spin-pure states. We
apply the method to investigate the spin ladder in iron−sulfur dimer
and tetramer model systems. We demonstrate the importance of the
orbital relaxation by comparing the Heisenberg model magnetic
coupling parameters from the CASSCF procedure to those from a
CI-only (CASCI) procedure based on restricted open-shell Hartree−Fock orbitals. We show that the orbital relaxation differentially
stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital
relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF
eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian.

1. INTRODUCTION
The complete active space self-consistent field (CASSCF)
method is a well-established approach in quantum chemistry for
the treatment of strongly correlated electron systems with
substantial multireference character.1−8 Important static
correlation effects are rigorously described within the active
space, consisting of the most important orbitals and electrons,
while the effect of the environment (electrons not included in the
active space) is accounted for at the mean-field level via a
variational orbital optimization (the SCF procedure). One- and
two-body reduced density matrices (1- and 2-RDMs) within the
active space are necessary to perform orbital rotations between
the active orbitals and the environment, whether a second-order
Newton−Raphson formulation2,7,9−11 or the simplified super-
CI technique with an average Fock operator is utilized.4 If
applicable, exact diagonalization techniques12−14 are utilized to
obtain eigenvalues, eigenvectors, and the RDMs associated with
the CAS configuration interaction (CASCI) Hamiltonian.
However, due to the exponential scaling of CASCI with respect
to the size of the active space, exact diagonalization techniques
are restricted to at most about 18 electrons in 18 orbitals,
CAS(18e,18o), on a serial architecture.15,16 More recent
massively parallel implementations allow sizes up to CAS-
(24e,24o).17 Another strategy is to use methods that
approximate the full-CI wave function in the active space, like
the density matrix renormalization group approach
(DMRG),18−30 full configuration interaction quantum Monte

Carlo (FCIQMC),6,31−35 selected configuration interaction
(selected-CI) approaches36−45 (recently implemented in a
spin-adapted form46−48), the correlation energy extrapolation
by intrinsic scaling method,49,50 or the occupation restricted
multiple active spaces (ORMAS),51,52 as well as the related
generalized active space (GAS) approach,53−55 as CI eigensolv-
ers within the CASSCF framework. However, while GAS was
designed with the same GUGA framework discussed in the
present work to enforce spin-adaptation,7 ORMAS is Slater-
determinant-based and recently made use of the spin-flip
configuration interaction method56 to ensure the correct spin
multiplicity.57

These approaches allow the study of much larger active
spaces.6,39,40,55,58−64 The use of FCIQMC as the CASSCF CI
eigensolver within the super-CI framework, termed stochastic-
CASSCF,6 has been developed in our group and used to study a
number of strongly correlated systems, such as model systems of
Fe(II)-porphyrins and the correlation mechanisms that differ-
entially stabilize the intermediate spin states over the high-spin
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states,55,58,60 and model systems of corner-sharing cuprates.59

The original stochastic-CASSCF implementation was formu-
lated using Slater-determinants (SDs) as the many-body basis
for the CASCI wave function expansion. As SDs are not
necessarily eigenfunctions of the total spin operator, their
applicability is bound to the intrinsic spin structure of the system
studied. If the low-spin states are energetically more stable and
well separated from higher-spin states, it is possible to obtain
essentially spin-pure wave functions when using an SD basis.
However, when high-spin states are more stable than low-spin
states, and/or a number of spin states are nearly degenerate, it is
very difficult to obtain spin-pure solutions, or target states other
than the ground state, with an SD basis.
In this paper, we present an algorithm for the calculation of 1-

and 2-RDMs within the spin-adapted implementation of
FCIQMC via the graphical unitary group approach (GUGA-
FCIQMC).65 GUGA-FCIQMC has been implemented within
the NECI code31,66 and provides accurate spin-adapted wave
functions and RDMs for active space sizes out of reach for
conventional exact CI eigensolvers.62,63 As already done for the
original stochastic-CASSCF,6 the sampled 1- and 2-RDMs are
then utilized within the super-CI procedure, as implemented in
the OpenMolcas chemistry software package,16 to perform
the orbital relaxation step. Thus, via the interface of the NECI
code and OpenMolcas,16 it is possible to perform spin-adapted
state-specif ic (or state-average, if RDMs of different states are
weighted-averaged prior to the super-CI step) stochastic-
CASSCF optimizations, targeting any desired spin state. The
spin-pure stochastic-CASSCF allows us to obtain variationally
optimized molecular orbitals, which in turn enable the
calculation of spin gaps, unbiased from the choice of the starting
orbitals.
The applicability and the importance of the method are

shown through the investigation of the spin ladder of two iron−
sulfur (FeS) clusters. Polynuclear transition-metal (PNTM)
clusters are of major importance in organometallic chemistry
and as cofactors in biology and are involved in a multitude of
processes, including photosynthesis, respiration, and nitrogen
fixation,67−69 being responsible for redox reactions70−72 and
electron transfer,73−81 act as catalytic agents, and even provide a
redox sensory function.82 A theoretical understanding of the
intricate interplay of the energetically low-lying spin states of
these systems, guided by accurate numerical results, could
provide insights toward the synthetic realization of these
processes. Especially, because direct experimental measure-
ments targeting the electronic structures of these systems are
often hindered by the large number of overlapping electronic
states and corresponding vibrational modes at finite temper-
atures.83−85 In addition, some energetically low-lying excited
states are inaccessible by accurate optical absorption experi-
ments due to being electric-dipole-forbidden transitions.86

Spin-pure stochastic RDM sampling allows us to formulate a
spin-adapted stochastic-CASSCF and gives us access to
properties encoded in the 1- and 2-RDMs, such as spin−spin
correlation functions. Using CASSCF wave functions of various
active space sizes and compositions, we will study and discuss
how spin gaps are affected by orbital relaxation effects.
Additionally, the ab initio energies will be mapped to the
(biquadratic) Heisenberg spin model87−97 to show the effect of
active space size and orbital relaxation on the extracted magnetic
coupling parameters, which are in turn compared to the available
experimental data98,99 and other computational studies.100,101

The remainder of this paper is organized as follows: in section
2, we summarize the spin-adapted GUGA-FCIQMC method,
and in section 3, we describe the sampling algorithm of spin-free
RDMs. In section 4, we discuss ab initio CASSCF spin gaps and
spin−spin correlation functions for an iron−sulfur dimer,
Fe2S2,

62 for different active space sizes and starting orbitals,
and for an [Fe4S4] tetramer model system. We also map our ab
initio results to a (biquadratic) Heisenberg model Hamiltonian,
discuss the role of the CASSCF procedure when extracting the
exchange parameter(s), and compare the magnetic coupling
constants extracted from our computations to experimental and
theoretical references. Finally, in section 5, we summarize our
findings and offer a general discussion on the presented topic.
In Appendix A and Appendix C, we derive necessary formulas

for local spin measurements and spin−spin correlation functions
from RDMs, respectively. We additionally supply coordinate
and orbital files, computational details, and comparisons with
available exact results for small active spaces, a table with the
data used in Figure 10, a study on improved convergence due to
stochastic noise, the protocol on how we compared the orbitals
in Figure 11, details on interface and the RDM storage
convention in OpenMolcas, and a quick access literature
overview of computational results for the Fe2S2 system in the
Supporting Information (SI).

2. GUGA-FCIQMC

In this section, we briefly summarize the main details of the
GUGA-FCIQMC implementation. More theoretical and
technical aspects of the algorithm are available in the
literature.65,102

The spin-adapted implementation of the FCIQMC algorithm
relies on the unitary group approach (UGA),103,104 pioneered by
Paldus, and its graphical extension (GUGA), introduced by
Shavitt.105,106 GUGA provides an efficient-to-use spin-adapted
many-body basis, based on the spin-free formulation of quantum
chemistry.107 The spin-free form of the electronic Hamiltonian
is given by

∑ ∑̂ = ̂ + ̂H t E V e
1
2ij

n

ij ij
ijkl

n

ijkl ij kl,
(1)

with the spin-free excitation operators, Êij = ∑σaîσ
† aĵσ and eîj,kl =

ÊijÊkl − δjkÊil, defined in terms of the creation and annihilation
operators aîσ

† , aĵσ with spatial orbitals i, j, and spin σ. tij and Vijkl
represent the one- and two-electron integrals in a molecular
orbital basis, and n indicates the total number of spatial orbitals.
The name unitary group approach comes from the fact that the

operators Êij fulfill the same commutation relations as the
generators of the unitary group of order n,U(n).103 Paldus108,109

identified a very efficient construction of a spin-adapted basis
tailored for the electronic structure problem, based on the
Gel’fand−Tsetlin basis,110−112 a general basis for any unitary
group U(n). Paldus also demonstrated how to efficiently
calculate Hamiltonian matrix elements, algebraically103 and
graphically via the so-called “pattern calculus”,108,109 within this
basis. Based on this seminal work, Shavitt developed the
graphical extension of the UGA (GUGA),105,106,113 which
provides an elegant and efficient way to calculate Hamiltonian
matrix elements, ⟨ν|Ĥ|μ⟩, between different configuration state
functions (CSFs), |μ⟩ and |ν⟩, within a chosen spin-symmetry
sector, especially well suited to be combined with the FCIQMC
method.
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The first general purpose implementation of the GUGA was
developed by Brooks and Schaefer,114,115 which is still available
in the GAMESS ab initio quantum chemistry package.116 The
combination of an efficient protocol for computing Hamiltonian
matrix elements, and storage of the CI coefficients, enables an
effective spin-adapted formulation of exact CI eigensolvers, such
as CAS1 and GAS,53 perturbation theory methodologies, such as
CASPT2,117 GASPT2,118 and SplitGAS,119 as well as the
FCIQMC approach within the GUGA framework.65

The FCIQMC algorithm33,34 is based on the imaginary-time
(τ = it) Schrödinger equation

