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Background: Detection of mild cognitive impairment (MCI) is essential to screen
high risk of Alzheimer’s disease (AD). However, subtle changes during MCI make it
challenging to classify in machine learning. The previous pathological analysis pointed
out that the hippocampus is the critical hub for the white matter (WM) network of MCI.
Damage to the white matter pathways around the hippocampus is the main cause of
memory decline in MCI. Therefore, it is vital to biologically extract features from the WM
network driven by hippocampus-related regions to improve classification performance.

Methods: Our study proposes a method for feature extraction of the whole-brain WM
network. First, 42 MCI and 54 normal control (NC) subjects were recruited using diffusion
tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI), and
T1-weighted (T1w) imaging. Second, mean diffusivity (MD) and fractional anisotropy (FA)
were calculated from DTI, and the whole-brain WM networks were obtained. Third,
regions of interest (ROIs) with significant functional connectivity to the hippocampus
were selected for feature extraction, and the hippocampus (HIP)-related WM networks
were obtained. Furthermore, the rank sum test with Bonferroni correction was used
to retain significantly different connectivity between MCI and NC, and significant HIP-
related WM networks were obtained. Finally, the classification performances of these
three WM networks were compared to select the optimal feature and classifier.

Results: (1) For the features, the whole-brain WM network, HIP-related WM network,
and significant HIP-related WM network are significantly improved in turn. Also, the
accuracy of MD networks as features is better than FA. (2) For the classification
algorithm, the support vector machine (SVM) classifier with radial basis function, taking
the significant HIP-related WM network in MD as a feature, has the optimal classification
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performance (accuracy = 89.4%, AUC = 0.954). (3) For the pathologic mechanism, the
hippocampus and thalamus are crucial hubs of the WM network for MCI.

Conclusion: Feature extraction from the WM network driven by hippocampus-related
regions provides an effective method for the early diagnosis of AD.

Keywords: mild cognitive impairment, white matter connectivity, Alzheimer’s disease, early diagnosis, feature
extraction, machine learning

INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
with irreversible progression (Sperling et al., 2011; Hyman et al.,
2012). Mild cognitive impairment (MCI) is the prodromal stage
of AD (Petersen et al., 1999; Gauthier et al., 2006). The primary
clinical manifestation of MCI is memory loss (Petersen et al.,
2001). Since the progression of AD is irreversible and the
treatment of AD has little effect, the detection of MCI is expected
to find out the high risk of AD and further prevent its occurrence
(Jacobs et al., 2013; Wang et al., 2013). However, the subtle
changes of brain microstructure in MCI make it challenging to
distinguish the disease from conventional radiography (Pellegrini
et al., 2018). Therefore, establishing reliable biomarkers to
diagnose MCI in the early stages remains challenging.

According to the biomarker modeling of AD, white matter
demyelination has been proved to appear earlier during AD
progression than abnormal changes of gray matter and functional
connectivity (Zhuang et al., 2012; Lee et al., 2015). Recent studies
have shown that genes and protein molecules ultimately cause
microstructure changes in specific white matter fibers (Yu et al.,
2021; Zhao et al., 2021). Thus, white matter degeneration is a valid
biomarker for MCI. Diffusion tensor imaging (DTI) could detect
subtle structural changes in white matter fibers, facilitating large-
scale non-invasive screening (Tournier, 2019). The DTI index,
mean diffusivity (MD), and fractional anisotropy (FA) describe
fiber tracts’ state.

Machine learning offers a systematic approach to developing
advanced, automatic, and objective classification frameworks for
MCI diagnosis. The classification framework mainly includes
feature extraction and classification algorithms (Rathore et al.,
2017). Although there are plenty of studies on AD classification,
there is insufficient research on MCI (Shatte et al., 2019). The
classification accuracies for AD were all around 80%, while the
accuracies for MCI were only about 60% (Wee et al., 2011; Dyrba
et al., 2013, 2015a; Nir et al., 2015; Prasad et al., 2015; Dou et al.,
2020). The main reason is that whole-brain changes in AD are
so significant that can be classified with high accuracy by the
features of white matter, gray matter, and functional connectivity.
In contrast, changes in MCI are not obvious for the whole brain.
However, the progression of AD is irreversible. Early diagnosis of
MCI fascinates high-risk screening of AD in time.