∫τ
τ

τ τ
∂|Ψ ⟩

∂
= − ̂ |Ψ ⟩ ⎯ →⎯⎯⎯ |Ψ ⟩ = |Φ ⟩

τ
τ− ̂H

( )
( ) ( ) e (0)H

d

(2)

which, after formal integration and a first-order Taylor
expansion, yields an iterable expression for the eigenstate |Ψ(τ)⟩

τ τ τ τΨ + Δ ≈ − Δ ̂ ΨH( ) (1 ) ( ) (3)

FCIQMC stochastically samples the FCI wave function, |Ψ(τ)⟩,
of a system by a set of so-called walkers and yields estimates for
the ground- and excited-state120 energies and properties121 via
the one- and two-body RDMs.122 Theoretical and algorithmic
details on FCIQMC can be found in the literature,33,34 especially
in the recently published review article ref 31.
At the heart of the FCIQMC algorithm is the so-called

spawning step, which stochastically samples the off-diagonal
contribution to the imaginary-time evolution of the targeted
state

∑τ τ τ τ τ
τ

μ ν
+ Δ ≈ −Δ ≈ −Δ

|μ
ν μ

μν ν
μν ν

≠

c H c
H c

p
( ) ( )

( )

( )gen (4)

with cν(τ) being the coefficient of basis state function |ν⟩ at the
imaginary-time τ, of the FCI expansion |Ψ(τ)⟩ = ∑νcν(τ)|ν⟩,
and pgen(μ|ν) is the so-called generation probability of choosing
configuration |μ⟩ given |ν⟩.
During an FCIQMC simulation, only coefficients that are at

least occupied by a chosenminimum number of walkers (usually
set to be the real number 1) are kept in memory. The off-
diagonal contribution in eq 4 is then approximated by allowing
each walker on each occupied configuration |ν⟩ to spawn new
walkers on configuration |μ⟩ with a nonzero Hamiltonian matrix
element ⟨μ|Ĥ|ν⟩. The process of suggesting a new configuration
|μ⟩ given |ν⟩, called the excitation generation step, is of utmost
importance.
The maximal usable time step of the simulation is limited by

the relation

τ
μ ν

Δ
| |

|
≈μνH

p ( )
1

gen (5)

to ensure stable dynamics. Hence, for large |Hμν|/pgen(μ|ν)
ratios, the time step of the calculation, Δτ, has to be lowered to
ensure a stable simulation and is the motivation for optimizing
the excitation generation step. Several schemes to obtain a close-
to-optimal balance of computational effort and matrix element
relation have been developed (see refs 31, 55, 123−125). The
spawning step is schematically shown in Figure 1.
For reasons of interpretability, control, and improved

convergence properties, a spin-adapted implementation of
FCIQMC was long-sought after.126 GUGA allows an efficient
spin-adapted FCIQMC implementation by constructing spin-
symmetry-allowed excitations as stochastic walks on the

graphical representation of CSFs, the so-called Shavitt graph,
as depicted in Figure 2, and explained in more detail in refs 65,
102.
The GUGA allows both an efficient on-the-fly matrix element

calculation and a way to select excitations from CSF |μ⟩ → |ν⟩
and ensures the approximate relation pgen(ν|μ) ∝ |Hμν|, via a so-
called branching tree approach. The stochastic GUGA excitation
process for a single excitation, Êij, is schematically depicted in
Figure 3, with the CSFs drawn from top to bottom. For a given
CSF, |μ⟩, and two spatial orbitals, i and j, which are chosen with a
probability weighted according to the magnitude of their integral
contributions, at each open-shell orbital k within the range i→ j,
an allowed path is chosen randomly. This process is weighted
with the so-called probabilistic weight, of the remaining decision
tree below the current orbital k, which ensures the desired
relation pgen(ν|μ) ∝ |Hμν|. Interested readers are referred to refs
65, 102 for more details.

Figure 1. Schematic presentation of the FCIQMC spawning step.
Orange and blue dots indicate opposite signed walkers on the stored
basis states (black circles). Not stored states within a time-slice are
indicated by dashed circles. The arrows point toward the newly
spawned children after time Δτ has elapsed.

Figure 2. (a) Graphical representation of a possible single excitation
from CSF |μ⟩ = |u, 0, u, d, u, 0⟩ to |μ′⟩ = |u, 0, 2, u, 0, 0⟩ by moving an
electron from orbital j = 5 to i = 3 (indicated by the arrow on the left).
The loop contributing to the coupling coefficient, ⟨μ|Êij|μ′⟩, is indicated
by the gray area. Following Shavitt’s convention, the CSFs are drawn
from bottom to top. (b) Exchange excitation example, for the same CSF
|μ⟩, which shows that different index combinations for exchange
excitations, eîj,ji and eî′j′,j′i′, can lead to the same transition |μ⟩→ |μ′⟩ = |u,
0, d, u, u, 0⟩, with a nonzero coupling coefficient.
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This stochastic process additionally circumvents the bottle-
neck given by the exponentially growing connectivity between
CSFs with respect to the number of open-shell orbitals. Hence,
our GUGA-FCIQMCmethod is able to treat systems with more
than 30 open-shell orbitals, and due to the spin-pure
formulation, it allows us to specifically target any spin-symmetry
sector, removes any spin-contamination, reduces the Hilbert
space size, and speeds up convergence in systems with near-
degenerate spin states.65,102 However, compared to the SD-
based FCIQMC, the calculation of (spin-free) RDMs in GUGA-
FCIQMC is considerably more challenging, and hence such
RDMs have not been available until now. This has prevented
access to properties and using it as a spin-pure CI-solver within
the stochastic-CASSCF method.6

3. GUGA-RDMS
In this section, the theoretical and algorithmic details of the
stochastic sampling of RDMs within the GUGA-FCIQMC
method are discussed.
3.1. Theoretical Considerations. Unbiased RDM sam-

pling within the FCIQMC algorithm, whether in SD or CSF
basis, is made possible by the replica method, where two
independent dynamics are simultaneously carried out to remove
a strictly positive bias due to stochastic fluctuations for the
diagonal RDM contributions.122

In an SD-based implementation, the 1-particle RDM entries

∑ρ τ τ τ τ τ= ⟨Ψ | ̂ ̂ |Ψ ⟩ = ⟨ | ̂ ̂ | ⟩σ σ σ σ σ
† †a a c c I a a J( ) ( ) ( ) ( ) ( )ij i j

IJ
I
A

J
B

i j,

(6)

are derived from the stochastic coefficients cI
A(τ) and cJ

B(τ) of
two statistically independent calculations, A and B. The two-
body RDMs are obtained in a similar way. For SDs, the terms ⟨I|
aiσ
† ajσ|J⟩ are promptly given by the well-known Slater−Condon
rules. We make use of the fact that |I⟩ → |J⟩ transitions are
already performed in FCIQMC during the stochastic spawning
step. Hence, we reuse the information, already required for a

normal simulation, to additionally sample the 1- and 2-RDM
elements.
In the original SD-based implementation, this is done by

additionally storing information of the parent SD, |J⟩, along with
the spawned new SD, |I⟩, including the parent SD encoded in a
bit representation, its coefficient, in what run (A or B) this spawn
happened, and other implementation-specific flags.
In a parallel high-performance computing (HPC) environ-

ment, the occupied determinants are distributed among the
different processors. Hence, the newly spawned walkers are kept
in an array, which has to be communicated to the corresponding
processor, where the newly spawned state is stored, to update
the corresponding coefficients.
The spin-free one- and two-body RDMs in terms of unitary

group generators127 are defined as (following the convention of
Helgaker, Jørgensen, and Olsen3)

∑ρ μ ν= ⟨Ψ| ̂ |Ψ⟩ = * ⟨ | ̂ | ⟩
μν

μ νE c c Eij ij ij
(7)

with Êij
† = Êji, and

∑

∑

μ ν

μ δ ν

Γ = ⟨Ψ| ̂ |Ψ⟩ = * ⟨ | ̂ | ⟩

= * ⟨ | ̂ ̂ − ̂ | ⟩
μν

μ ν

μν
μ ν

e c c e

c c E E E

ij kl ij kl ij kl

ij kl jk il

, , ,

(8)

with i, j, k, and l denoting spatial orbitals, |μ⟩ and |ν⟩ being CSFs,
and cμ and cν being their coefficients in the ground-state wave
function expansion, |Ψ⟩.
The diagonal terms of the RDMs are accumulated explicitly,

and the diagonal 1-RDM terms reduce to

∑ ∑ρ μ μ= ⟨ | ̂ | ⟩ =
μ

μ μ
μ

μ μc c E c c nii
A B

ii
A B

i
(9)

where ni is the occupation of the spatial orbital i, which can
assume the values 0, 1, or 2. The diagonal 2-RDM elements are
defined as

∑ ∑μ μ μ δ μΓ = ⟨ | ̂ | ⟩ = ⟨ | ̂ ̂ − ̂ | ⟩
μ

μ μ
μ

μ μc c e c c E E Eii jj
A B

ii jj
A B

ii jj ij ij, ,

(10)

which for i = j yields

∑Γ = −
μ

μ μc c n n( 1)ii ii
A B

i i,
(11)

and for i ≠ j

∑Γ =
μ

μ μc c n nii jj
A B

i j,
(12)

eqs 11 and 12 are simply products of orbital occupation numbers
and the coefficients cμ

A/B from two statistically independent
simulations due to the above-mentioned positive bias in
diagonal RDM entries. Exchange-type elements of the 2-
RDM, Γij,ji, also have diagonal contributions from the wave
function

∑ μ μΓ = ⟨ | ̂ | ⟩
μ

μ μc c eij ji
A B

ij ji, ,
(13)

which are also sampled explicitly. The detailed form of the
coupling coefficients can be found in the literature.65,106 These
exchange-like terms do, however, also have off-diagonal

Figure 3. Schematic representation of the branching tree approach to
allow efficient on-the-fly excitation generation and matrix element
calculation entirely in the space of CSFs without any reference to SDs.
An example is given for a single excitation Êij from a CSF |μ⟩ = |u, 0, u, d,
0, u, 0⟩ to one other |ν⟩ = |u, u, d, u, 0, 0, 0⟩. In the shown example, an
electron is excited from the singly occupied orbital 6 in |μ⟩ to the empty
orbital 2 (indicated by the arrow on the left). Spin-allowed excitation
pathways are indicated by solid lines. During the random excitation
process in GUGA-FCIQMC, a spin-symmetry-allowed path is chosen
at random, weighted according to the resulting coupling coefficient, ⟨μ|
Eij|ν⟩ (indicated by the red pathway). In general, the empty starting
orbitals and singly occupied orbitals in the excitation range allow for
two possible spin couplings (u/d). Spin-symmetry-forbidden paths are
indicated by the crossed-out nodes.
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contributions, ⟨μ|eîj,ji|ν⟩, which are explained in general in the
following section.
3.2. Off-Diagonal RDM Entries: Computational Im-

plementation and Cost. Similar to the SD-based RDM
sampling, for each sampled RDM element, we store the parent
state, |μ⟩, its coefficient, cμ, and the replica index (A or B).
However, there are some important differences in the GUGA-
based RDM sampling compared to those of an SD-based
implementation:

(a) The one-electron coupling coef f icients, ⟨μ′|Êij|μ⟩, and the
corresponding two-body terms, ⟨μ′|eij,ji|μ⟩, do not follow
the Slater−Condon rules as for SDs. Shavitt and Paldus
derived an efficient product form of these coupling
coefficients, exemplified by a single excitation as

∏μ μ⟨ ′| ̂ | ⟩ = ′
=

E W d d S( , , )ij
k i

j

k k k
(14)

whereW is a function of the step-values, dk = {0, u, d, 2}, of
the spatial orbital k of the step-vector representation of
the two CSFs, |μ⟩ and |μ′⟩, and the intermediate value of
the total spin, Sk, in the cumulative sense. The step-values,
dk, encode if a spatial orbital is empty, dk = 0, positively
spin-coupledΔSk = +1/2, dk = u, negatively spin-coupled,
dk = d, or doubly occupied, dk = 2. CSFs can be
represented graphically (see Figure 2a), where different
step-values are indicated by a different tilt of the segments,
and Shavitt showed that the value of the coupling
coefficients only depends on the loop shape enclosed by
the two coupled CSFs.
Their explicit calculation scales with the number of

spatial orbital indices between i and j. However, we
calculate this quantity on-the-fly, during the excitation
generation step, and thus, we can reuse it with no
additional computational cost in the stochastic RDM
sampling.

(b) Identifying the type of excitation and the involved spatial
orbitals (i, j, k, l), when coupling CSFs, is a more complex
operation than for SDs. CSFs can also differ in the open-
shell spin coupling and not only in the specific spatial
orbitals (i, j, k, l), yet still have a nonzero coupling
coefficient. For example, in Figure 2a, we show Shavitt’s
graphical representation of the CSF |μ⟩ = |u, 0, u, d, u, 0⟩ as
the orange solid line and an excited CSF |μ′⟩ = |u, 0, 2, u, 0,
0⟩ as the blue dashed line. Following Shavitt’s convention,
the CSFs are drawn from bottom to top. Only the gray
loop area enclosed by both CSFs contributes to the
coupling coefficient, ⟨μ|Eij|μ′⟩. The two CSFs are
connected by an excitation of an electron from orbital j
= 5 to i = 3, indicated by the arrow. However, as one can
see in Figure 2a, the two CSFs |μ⟩ and |μ′⟩ do also differ in
the spin coupling of orbital k = 4 with dk = d, while dk′ = u
(in the step-value notation). Hence, it is not as simple as
performing bitwise logical operations on α- and β-strings
as it is possible for SDs128 to identify the involved spatial
indices and type of excitation. We do have optimized
routines to perform this excitation identification for
arbitrary CSFs in our GUGA-FCIQMC code NECI,31,66

and similar to the above-mentioned coupling coefficients,
we already have the necessary information in the
excitation process, within the spawning step.

(c) Certain excitation types, such as the exchange-like
excitations, eîj,ji and eîj,jk, can have multiple nonunique

spatial orbital combinations leading to the same type of
excitation |μ⟩→ |μ′⟩. This stems from the fact that certain
contributions to the two-body coupling coefficients, ⟨μ|
eîj,kl|μ′⟩, are nonzero for alike open-shell step-values, do =
do′, above and below the loop spawned between |μ⟩ and
|μ′⟩ (see Figure 2b and Shavitt).106

For example, for a pure exchange-type excitation, eîj,ji, as
depicted in Figure 2b, only the spin coupling of the open-shell
orbitals differs, but there is no change in the orbital occupation.
To calculate the Hamiltonian matrix element, ⟨μ|Ĥ|μ′⟩ = ∑i≠j
Vijji⟨μ|eîj,ji|μ′⟩, one needs to consider all nonzero contribution to
the coupling coefficient, from orbital i′ below and j′ above the
loop. Additionally, as the specific spatial orbitals, i, j (k, l) are
chosen f irst in the excitation generation in FCIQMC, it is
necessary to also take into account the possibilities that the other
contributing orbitals, p(i′, j′), would have been picked (as their
choice could have led to the same excitations) to assign a unique
total generation probability, pgen(μ′|μ). However, for a correct
RDM sampling, we have to retain the original probability p(μ→
μ′|i, j, k, l) to sample a specific Γij,kl entry to avoid a possible
double counting. Conveniently, similar to the cases (a) and (b)
mentioned above, we already have access to this specific
quantity, obtained during the excitation generation process, and
do not need to explicitly recalculate it for the stochastic RDM
sampling.
The three additional necessary quantities discussed above,

namely, the coupling coefficient, ⟨μ′|Êij|μ⟩ or ⟨μ′|eîj,kl|μ⟩, the
excitation type, and the probability p(μ → μ′|i, j, (k, l)), are
already computed in the random excitation process. Con-
sequently, the main change to enable spin-free RDM sampling
within GUGA-FCIQMC is to communicate these three
additional quantities, along with the already communicated
information of the parent state, |μ⟩, its coefficient, cμ, and the
replica index, A/B.
An important algorithmic advancement and routinely used

feature of FCIQMC is the semistochastic method,129,130 where
some chosen part of the Hilbert space, usually the ND most
occupied states, is treated explicitly. This is achieved by
constructing the full Hamiltonian matrix Hμν, ∀μ, ν ∈ {ND}
and performing the imaginary-time evolution exactly. This
necessitates also a change in the RDM sampling since the RDM
contributions from states within the semistochastic space are not
covered in the random excitation process anymore. These RDM
contributions are treated exactly, greatly increasing their
accuracy, but on the other hand, especially in the spin-free
case, also increasing the computational effort. In this case, it is
not possible to avoid the explicit excitation identif ication and
coupling coef f icient and original generation probability calculation
in GUGA-FCIQMC. However, there is only a marginal
computational overhead of around 10−20% associated with
the spin-free RDM sampling compared to a standard two-replica
FCIQMC calculation (see the SI for details).
The spin-adapted stochastic-CASSCFmethod has been made

available in the OpenMolcas chemistry software package.16

4. RESULTS AND DISCUSSION

The GUGA-FCIQMC RDM sampling has been used within the
stochastic-CASSCF framework to study the low-energy spin
states of the [Fe(III)2S2(SCH3)4]

2−model complex (Figure 4a),
derived from synthetic complexes of Mayerle et al.,131,132 and
utilized in our previous investigation,62 and the [Fe-
(III)4S4(SCH3)4] model cubane (Figure 4b), obtained from
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the synthetic complex of Averill et al.,133 where the terminal
groups have been replaced by methyl groups. For the [Fe2S2]
system, we considered (1) a CAS(10e,10o), consisting of the
singly occupied iron 3d orbitals, (2) a CAS(10e,20o), consisting
of the singly occupied iron 3d and the empty correlating double-
shell d′ orbitals, (3) a CAS(22e,16o) consisting of the singly
occupied iron 3d and the six doubly occupied bridging-sulfur 3p
orbitals, and (4) a CAS(22e,26o) containing the iron 3d and d′
orbitals and the six bridging-sulfur 3p orbitals. This latter active
space corresponds to that utilized in our previous work.62

We also studied the role of the iron 4s and the peripheral
sulfur 3p orbitals, which were considered in other studies of
similar FeS dimers,100,134,135 having mixed-valence states as the
main target. We found that the iron 4s orbitals have a negligible
differential role on the low-energy spin gaps.
Including one terminal orbital per peripheral sulfur atom in

the active space resulted in an uneven mixing between different
orbitals on some of the peripheral sulfur atoms upon completion
of the CASSCF procedure. This suggests that for a balanced
treatment of the peripheral S orbitals, one would need to include
all 12 of them. However, while these orbitals have important
ligand-field effects that could affect the energetic of mixed-
valence states, we found that their role is less crucial for dealing
with the homovalent [Fe(III)S] systems. Additionally, a recent
study on the excited-state spectrum of the [FeS] dimer136 using
the CAS(22e,16o) wave functions showed that the low-lying
non-Hund excited states involve bridging-sulfur charge-transfer
(CT) states, while CT states involving terminal-sulfur orbitals
were only found at higher energies.
Thus, we decided not to further consider these orbitals in the

chosen model active space. This was considered to be a
successful strategy in previous works.62,63,137 Similar to previous
computational studies,62,63,100,134,135,137 we do not include
empty sulfur orbitals in our active space. Therefore, metal-to-
ligand charge-transfer (MLCT) excitations are not considered
by the model active space chosen. However, as also suggested by
Neese et al.,135 such configurations are rather high in energy, and

they can be safely neglected for low-energy spectrum
calculations.
We used an extended relativistic atomic natural orbital basis of

double-ζ quality for Fe atoms and a minimal basis for all other
elements.138 The exactly diagonalizable Fe2S2 (10e,10o),
(10e,20o), and (22e,16o) active spaces are straightforwardly
calculable within spin-adapted stochastic-CASSCF with modest
computational resources. We ensured the convergence of the
(22e,26o) active space calculations with respect to the number
of walkers, Nw, by increasing Nw up to Nw = 1 × 109 (see the SI
for more information). The average number of occupied CSFs,
NCSF, at each time step during the GUGA-FCIQMC calculation
forNw = 5× 108 and each spin state is shown in Table 1. The size
of the deterministic space, ND, which is treated exactly within
GUGA-FCIQMC, wasND = 5× 104 for these calculations. With
the spin-adapted implementation of FCIQMC via the GUGA,
wave functions containing hundreds of millions of CSFs (with
many open-shell orbitals) can be efficiently treated. Detailed
further information on the geometries, orbitals, and computa-
tions can be found in the SI.