Previous studies focused on the classification algorithm
to improve classification performance. Existing researchers
found that k-nearest neighbor (KNN) (Ebadi et al., 2017),
random forest (RF) (Maggipinto et al., 2017; Wang et al.,
2018), and support vector machine (SVM) (Cui et al., 2012;
Demirhan et al., 2015; Dyrba et al., 2015a; Nir et al., 2015;

Xie et al., 2015; Ahmed et al., 2017) have achieved better
classification performance for MCI when taking the white
matter as a feature. KNN is based on Euclid’s theorem and is
classified by measuring the distance between different features.
RF integrates many decision trees into a forest and combines
them for predicting. SVM is based on statistical theory to solve
two classification problems, mainly introducing kernel function
to solve the problem of linear inseparability. However, previous
studies only attached importance to algorithms while neglecting
the features. In fact, selecting the appropriate modality in the
data and extracting suitable features are usually more important
than the underlying algorithm (Zhang et al., 2021).

The white matter feature extraction methods for MCI
classification mainly include specific fiber tracking and the
whole-brain white matter network (WM network). The specific
fiber tracking method takes features using the fiber tracts that
converge between localized brain regions and calculates the DTI
index of voxels on a single fiber tract. However, this method
focused on a specific fiber tract and had low classification
accuracy (Nir et al., 2015; Dou et al., 2020). In the whole-
brain white matter connectivity network approach, DTI images
were segmented into several anatomical regions and features
based on the metrics calculated from the fibers within these
regions (Wee et al., 2011; Prasad et al., 2015). Recent studies
had started to use multimodality for feature extraction. DTI,
T1-weighted (T1w), and resting-state functional MRI (rs-fMRI)
images from different modes were used to capture information
from different perspectives (Hinrichs et al., 2011; Liu et al.,
2014). However, most studies had concatenated the features
from different modalities. The disadvantage is that all features
are treated equally, and it provides no way to account for the
diverse nature of features extracted from different modalities
(Zhang et al., 2011, 2012; Dyrba et al., 2015b). Therefore,
the urgent problem for MCI classification is to combine with
different modalities before training and develop a dedicated
feature fusion strategy.

To address this issue, the brain network theory was
introduced. First, the brain can be seen as a network of spatially
dispersed brain areas that share information continuously in
functional connectivity (Sporns and Betzel, 2016). The different
brain regions are connected and have synchronization within the
same activation pattern. Different brain regions are temporally
synchronized under the same activation pattern by the white
matter pathway (Gu et al., 2015). Second, the primary clinical
manifestation of MCI is memory loss (Rugg and Vilberg, 2013).
The hippocampus is the crucial area for memory processing.
Therefore, investigating the abnormal white matter network
related to the hippocampus could promote the detection of
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MCI in time (Benoit and Schacter, 2015). Furthermore, previous
studies have also demonstrated that white matter degeneration
leads to abnormalities in the functional connectivity of the
corresponding brain regions (Kleinschmidt and Vuilleumier,
2013). In the default mode network, damage to the white matter
fibers such as fornix and cingulum could weaken the functional
connectivity of the medial temporal lobe and precuneus to
the hippocampus (Buckner and DiNicola, 2019). Therefore,
we hypothesized that white matter connectivity between brain
regions associated with the hippocampus could be an important
biomarker for MCI recognition. Features extraction of white
matter network through hippocampus-related regions would
help to improve the MCI classification performance.

This study aimed to extract the effective features of white
matter connectivity networks driven by regions related to the
hippocampus and improve classification performance. In our
study, the elderly people were divided into MCI group and
normal control (NC) group. First, the DTI data were obtained,
and the orientation distribution function (ODF) was calculated
by constrained spherical deconvolution (CSD). Based on the
ODF, the fiber tracts of the whole brain were constructed.
Second, the DTI index of whole-brain white matter connectivity
between each brain region under the automated anatomical
labeling (AAL) was calculated to construct the MD and FA brain
structure networks as features. Furthermore, the hippocampus
was used as the seed point to define the regions of interest
(ROIs). Brain regions with high correlation to the hippocampus
in functional connectivity were obtained as ROIs compared with
the AAL template. Finally, whole-brain white matter connectivity
networks were screened by ROIs related to the hippocampus.
Different classifiers (e.g., SVM, KNN, and RF) were used to
validate the classification performance of the extracted features.
The recursive feature elimination (RFE) ranked these features’
contribution to analyze the pathological mechanisms of MCI.
Our study proposed a method of feature extraction to improve
the MCI classification performance. The study also revealed the
pathological mechanisms of MCI by the ranked contribution of
features. It would provide effective early aid to MCI diagnosis.