4.1. Fe2S2 System. The (10e,10o), (10e,20o), and
(22e,16o) active spaces are exactly diagonalizable and were
considered to study the differential interplay of different
correlation mechanisms, such as orbital relaxation, double-
shell,58,139−141 and superexchange59,142−145 correlation effects,
and to benchmark and test our stochastic spin-free RDM
sampling procedure. A thorough comparison of the exact and
the stochastic-CASSCF results can be found in the SI.
In our earlier works,62,63 we have demonstrated via theoretical

arguments, and shown with calculations, that the choice of
orbital representation and reordering greatly affect the sparsity
of the CI wave function within the GUGA formalism. We have
also shown that the localization and reordering strategy within
the GUGA-FCIQMC algorithm is of utmost importance, as it
positively influences the stability of the dynamics and the
convergence with respect to the total number of walkers.
Moreover, this strategy greatly simplifies the interpretation of
the converged wave functions and could even allow selective
optimization of one among ground- and low-energy excited-
state wave functions. We have adopted the same strategy for the
present work. In ref 62, the optimized CASSCF(22e,26o)
orbitals for the S = 0 ground state, obtained via the SD-based
stochastic-CASSCF,6 were used as starting orbitals for the
localization and reordering protocol and for the GUGA-
FCIQMC dynamics. A CASSCF(10e,10o) was performed
inside the CAS(22e,26o) active space, an invariant rotation
within the CAS(22e,26o), that separates valence 3d orbitals
from the six sulfur and the 10 correlating d′ orbitals. Only the 10
valence 3d orbitals were localized and site-ordered, leaving the
sulfur and the correlating d′ orbitals delocalized. In the present
work, the starting orbitals were obtained from a high-spin
restricted open-shell Hartree−Fock (ROHF) calculation,
equivalent to a CASSCF(10e,10o) S = 5 optimization. The
iron 3d and d′ orbitals, resulting from the ROHF calculation,
were separately localized, using the Pipek−Mezey146 method,

Figure 4.Geometry of the (a) [Fe2S2(SCH3)4]
2−model system derived

from synthetic complexes of Mayerle et al.131,132 and (b)
[Fe4S4(SCH3)4] model system obtained from synthetic complexes of
Averill et al.133 Orange indicates iron, yellow indicates sulfur, gray
indicates carbon, and white indicates hydrogen atoms.

Table 1. Average Number of Occupied CSFs, NCSF (in
Millions), for Each Spin State in the Fe2S2 (22e,26o) Active
Space Calculations with Nw = 5 × 108

total spin 0 1 2 3 4 5

NCSF/10
6 333 345 338 324 300 268
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while the bridging-sulfur 3p orbitals were left delocalized. Using
localized d′ orbitals allows us to better estimate the local spin of
each magnetic center.
4.1.1. Fe2S2 Spin Ladder and Total Energies. Figure 5a

shows the spin gaps of all of the states relative to the S = 0 ground
state, the spin ladder, as a function of the total spin after the
CASSCF orbital optimization. The spin gaps are lowest in the
(10e,10o) active space, withΔE = 12mH, between the S = 5 and
S = 0 states. The inclusion of the iron d′ orbitals in the (10e,20o)
active space qualitatively does not change the obtained spin
ladder, and it also has a rather smaller quantitative effect, with
only slightly larger ΔE = 17 mH between the S = 5 and S = 0
states. Inclusion of the bridging-sulfur 3p orbitals has the largest
effect on the spin gaps since it accounts for the metal-bridging
ligand correlation, which is differentially more important than
the radial correlation effect,140 accounted for by the inclusion of
the d′. The consideration of both the iron d′ and the bridging-
sulfur 3p orbitals in the (22e,26o) active space induces a
qualitative change in the obtained spin gaps, which will be
further discussed below. Quantitatively, the relative spin gaps
enlarge by as much as a factor of 3.3, when enlarging the active
space, from CAS(10e,10o) to CAS(22e,26o).
In Figure 5b, we show the total energy of the S = 0, 3, and 5

states, helpful in describing in absolute terms the correlation
effects bound to ligand-to-metal charge transfer and radial
correlation effects. Starting from the CAS(10e,10o), the
inclusion of the iron correlating d′ orbitals, as in the
CAS(10e,20o) active space, lowers the total energy more than
including the sulfur 3p orbitals, as in the CAS(22e,16o). The
combined inclusion of both iron d′ and sulfur 3p orbitals has the
surprising effect of lowering the total energies more than the
ligand-to-metal charge transfer and the radial correlation effects
on their own. However, the largest differential effect arises from
the ligand-to-metal charge-transfer excitations as shown in
Figure 5a.
4.1.2. Orbital Relaxation Effect. In this section, the overall

and the differential effects of the CASSCF orbital relaxation on

energies and spin gaps, together with its effect on the derived
model parameters, are discussed. The highest-spin, S = 5, ROHF
orbitals from the (10e,10o) active space are chosen as starting
orbitals for all of the calculations. The results of the first
CASSCF iteration are from here on referred to as CASCI.
Figure 6a shows the energy difference of the CASCI results

using (10e,10o) ROHF orbitals and the CASSCF results, ΔE =
ECASCI− ECASSCF, for the S = 0, 3, and 5 states as a function of the
active space. As expected, the effect of the CASSCF orbital
relaxation, when using (10e,10o) ROHF orbital, is lowest for the
(10e,10o) active space (with differences below 10 mH) and
highest for the (22e,26o) active space. Within each active space,
the effect of the CASSCF procedure is largest for the low-spin
states, with a maximum difference ofΔE = 94 mH for the singlet
in the (22e,26o) active space. For the high-spin states, the effect
of the CASSCF procedure is smaller but still substantial for the
larger active spaces, especially in the (22e,26o) active space
(AS), with ΔE = 76 mH for the S = 5 state.
To investigate the differential effect, Figure 6b shows the

changes in the spin gaps due to the CASSCF orbital relaxation as
a function of active space. As expected, the CASSCF procedure
increases all of the obtained spin gaps, as the low-spin states are
stabilized more by the orbital relaxation when starting from
high-spin ROHF orbitals than the higher-spin states, which are
better represented by the ROHF orbitals. The change in the spin
gaps is smallest for the (10e,10o), where the ROHF starting
orbitals were obtained, and the somehow similar (10e,20o)
active space. Interestingly, although the effect of the CASSCF
procedure on the total energies is highest for the (22e,26o)
active space (see Figure 6a), the largest effect on the spin gaps is
observed in the intermediate (22e,16o) active space. The energy
differences to low-spin states, ΔS = 1, 2, 3, are affected only
weakly by the CASSCF optimization and stay similar to the
CASCI results. This can be explained by the fact that the low-
spin states are similarly biased in the ROHF orbital basis and
thus show similar stabilization during the CASSCF procedure.
The high-spin states, on the other hand, are less stabilized by the

Figure 5. (a) CASSCF spin gaps relative to the S = 0 state as a function of the total spin S for different active spaces and (b) total CASSCF energies of
the S = 0, 3, and 5 states as a function of the active spaces.

Figure 6. (a) Change of the total energy for the S = 0, 3, and 5 states and (b) change of the spin gaps relative to the S = 0 state due to the CASSCF
orbital relaxation as a function of active space using (10e,10o) ROHF as starting orbitals (CASCI).
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CASSCF procedure, and as a consequence, the low-to-high-spin
gap results are enlarged by the orbital relaxation.
There is a substantial differential effect of≈15−20 mH due to

the CASSCF orbital relaxation, so one has to be cautious when
using ROHF orbitals for spin systems, and orbital bias toward
the high spin is to be expected, leading to a systematic
underestimation of spin gap predictions for antiferromagneti-
cally coupled magnetic sites. Even for the seemingly SCF-
invariant singlet−triplet spin gap, the CASSCF procedure is
crucial to obtain more accurate model magnetic parameters, as
will be discussed below.
Figure 7 shows the energy differences with respect to the S = 0

ground state for the CASCI(22e,26o) (blue circles) and for the
CASSCF(22e,26o) (orange square) results. As expected, the
spin states are more separated after the CASSCF orbital
optimization, with the lowest-to-highest-spin-state gap nearly
doubled by the orbital relaxation effects. Figure 7 also shows the
spin ladder obtained from mapping the ab initio results to a
Heisenberg model,87−89,91,92 without (dashed lines) and with
(solid lines) a biquadratic correction. This aspect will be
discussed in greater detail in the next section.
4.1.3. Mapping to a Spin Model. As previously done by

Sharma et al.100 and in our laboratories,63 we map the ab initio
low-energy spectrum of the Fe2S2 system to a spin Hamiltonian,
as the spin-exchange interactions are the dominant form of
magnetic interactions in this system. First, we map the excitation
energies of the Fe2S2 system to the linear two-site Heisenberg
Hamiltonian

̂ = ̂ · ̂H J S SA B (15)

with eigenvalues

= +E S
J

S S( )
2

( 1)
(16)

where ŜA/B are the local spin-5/2 operators of the two iron
centers, and S is the total targeted spin. We obtain the magnetic
coupling parameter J by performing a least-squares fit of the
energy expression (eq 16) to the ab initio results of all lowest spin
states and study the quality of this mapping as a function of the
active space size and the effect of the CASSCF orbital
optimization. As shown in Figure 7, the bilinear Heisenberg
spin ladder (dashed blue line) models the ab initio CASSCI
results with high accuracy. However, minor deviations can be

observed for the fitting of the CASSCF results. This finding
suggests that orbital relaxation effects account for additional
forms of interactions between the metal centers in addition to
enlarging the predicted J values. An improvedHeisenberg model
with biquadratic exchange89−97

̂ = ′ ̂ · ̂ + ̂ · ̂H J KS S S S( )A B A B
2

(17)

with eigenvalues

=
′

+ + + [ + +
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S S
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S S S S

( )
2

( 1)
4

( 1) ( 1) 1

2 ( 1) 2 ( 1)A A B B (18)

greatly improves the fitting of the model Hamiltonian (solid
lines in Figure 7).
Figure 8a shows the fitted model parameters of the bilinear, J

(eq 15), and biquadratic, J′ (eq 17), Heisenberg models as a
function of the active space size for the CASCI (blue squares and
circles) and CASSCF (orange triangles and diamonds) results.
For the CASCI results (blue), the extracted model parameters, J
and J′, are almost identical for all active spaces, indicating a good
description by the bilinear Heisenberg model. J and J′ increase
from a value of 0.55 mH in the (10e,10o) active space to about
1.44 mH in the (22e,16o) and (22e,26o) AS.
For the CASSCF results (orange), the extracted J (diamonds)

and J′ (triangles) parameters are larger than the corresponding
CASCI results, increasingly so in the larger active spaces, and
additionally, the bilinear J and biquadratic J′mildly differ. For all
but the largest active space, the biquadratic J′ is about 0.1 mH
smaller than the bilinear J, while it is ∼0.25 mH larger in the
(22e,26o) AS. The differences between the extracted model
parameters indicate that a simple bilinear Heisenberg model is
not sufficient to describe the CASSCF results.
To quantify this discrepancy and analyze how well a

biquadratic model suits the ab initio results, we show the
relative average error per state ω (in percent) of the
corresponding bilinear and biquadratic Heisenberg fits to the
CASCI (blue solid and striped) and CASSCF (orange solid and
striped) results in Figure 8b. Following ref 90, ω is defined as

∑ω =
Δ

| − |
=N E

E E
100

S

N

max
C

1
S
C

S
M

(19)

where ES
C is the computed ab initio spin gap of spin state S

relative to the singlet ground state and ES
M is the energy obtained

by fitting the bilinear and biquadratic model (eqs 16 and 18). N
is the number of considered states (with N = 5 in the FeS dimer
case, as we only consider the spin gap relative to the singlet
ground state), and ΔEmax

C is the ab initio energy difference
between the S = 5 and singlet states.
The CASCI spin ladders exhibit a clear bilinear Heisenberg

behavior, as shown by the small ω values (blue bars) in Figure
8b. The error is less than 1% for all active space sizes. Larger
discrepancies emerge between the CASSCF energies and the
bilinear Heisenberg model, indicated by larger ω values (orange
striped bars in Figure 8b). The relative errorω, defined in eq 19,
takes into account the gap between the S = 0 and S = 5 states,
ΔEmax

C , in the denominator. This causes ω to be largest for the
bilinear Heisenberg fit to the CASSCF results in the (10e,10o)
active space.
Overall, these discrepancies are still rather small (at most 4%),

as shown in Figure 8b; however, they are not negligible. The
biquadratic Heisenberg Hamiltonian (eq 17) describes the

Figure 7. Energy difference to the S = 0 ground state as a function of
spin in the (22e,26o) active space for the ab initio CASCI (blue) and
CASSCF (orange) results with a simple (dashed line) and biquadratic
(solid line) Heisenberg model fitted to the data.
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CASSCF results better, as indicated by a much smaller ω value
(less than 1%) in all cases (see Figure 8b). However, the largest
CAS(22e,26o) starts to show deviations also from the
biquadratic Heisenberg model. Independently of the quantita-
tive aspects, our calculations confirm the antiferromagnetic
character of this system, with the CASSCF predicting a larger
antiferromagnetic magnetic constant than the CASCI proce-
dure. This result, although very promising, is not definitive, and
in fact, correlation effects, not accounted for in the present work,
such as dynamic correlation effects outside the active space and
convergence with the basis set, could further enhance the
deviation from the biquadratic Heisenberg Hamiltonian.
Considering the results of the present work and those

available in the literature98,100,101,135,137,147,148 (see the SI for
details), some clear trends can be promptly recognized:
increasing the active space, performing CASSCF orbital
optimization, and/or recovering dynamic correlation widens
the energy spread of the spin ladder, and, thus, yielding a larger
effective magnetic coupling coefficient J. The almost doubling of
the extracted J and J′ due to the CASSCF procedure, as seen in
Figures 7 and 8a, indicates the important role of orbital
relaxation by differentially stabilizing the low-spin state.
This finding clearly shows that one needs to be cautious when

using CI energies on ROHF orbitals, and a systematic error is to
be expected that overstabilizes higher-spin states over low-spin
states. Moreover, the deviation from the simple bilinear
Heisenberg model, although small, indicates that the complexity
of the interactions in [FeS] clusters cannot simply be reduced to
a Heisenberg spin system when aiming at quantitative accuracy;
instead, more involved forms of interactions are present, which
require complex ab initio Hamiltonians (here exemplified by
large CASSCF calculations) and model Hamiltonians (here
exemplified by the biquadratic Heisenberg).

4.1.4. CASSCF Effects on Local Spin Measurements for
Fe2S2. To further investigate the applicability of a (biquadratic)
Heisenberg spin model, we look into local spin measurements
and spin−spin correlation functions between the two iron
centers and study the CASSCF effect on these quantities. We
explain in Appendix A how we directly measure these quantities,
and in Appendix C and Appendix D we explain how to extract
them from the spin-free 1- and 2-RDMs. We want to emphasize
that we are aware that the local spin and spin−spin correlation
functions between single and sums of orbitals are representa-
tion-dependent quantities, meaning they are not actual physical
observables but do depend on the type of employed orbitals, i.e.,
localized or delocalized orbitals. However, they are still
extremely useful means to provide insight into the chemical
and physical properties of compounds and accordingly are
extensively used in the literature.100,149−151

To ensure reproducibility of our results, we want to point out
the protocol to obtain the orbitals we used again: the starting
orbitals for all calculations were the (10e,10o) ROHF orbitals,
for which the iron 3d and 3d′ were identified and separately
localized with the default options of the Pipek−Mezey146

method in OpenMolcas.15,16 These orbitals were then
relaxed during the stochastic-CASSCF procedure, and the
converged orbitals, which remained very localized and in the
initial atom-separated order (discussed further below), were
used to obtain the corresponding local spin and spin−spin
correlation functions. We tested the stability of these results by
(a) localizing the final CASSCF orbitals and (b) performing a
Procrustes55,152 transformation to map the starting ROHF
orbitals as close as possible to the CASSCF orbitals and found no
effect on the obtained local spin and spin−spin correlation
functions.

Figure 8. (a) Bilinear Heisenberg J (dashed lines) and biquadratic J′ (solid lines) fit of the ab initio CASCI (blue) and CASSCF (orange) results as a
function of the active space sizes. (b) Relative average error per state ω in percent of the corresponding bilinear (dashed) and biquadratic (solid)
Heisenberg fits of panel (a) as a function of the active space.

Figure 9. Local spin expectation value on iron A, ⟨ŜA
2⟩, from the CASCI (solid bars) and the final CASSCF results (striped bars) as a function of the

active space size for all spin states. The dashed line indicates the maximal possible value of 8.75.
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Figure 9 shows the local spin expectation value on iron A,
⟨ŜA

2⟩, extracted from the CASCI (solid bars), and the CASSCF
wave functions (striped bars), for different active spaces and all
accessible spin states. The CAS(10e,10o) and CAS(10e,20o)
exhibit a local spin expectation value close to the maximum

possible, ⟨ ̂ ⟩ = + =( )S 1 8.75A
2

max
5
2

5
2

, for all spin states. The

CASSCF orbital relaxation does not have a significant impact on
it. Upon inclusion of the bridging-sulfur orbitals in the
CAS(22e,16o), enabling ligand-to-metal (“superexchange-
type”) excitations, the local spin expectation value remains
close to the maximum for CASCI results. However, it
substantially drops for all spin states upon CASSCF orbital
relaxation. This behavior is enhanced for the CAS(22e,26o);
however, for this choice of active space, a reduced local spin
expectation value for the low-spin states is already obtained for
the CASCI calculations. Interestingly, the triplet in the
CAS(22e,16o) and CAS(22e,26o) and the quintet in the
CAS(22e,26o) have a lower local spin expectation value than the
singlet after the CASSCF procedure.
TheCASSCF local spin expectation value of the triplet state in

the CAS(22e,26o) of ⟨ŜA
2⟩min≈ 6.5 corresponds to a local spin of

SA ≈ 2, which raises the question of the applicability of the
Heisenberg model mapping. In general, for systems with local
spin momenta larger than S = 1/2, local non-Hund excited states
can cause deviations from a pure Heisenberg behav-
ior.89,92,96,153,154 Additionally, as discussed by Sharma et al.,100

the deviation from the pure S = 5/2 ion demands accounting for
spin and charge delocalization. Both contributions can be related
to additional biquadratic terms in the Heisenberg Hamilto-
nian.90−92,153