MATERIALS AND METHODS

Participants
After excluding the left-handed and other brain injury history, a
total of 96 subjects met the criteria for inclusion (48 male and
48 female; age: 80.6 ± 5.4 years, mean ± std). All participants
were provided written informed consent based on the Helsinki
Declaration. The experimental protocol was approved by the
Institutional Review Board of Tianjin University and the Ethics
Committee of Chang Gung University.

Neuropsychological Behavior Testing
All subjects were tested on the clinical dementia rating (CDR)
and the mini-mental status examination (MMSE) scale. The
entry criteria for MCI diagnosis were as follows: (i) CDR = 0.5;
(ii) 24 ≤ MMSE < 30 for well-educated subjects (education
years ≥ 6) or 19 ≤ MMSE < 24 for less-educated subjects

(education years < 6). The MCI group was 81.3 ± 3.6
(mean ± std) years with education duration of 5.9 ± 5.4 years
(mean ± std). There was no difference between groups in age and
education duration (Table 1).

Magnetic Resonance Imaging Data
Acquisition
The DTI, T1w, and rs-fMRI images of each subject were
acquired without personal information. The DTI with 30
diffusion encoding directions was acquired using echo planar
imaging (EPI) sequence with parameters: b-value = 1,000 s/mm2,
TR/TE = 11,000/104 ms, field of view = 192 × 192 mm2,
matrix size = 128 × 128, slice thickness = 2 mm, voxel
size = 2 × 2 × 2 mm3, number of slices = 70, and
number of excitations = 1. The rs-fMRI was acquired using
gradient EPI sequence with parameters: TR/TE = 2,500/27 ms,
flip angle = 77◦, band width = 2,400 Hz/pixel, field of
view = 260 × 260 mm2, matrix size = 64 × 64, voxel
size = 3.4 × 3.4 × 3.4 mm3, number of slices = 43, scan
time = 360 s, and time points = 180. The T1w imaging was
acquired using a 3D magnetization prepared rapid gradient EPI
sequence with parameters: TR/TE = 2,530/3.5 ms; TI = 1,100 ms;
field of view = 260 × 260 mm2; matrix size = 256 × 256; slice
thickness = 1 mm; voxel size = 1 × 1 × 1 mm3; and number
of slices = 192.

White Matter Structure Network
Establishment and Feature Extraction
The feature extraction of the white matter structure network for
MCI classification consists of the following steps (Figure 1):

1. MRI data preprocessing.
2. Reconstruction for white matter fiber tracts by orientation

distribution function (ODF). Based on DTI, the ODF was
calculated by CSD.

3. Establishment for whole-brain structure network. DTI
indexes (MD and FA) of white matter connectivity between
the AAL 90 brain region were calculated to establish
the whole-brain structure network as the full feature for
MCI classification.

4. Feature selection driven by hippocampus-related ROIs.
Brain regions with significant functional connectivity to
the hippocampus in rs-fMRI were selected as ROIs. The

TABLE 1 | Demographic and neuropsychological information of the
MCI and NC groups.

NC (n = 54) MCI (n = 42) p-value

Gender (m/f) 27/27 21/21 1.0000a

Age (year) 80.0 ± 6.3b 81.3 ± 3.6b 0.6353c

Education (year) 6.5 ± 4.1b 5.9 ± 5.4b 0.1530c

CDR 0 0.5 <0.0001c

MMSE 28.0 ± 1.8b 24.9 ± 2.8b <0.0001c

aChi-square test. bMean ± std. cRank sum test.
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FIGURE 1 | Feature extraction in structural connectivity map driven by hippocampus related ROIs. Three kinds of features were extracted for MCI classification,
including: (A) The whole brain WM network was acquired from diffusion MRI with all 90 × 90 AAL regions. (B) The HIP related WM network was selected by 43 × 43
ROIs from the whole brain WM network. (C) The significant HIP related WM network was acquired (*p < 0.05, **p < 0.005, and ***p < 0.0005; ranksum test with
bonferroni correction).

ROIs are used to screen features for the white matter
structural network.

5. Machine learning for MCI recognition. Different classifiers
(e.g., SVM, KNN, and RF) were used to test the features for
MCI recognition.

6. Performance comparison for searching optimal features
and classifiers. Classification performances were validated
to prove that our feature extraction method was effective.
Pathological mechanisms were analyzed with feature sort.