One striking advantage of our methodology, based on the
FCIQMC algorithm applied onto localized and site-ordered
MOs, is that we have direct access to the stochastic
representation of the ground-state wave function. Thus, to
further analyze the deviations from a pure Heisenberg model, we
investigated the leading contributions to the CASCI and
CASSCF results for each studied active space. As an example,
we show in a radar plot (Figure 10) the reference weight (ref
weight), the sum of all metal-to-metal charge transfer (MMCT),
local d → d′ radial excited configurations (Radial), ligand-to-
metal charge transfer (LMCT), and local Hund’s rule-violating
configurations (non-Hund) for the CASCI (blue squares) and
CASSCF (orange circles) singlet state in the (22e,26o) active
space. It is important to note that the values are displayed in
percent, and the radial axes (indicated by the above-introduced
acronyms) are on a logarithmic scale to allow an easier visual
comparison of the different contributions to the ground-state
wave function, and the explicit values can be found in the SI.
The reference weight of the S = 0 state in the (22e,26o) active

space drops from a value of 74.4% in the CASCI to 46.1% in the
CASSCF wave function. On the other hand, the inter-iron
MMCT (FeA 3d ↔ FeB 3d) increases from 6.9% to 12.9% and
the bridging-sulfur-to-metal LMCT increases from an already
large 13.4% to a substantial 27.9% between the CASCI and
CASSCF calculations. Both the radial-type, intra-iron 3d→ 3d′
(CASCI: 1.5%, CASSCF: 2.1%) and intra-iron non-Hund
configurations (CASCI: 1.2%, CASSCF: 3.7%) only have
marginal contributions in the wave functions. The remaining
spin states show similarly large LMCT contributions after the
CASSCF procedure in the (22e,26o) active space.
These results suggest that the main driving forces in lowering

the local spin expectation values are LMCT configurations upon

inclusion of the bridging-sulfur orbitals in the active space.
However, as shown in Figure 9 by the relatively constant (close-
to-maximum) CASCI local spin expectation values for all active
space, “just” including the sulfur 3p orbitals does not suffice to
correctly capture all relevant correlation mechanisms; instead,
the CASSCF orbital relaxation of the ROHF starting orbitals is
necessary.
Malrieu et al.,155,156 Angeli and Calzado,157 and Li Manni and

Alavi58 have observed that CASSCF orbitals from a minimal
active space are too localized to correctly capture all relevant
physical mechanisms in a subsequent second-order multi-
reference perturbation theory (MRPT2). This is mainly due to
the fact that relevant ligand-to-metal charge-transfer (LMCT)
excitations do not interact with the zeroth-order wave function
due to the generalized Brillouin theorem.158−160 On the other
hand, natural magnetic orbitals, obtained by, e.g., difference-
dedicated CI (DDCI) calculations,161−165 or optimized
CASSCF orbitals from large active space calculations,58−60

show correlation-induced metal−ligand delocalization by captur-
ing higher-order contributions.58,155,156

We also studied this effect in the present work by directly
comparing the localized high-spin S = 5 (10e,10o) ROHF
orbitals (used as the starting orbitals in all CASSCF calculations)
with the singlet (22e,26o) CASSCF orbitals. During the
stochastic-CASSCF procedure, performed with OpenMol-
cas, the orbitals remain quite localized and in the chosen atom-
separated order, mentioned above and described in the SI. For
reproducibility, it is important to note that we used the last
orbitals of the OpenMolcas CASSCF procedure before the
standard final diagonalization of the 1-RDM and transformation
to natural (delocalized) orbitals. Furthermore, we performed
invariant Procrustes orthogonal transformations,55,152 with the
OpenMolcas software package, of the (10e,10o) ROHF iron
3d orbitals to make them as similar as possible to the (22e,26o)
singlet CASSCF orbitals to allow an optimal comparison.
Further details of the exact protocol for the comparison and
corresponding orbital files can be found in the SI.
In Figure 11, we show the (10e,10o) ROHF (top row) and

the CASSCF(22e,26o) singlet (middle row) 3d orbitals of iron
A, rendered with the Jmol software package,166 with an
isosurface cutoff value of 0.05. The last row of Figure 11 shows
the difference of the corresponding orbitals, computed with the
pegamoid.py167 and Multiwfn software packages168 and

Figure 10. Radar plot showing the most important contributions to the
CASCI (blue squares) and CASSCF (orange circles) singlet ground
state in the (22e,26o) active space in percent. The figure shows the
reference weight (ref weight), inter-iron 3d ↔ 3d charge transfer
(MMCT), intra-iron “breathing”-like 3d→ d′ radial (Radial), bridging-
sulfur-to-metal CT (LMCT), and local Hund’s rule-violating intra-iron
3d → 3d excitations (non-Hund).
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rendered with Jmol with an isosurface cutoff value of 0.007 for
all orbitals except the third (3rd column), which has a cutoff
value of 0.003 to make differences visible. The delocalization
effect of the CASSCF procedure can be seen for orbitals two
(2nd column) and four (4th column). The orbital differences
show that the CASSCF procedure has a metal-to-ligand
delocalization effect, where larger tails of the iron 3d orbitals
on the ligands increase both the kinetic and direct exchange
integrals143,169 and consequently increasing the absolute value of
J.156,157 As discussed above and shown in Figure 10, the
delocalization of the iron 3d orbitals is accompanied by a
simultaneous increase of the LMCT contributions in the
(22e,26o) CASSCF singlet wave function.
Calzado et al.156 show a very similar orbital dependence when

performing CASCI calculation on extracted J parameters. Their
study on local S = 1 binuclear systems shows that the high-spin

triplet ROHF orbitals yield a much too low J compared to using
singlet or state-specific orbitals. Similarly, Spiller et al.148 find
that when using spin-state-averaged CASSCF orbitals, a
subsequent NEVPT2 treatment yields lower magnetic coupling
than using spin-pure state-specific orbitals. Angeli and
Calzado157 suggest using average orbitals of the singlet ground
and excited states in theminimal active space to include the ionic
contributions and thus ligand−metal delocalization, and
Kubas136 used spin-averaged Hartree−Fock (SAHF)170 orbitals
for the low-lying excited-state spectrum of the [FeS] dimer.
On the other hand, CASSCF misses different physical effects,

which tends to emphasize the ionic nature of orbitals135 and
causes MOs of pure ionic wave functions to be too diffuse.171

Similarly, Malrieu et al.155 showed that the definition of
magnetic orbitals from spin-unrestricted density functional
theory (DFT) calculations strongly overestimates the metal−

Figure 11. (10e,10o) ROHF (top row) and (22e,26o) S = 0 CASSCF FeA 3d orbitals rendered with Jmol
166 with an isosurface value of 0.05. The

difference between the corresponding ROHF and CASSCF orbitals (bottom row) was obtained with Multiwfn168 and is rendered with an
isosurface cutoff of 0.007 (except the 3rd column, which uses a value of 0.003). The protocol to obtain the orbitals and their differences is described in
the main text and with more detail in the SI, where also the corresponding orbital files can be found.

Figure 12. Spin−spin correlation function ⟨ŜA · ŜB⟩ between local spins on ironA andB fromCASCI (solid bars) and the final CASSCF results (striped
bars) as a function of the active space size for all spin states.

Figure 13. Spin−spin correlation function ⟨Ŝ0 · Ŝi⟩ between the first FeA 3d orbital (index 0) and all of the other orbitals i obtained via the spin-free
RDMs for all of the spin states of the CASSCF results. The x-axis indicates the type of orbitals, where the 3d orbitals of iron B are indicated by the gray
background. This plot combines all results from the different active spaces indicated by the color and marker types (see the legend and main text).
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ligand delocalization, which might be the reason for the rather
large J value obtained by BS-DFT101,147 and DMRG CASCI
calculations based on such orbitals.100

4.1.5. CASSCF Effect on Spin−Spin Correlation Function for
Fe2S2. With a spin-adapted basis and the localized and atom-
ordered MOs described in the SI, we can use the formulas
derived in Appendix B to study the spin−spin interaction
between the two magnetic centers in the Fe2S2 system and the
effect of the CASSCF procedure on it.
Figure 12 shows the spin−spin correlation function ⟨ŜA · ŜB⟩

between the two magnetic centers from the CASCI (solid) and
in the CASSCF wave functions (striped bars), as a function of
the active space size for all spin states. For all active spaces, the
spin−spin alignment changes from antiferromagnetic to
ferromagnetic, starting from S = 4, as the total spin increases.
The spin−spin correlations are somewhat large for the
CAS(10e,10o) and CAS(10e,20o), where the CASSCF orbital
relaxation does not have a big impact on the expectation values.
As for the local spin measurements, the orbital relaxation has the
biggest effect in the CAS(22e,26o). The CASSCF procedure has
a damping effect on the magnitude of the spin−spin correlations
but does not change the description of the underlying physical
behavior of a transition from an antiferromagnetic to a
ferromagnetic alignment as a function of the total spin.
With access to the 1- and 2-RDMs, we are able to study the

spin correlation functions on an orbital-resolved level, including
the iron d′ and sulfur 3p orbitals. Figure 13 shows the CASSCF
spin−spin correlation function ⟨Ŝ0 · Ŝi⟩ between the first FeA 3d
orbital and all other orbitals obtained via the spin-free RDMs.
Figure 13 contains ⟨Ŝ0 · Ŝi⟩ for all spin states, S = 0 to S = 5
(indicated by the subplot titles), and all active spaces, different
colors, and markers. The x-axes indicate the different orbitals i
and different types of orbitals (iron, sulfur, etc.) are separated by
vertical dashed lines and data points only show up, when
possible, e.g., there are no markers of the (10e,10o) active space
results (red triangles) for the iron 4d and sulfur 3p orbitals. The
mostly singly occupied first iron A 3d orbital, with index 0, is
magnetically parallel aligned to all of the other FeA 3d orbitals, as
can be seen by the ⟨Ŝ0 · Ŝi⟩ ≈ 0.25, ∀i ∈ {FeA 3d}, for all of the
spin states. ⟨Ŝ0 ·Ŝi⟩≈ 1/4 is expected for two ferromagnetically S
= 1/2 spins. The magnetic 3d orbitals of iron B are highlighted
by the gray background in Figure 13. Here, one can see that with
increasing total spin S, indicated by the titles of the subplots, the
alignment of the first iron A 3d orbital changes from
antiferromagnetic, ⟨Ŝ0 · Ŝi⟩ < 0, to ferromagnetic alignment,
⟨Ŝ0 · Ŝi⟩≈ 1/4, ∀i∈ {FeB 3d}, with the 3d orbitals of iron B. The
results confirm that the exchange interaction exclusively
happens between the (magnetic) iron 3d orbitals, while the
other orbitals are magnetically inert (indicated by a zero value of
⟨Ŝ0 · Ŝi⟩).
4.2. Fe4S4 System. We now turn to the all-ferric [Fe-

(III)4S4(SCH3)4] system. Here, we consider the minimal
(20e,20o) active space consisting of the iron 3d orbitals of the
four iron atoms. This active space size is already slightly above
the current limit of performing routine FCI calculations.15,16

Similar to Fe2S2, we performed state-specific and spin-pure
stochastic-CASSCF calculations for all of the spin states, from S
= 0 up to S = 10. We used the geometry studied in refs 63, 100,
which is, among other computational details, documented in the
SI. We used an ANO-RCC-VDZ basis set for Fe and an ANO-
RCC-MB138 for all other elements and ensured that the
obtained results are converged w.r.t. the number of used walkers
Nw. They are already with a very modest Nw = 1 × 106 walkers.

In the Fe4S4 study, we use the localized (20e,20o) high-spin
ROHF orbitals as a starting guess and focus on the effect of the
CASSCF orbital relaxation on the extraction of the model
parameters and associated physical and chemical interpretations
of the results. Similar as in the FeS dimer case above (section
4.1), we refer to the first iteration of the CASSCF procedure,
based on the ROHF orbitals, as CASCI. In our previous work,63

we found that the ab initio CASCI results can be very well
mapped to a simple bilinear Heisenberg model. However, as
seen in section 4.1 on the dimer model, orbital relaxation effects
can affect the relative energy of the ab initio spin states and
introduce forms of interactions that go beyond the simple
bilinear Heisenberg model.
Figure 14 shows the energy difference to the S = 0 ground

state (markers) and a simple (dashed) and a biquadratic (solid
line) Heisenberg fit for CASCI and CASSCF results as a
function of the total spin. The CASCI results are well
represented by a simple Heisenberg model, whereas the
CASSCF results differ from it and necessitate a biquadratic
model description, similar to the above-studied Fe2S2 case.
To investigate the deviation of the ab initio CASSCF results

from a pure Heisenberg model, we computed the local spin and
spin−spin correlation for the Fe4S4 system. Figure 15 shows the
local spin expectation values of ironA (a),A + B (b), andA + B +
C (c) as a function of the total spin for the CASCI and CASSCF
results. The local spin on the single iron A is close to the
maximum possible, (SA

max)2 = 8.75, for all of the spin states, and
the effect of the CASSCF orbital relaxation is present but small.
Due to symmetry reasons, we can safely assume that this
expectation value is equal for all four iron centers. The
expectation value of the sum of the local spin of the far-
distanced irons, A and B, is close to the maximum possible,
(SAB

max)2 = 5(5 + 1) = 30, as can be seen in Figure 15b. This shows
that the two far-distanced iron centers are ferromagnetically
aligned with SA + SB = 5, as already investigated thoroughly for
the singlet ground and excited states in ref 63. Again, the orbital
relaxation only plays a minor role but shows the same behavior
as for the single iron spin. The local spin expectation value of the
sum of three irons, ⟨(ŜA + ŜB + ŜC)

2⟩, increases from a minimum
value close to (SABC

min )2 = 8.75 for S = 0 all the way to (SABC
max )2 =

15/2(
15/2 + 1) = 63.75 for S = 10. ⟨(ŜA + ŜB + ŜC)

2⟩ can be
represented by SA(SA + 1) + 1/2S(S + 1), as can be seen in the
right panel of Figure 15, which is the exact results of a 4-site pure
S = 5/2 Heisenberg model. The close agreement to the
theoretically maximal values of the local spin is because we
investigate the minimal (20e,20o) active space of the magnetic
iron 3d orbitals. Inclusion of ligand orbitals would cause a larger

Figure 14. Energy difference to the S = 0 ground state (markers) and a
simple (dashed) and biquadratic (solid lines) Heisenberg fit for the
CASCI (blue) and CASSCF (orange) results of the (20e,20o) active
space as a function of the total spin.
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deviation similar to the iron dimer studied above and as already
anticipated in our previous work.63

We now focus on the spin−spin interaction between the four
magnetic iron centers. Figure 16 shows the spin−spin
correlation function, ⟨Ŝi · Ŝj⟩, between the four different iron
atoms for the CASCI and CASSCF results as a function of the
total spin. Figure 16a confirms that the two iron atoms with the
largest distance, A and B, always stay ferromagnetically aligned
for all of the spin states, with a marginally lowering effect of the
CASSCF orbital relaxation. Figure 16b,c shows that the spin−
spin interaction between two close-lying iron atoms, e.g., A − C
or A − D, is antiferromagnetic for the low-spin states and
switches to ferromagnetic alignment for S = 8 and higher.
Additionally, these results confirm that these spin−spin
interactions are symmetric and that the CASSCF procedure
has only a marginal effect on the obtained expectation values.

5. CONCLUSIONS

In this work, we present our implementation to compute the
spin-pure one- and two-body reduced density matrices, via
stochastic sampling, within our spin-adapted FCIQMC
implementation. This gives us access to spin-pure two-body
observables, such as the spin−spin correlation function, and
allows us to use the GUGA-FCIQMC as a spin-pure CI
eigensolver in the spin-pure stochastic-CASSCF approach
(within OpenMolcas). This, in turn, enables us to
stochastically, yet accurately, treat active spaces far larger than
conventional CI solvers in a spin-pure manner. The
implementation requires only minor modifications to the
existing GUGA-FCIQMC implementation and introduces
only a small computational overhead. This makes the approach
quite efficient and allows us to employ up to hundreds of
millions of CSFs simultaneously.
We demonstrate the utility of this method by studying two

FeS dimer and tetramer model systems. For the dimer, by
performing extensive state-specific CASSCF calculations for the

lowest state of each accessible spin-symmetry and four active
spaces, we find that (1) the combined effect of Fe 3d orbital
relaxation and the ligand-to-metal charge transfer has a larger
influence on the energetics of the spin ladder than the sum of the
two effects alone. (2) When using (10e,10o) ROHF starting
orbitals for the CASSCF procedure, its effect is rather small (few
mH) on the singlet−triplet gap, while up to ≈ 20 mH for low-
spin−high-spin gap. (3) When one maps ab initio results to a
(biquadratic) Heisenberg Hamiltonian, performing a spin-pure
CASSCF procedure has a large impact on the extracted model
parameter.
Access to the spin-pure RDMs with GUGA-FCIQMC allows

us to directly measure local spin and spin−spin correlation
functions. Insight into these quantities, the local (double)
occupation number, and the electron delocalization effect due to
the CASSCF procedure enable us to argue why the CASCI
results using the (10e,10o) ROHF orbitals agree so well with the
bilinear Heisenberg model, while the converged CASSCF do
not. The ROHF orbitals are optimized such that the Heisenberg
exchange mechanism is the only possible one. Thus, they are too
localized on the iron atoms,155−157 and even increasing the
active space does not enable us to fully capture important spin
delocalization and charge fluctuations.90,100,101

We study the FeS tetramer in the minimal (20e,20o) active
space, which, in a spin-adapted approach, due to 20 open-shell
localized 3d orbitals, is a formidable task. Also, for the tetramer,
we find that performing a CASSCF procedure necessitates the
inclusion of the biquadratic term into the spinmodel to correctly
map the ab initio results.

■ APPENDIX A. LOCAL SPIN MEASUREMENTS

In the GUGA approach, CSFs are spin eigenfunctions up to any
spatial orbital i. This means that it is straightforward to calculate
the expectation value of a cumulative local spin operator Ŝc(i)
consisting of orbitals up to the chosen orbital i

Figure 15. Local spin expectation values for iron A (a), A + B (b), and A + B + C (c) as a function of the total spin for the CASCI (blue) and CASSCF
(orange) results.

Figure 16. Spin−spin correlation function, ⟨Ŝi · Ŝj⟩, between the four different iron atoms for the CASCI (blue) and CASSCF (orange) results as a
function of the total spin. Panel (a) shows the spin−spin interaction between the far-distanced magnetic centers A and B, and panels (b) and (c) show
the symmetric interaction between the close-distanced irons, A−C and A−D, respectively.
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where sĵ indicates the local spin operator of a single molecular
orbital (MO) j. The square of the operator defined in eq 20,
Ŝc
2(i), is diagonal in a GUGA-CSF basis, and thus one can
straightforwardly calculate the expectation value

∑ ∑μ μ⟨Ψ| ̂ |Ψ⟩ = ⟨ | ̂ | ⟩ = +
μ

μ
μ

μ
μ μi c i c S SS S( ) ( ) ( 1)i ic c

2 2 2 2

(21)

where Si
μ indicated the intermediate total spin of CSF |μ⟩ at the

spatial orbital i. It is important to note that since eq 21 is a
diagonal quantity, the replica method122 needs to be used within
FCIQMC to obtain unbiased estimates.
Additionally, this necessitates to order orbitals of interest, e.g.,

to measure the local spin of a specific iron atom, consecutively
starting from the beginning, since GUGA CSFs are not spin
eigenfunctions for intermediate orbitals. It turns out that this
ordering, in conjunction with using localized 3d′ orbitals in the
CAS(22e, 26o) for the Fe2S2 system, is even more optimal as the
choice studied in ref 62. More optimal in the sense that we do
have an even higher reference weight (0.67 compared to 0.55 for
the singlet CASCI), more single reference character, and hence a
faster convergence. The detailed orbital choice and ordering
used can be found in the SI.

■ APPENDIX B. SPIN−SPIN INTERACTION
The measurement of local spin quantities additionally allows us
to compute the spin−spin interaction between different iron
sites.
Two Sites. If we assume a set of local, independent spin

operators Ŝi, with [Ŝi, Ŝj] = 0 and, due to symmetry, ⟨Ŝi
2⟩ = ⟨Ŝj

2⟩
∀i, j, we can deduce that

⟨ ̂ + ̂ ⟩ = ⟨ ̂ + ̂ + ̂ · ̂ + ̂ · ̂ ⟩

= ⟨ ̂ ⟩ + ⟨ ̂ · ̂ ⟩

S S S S S S S S
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from which it follows that
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1
2

( )A B A B A
2 2

(22)

Since, following eq 21, we can measure both ⟨(ŜA + ŜB)
2⟩ and

⟨ŜA
2⟩ locally, we can deduce the spin correlation function from

purely local spin measurements.
Three Sites. Next, we consider a model system such as that

depicted in Figure 17 with two long bond distances AB and CD
and four remaining short distances and assume ⟨Ŝi

2⟩ to be
identical for all i. If we assume spin correlation functions to be
equal for the same bond distances, e.g., ⟨ŜA · ŜB⟩ = ⟨ŜC · ŜD⟩ and

⟨ŜA · ŜC⟩ = ⟨ŜB · ŜC⟩, etc. and introduce the notation ŜA + ŜB + ŜC
= ŜABC, we can deduce that

⟨ ⟩ = ⟨ ̂ ⟩ + ⟨ ̂ · ̂ ⟩ + ⟨ ̂ · ̂ ⟩ + ⟨ ̂ · ̂ ⟩
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from which it follows that

⟨ ̂ · ̂ ⟩ =
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S S
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Again, we canmeasure all of the quantities on the right-hand side
of eq 23 directly via eq 21.

Four Sites.Now, we assume: all ⟨Ŝi
2⟩ are the same, [Ŝi, Ŝj] = 0,

∀ i, j, ⟨ŜA · ŜB⟩ = ⟨ŜC · ŜD⟩, ⟨ŜA · ŜC⟩ = ⟨ŜB · ŜC⟩, and ⟨ŜA · ŜD⟩ = ⟨ŜB
· ŜD⟩. With ŜA + ŜB + ŜC + ŜD = Ŝtot for short, we obtain
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Then plugging eqs 22 and 23 into eq 24 yields
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with ŜAB = ŜA + ŜB and ŜABC = ŜA + ŜB + ŜC.

■ APPENDIX C. ORBITAL-RESOLVED LOCAL SPIN
AND SPIN CORRELATION FUNCTION FROM
SPIN-FREE RDMS

Expressing the local spin operators as172

∑ σ=
μ ν

μ ν μ ν
=↑ ↓

†S a a
1
2i

k k
i i

, ,
, ,

(26)

with the Pauli matrices173
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(27)

and the fermionic annihilation (creation) operators, ai,σ
(†), of

electrons with spin σ in the spatial orbital i. This results in the
explicit expressions

= +↑
†

↓ ↓
†

↑S a a a a
1
2

( )i
x

i i i i (28)

= −↓
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↑ ↑
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= −↑ ↓S n n
1
2

( )i
z

i i (30)

where niσ = aiσ
† aiσ is the fermionic number operator of orbital i

and spin σ.
If we express the Ŝi · Ŝj asFigure 17. Sketch of the Fe4S4 geometry.
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and consequently, the individual terms as
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Combining the x and y terms yields
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For i = j, we can transform eq 35 to
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For the total local spin operator, this means
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and consequently, we get the relation

∑ ∑= + −
σ

σ
σ

σ σ ̅S S n n n
1
2

1
2i i

z
i i i

2 2

∑ ∑− = − −

= − + −

σ
σ

σ
σ σ↑ ↓ ̅

↑ ↑ ↓ ↓ ↑ ↓

S n n n n n

n n n n n n

1
2

1
4

( )
1
2

1
4

( 2 )

i i i i i i

i i i i i i

2 2

2 2

i

k
jjjjjj

y

{
zzzzzz∑ ∑= −

σ
σ

σ
σ σ ̅S n n n

3
4i i i i

2

(38)

With the spin-free excitation operators Êij =∑σ aiσ
† aiσ and eîj,kl =

ÊijÊkl − δjkÊil, we can express eq 38 simply as

= ̂ − ̂S E e
3
4

( )i ii ii ii
2

, (39)

since Eii =∑σ niσ and eîi,ii = ÊiiÊii− Êii = (ni↑ + ni↓)
2− Êii = 2ni↑ni↓.

With the spin-free excitation operators, we can write eq 38 as
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and substituting eq 39 on the lhs of eq 40, we get
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leading to the relation
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4
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z

ii ii ii,
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(42)

allowing us to formulate the apparent spin-dependent quantity

Si
z2 entirely in spin-free terms for i = j.
For i ≠ j, we can transform eq 35 to
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leading to the relation
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with which the spin correlation, eq 31, can be expressed as
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To express eq 46 in spin-free terms, we can rewrite
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which allows us to write the spin−spin correlation function
entirely in spin-free terms as
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(48)

eq 48 allows us to directly obtain the off-diagonal i≠ j, spin−spin
correlation functions ⟨Ŝi · Ŝj⟩, from the spin-free 2-RDM
elements, ⟨eîj,ji⟩ and ⟨eîi,jj⟩, on an orbital-resolved level.

■ APPENDIX D. LOCAL SPIN AND SPIN
CORRELATION FUNCTIONS OF A SUM OF
ORBITALS FROM SPIN-FREE RDMS

The results from Appendix A and Appendix C can be combined
to obtain the local spin, Ŝc

2(i) (eq 20), and spin−spin correlation
function of a sum of orbitals, e.g., betweenmagnetic centers as in
the iron A and B 3d orbitals, directly from the orbital-resolved
spin-free RDMs, ρij and Γij,kl, respectively, ⟨Êij⟩ and ⟨eîj,kl⟩.

Local Spin. To obtain the local spin of a set of orbitals , we
need to combine eqs 39 and 48 to get
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Spin−Spin Correlation Function. Similarly, to obtain the
spin−spin correlation function between two sets of orbitals
and , we need to make use of eqs 39 and 48
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(50)

assuming ∩ = Ø. If the two sets and do overlap, eq 50
has to be adapted to use eq 39 in the case i = j.
The advantage of eqs 49 and 50 compared to the cumulative

local spin and the spin correlation functions derived in Appendix
B is that they are independent of the ordering of orbitals and do
not assume any symmetries of the problem at hand.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00589.

Coordinate (geometry_Fe2S2.xyz, geome-
try_Fe4S4.xyz), starting (fe2s2_22in26_-
ROHF.orbitals, fe4s4_ROHF.orbitals)
and final OpenMolcas CASSCF orbital files
(fe2s2_22in26_* .RasOrb , fe4s4ca-
s20in20_s*.RasOrb) for each spin state of the two
studied iron−sulfur systems, as well as sample input files
for the FCIQMC (fe2s2_22in26_singlet_f-
ciqmc.input, fe4s4_singlet_fciqmc.in-
put) and OpenMolcas calculations (fe2s2_22-
in26_singlet_molcas.input, fe4s4_sin-
glet_molcas.input); computational details and
comparisons with the available exact results for small
active spaces, a table with the data used in Figure 10, a
study on improved convergence due to stochastic noise,
the protocol of how we compared the orbitals in Figure
11, details on the interface and the RDM storage
convention in OpenMolcas, and a quick access
literature overview of computational results for the
Fe2S2 system (ZIP)

■ AUTHOR INFORMATION

Corresponding Authors
Werner Dobrautz − Max Planck Institute for Solid State
Research, 70569 Stuttgart, Germany; orcid.org/0000-
0001-6479-1874; Email: w.dobrautz@fkf.mpg.de

Giovanni Li Manni − Max Planck Institute for Solid State
Research, 70569 Stuttgart, Germany; orcid.org/0000-
0002-3666-3880; Email: g.limanni@gmail.com

Authors
Oskar Weser − Max Planck Institute for Solid State Research,
70569 Stuttgart, Germany

Nikolay A. Bogdanov − Max Planck Institute for Solid State
Research, 70569 Stuttgart, Germany; orcid.org/0000-
0002-5437-4919

Ali Alavi−Max Planck Institute for Solid State Research, 70569
Stuttgart, Germany; Yusuf Hamied Department of Chemistry,
University of Cambridge, Cambridge CB2 1EW, United
Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00589

Funding
Open access funded by Max Planck Society.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Thomas Schraivogel (MPI-FKF) for valuable
scientific discussions. The authors gratefully acknowledge
financial support from the Max Planck Society. This project
has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement
#952165. The results contained in this paper reflect the authors’
view only, and the EU is not responsible for any use that may be
made of the information it contains.

■ REFERENCES
(1) Roos, B. O.; Taylor, P. R.; Sigbahn, P. E. A complete active space
SCF method (CASSCF) using a density matrix formulated super-CI
approach. Chem. Phys. 1980, 48, 157.
(2) Siegbahn, P. E. M.; Almlöf, J.; Heiberg, A.; Roos, B. O. The
complete active space SCF (CASSCF) method in a Newton−Raphson
formulation with application to the HNO molecule. J. Chem. Phys.
1981, 74, 2384.
(3) Helgaker, T.; Jørgensen, P.; Olsen, J.Molecular Electronic-Structure
Theory; John Wiley & Sons: Chichester, 2000.
(4) Roos, B. O. The complete active space SCF method in a fock-
matrix-based super-CI formulation. Int. J. Quantum Chem. 1980, 18,
175.
(5) Roos, B. O. The Complete Active Space Self-Consistent Field
Method and its Applications in Electronic Structure Calculations. In
Advances in Chemical Physics; John Wiley & Sons, Ltd., 1987; p 399.
(6) Li Manni, G.; Smart, S. D.; Alavi, A. Combining the Complete
Active Space Self-Consistent Field Method and the Full Configuration
Interaction QuantumMonte Carlo within a Super-CI Framework, with
Application to Challenging Metal-Porphyrins. J. Chem. Theory Comput.
2016, 12, 1245.
(7) Li Manni, G.; Guther, K.; Ma, D.; Dobrautz, W. Foundation of
Multi-Configurational QuantumChemistry. InQuantum Chemistry and
Dynamics of Excited States; John Wiley & Sons, Ltd., 2020; Chapter 6, p
133.
(8) Ruedenberg, K.; Sundberg, K. R. MCSCF Studies of Chemical
Reactions: Natural Reaction Orbitals and Localized Reaction Orbitals.
In Quantum Science: Methods and Structure. A Tribute to Per-Olov
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