Magnetic Resonance Imaging Data Preprocessing
The DWI data were denoised and corrected for Gibb’s ringing
using MRtrix31 and then motion-corrected, and the eddy current
distortion was corrected using the eddy tool in FSL (v5.0.11).2

Next, a brain mask was constructed using the Brain Extraction
Tool in FSL, and the diffusion tensor fitting was performed
at each voxel within the brain mask to generate DTI index
maps. The rs-fMRI data were temporal band-pass filtered (0.01–
0.10 Hz) and detrended (both linear and quadratic trends). 3D

1http://www.brain.org.au/software/mrtrix/
2https://fsl.fmrib.ox.ac.uk/fsl

geometrical displacement was used to correct for head motion.
Spatial smoothing was performed with a Gaussian filter kernel
(FWHM = 6 mm). The entire process was performed using
the Statistical Parametric Mapping (SPM) software package,3

in which the head motion parameters, global signals, white
matter signals, and cerebrospinal fluid signals were obtained and
combined into a complete covariate. Covariate from functional
signals was then removed using the Resting-State fMRI Data
Analysis Toolkit (REST).4

Reconstruction for White Matter Fiber Tracts
To reconstruct the whole-brain white matter fiber
tracts of each subject, fibers were tracked in DTI data
(Supplementary Figure 1). (1) The ODF necessary for the
fiber tracking algorithm can be obtained using the MRtrix
software (see text footnote 1). The CSD was used with maximum
spherical harmonic degree = 6 during this process. (2) The ODF
was integrated into DSI Studio5 to achieve a 3D reconstruction

3http://www.fil.ion.ucl.ac.uk/spm
4http://restfmri.net/forum/REST
5http://dsi-studio.labsolver.org/
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of the whole brain’s white matter fiber connectivity. The tracking
parameters were as follows: Number of tracts = 100,000,
Qa_threshold = 0.04, max angle = 60, length constraint = 20.0–
450.0 mm, step size = 1.00 mm, and smoothness = 0.5 mm. Seed
direction was set to random, and seed position was subvoxel.

Establishment for Whole-Brain Structure Network
Since the AAL is located in the MNI152 standard space, the
transfer matrixes between the standard space and native space
(Supplementary Figure 2) were required to obtain the AAL
brain region for each subject space. (1) The b0 image from
the DTI image served as the native space. The T1w image
after skull stripping in FSL served as the structure space. The
MNI152 template from FSL served as the standard space. (2)
With the high-resolution T1w image as the reference, FMRIB’s
Linear Image Registration Tool (FLIRT) was used to obtain the
transition matrix from native space to structural space (TNS)
and the transition matrix from standard space to structural
space (TMS). The transition matrix from native space to standard
space was TNM = TNS × TMS

−1. (3) The transition matrix from
standard space to native space was TMN = TMS × TNS

−1.
To establish the whole-brain WM network, a 90 × 90 matrix

for the whole brain divided by the AAL template was calculated
(Supplementary Figure 1). (1) The AAL 90 brain regions in the
MNI152 standard space were transformed to each subject’s space
separately by applying transfer matrix TMN. (2) For the 90 × 90
matrix, every element records the mean DTI index (MD or FA) of
fiber tracts between every two of the AAL 90 brain regions. Also,
the whole-brain WM networks were established, including the
MD connectivity 90 × 90 matrix and the FA connectivity 90 × 90
matrix. (3) Whole-brain WM networks of 54 NC and 42 MCI
were established separately as entire features for MCI recognition.

Feature Selection Driven by Hippocampus-Related
Regions of Interest
The primary clinical symptom of MCI is memory loss, and
the hippocampus is closely associated with memory. So,
the hippocampus was chosen as a seed point to calculate
the brain regions that had significant functional connectivity
(Supplementary Figure 3). The concrete steps were as follows:
(1) All participants’ rs-fMRI images were transferred from the
native space to the standard space. (2) The left hippocampus (30,
−16, −14) and right hippocampus (−30, −16, −14) with a radius
of 3 mm served as the seed points to create the FC map of each
participant in the MNI152 standard space. With the same time
series, brain regions that activated correlation with hippocampus
were calculated in software REST. The Fisher Z transformation
was applied so that the results of each participant followed normal
distributions. (3) After individual-level analysis, group analysis
for MCI and NC was conducted separately by the second-level
analysis in SPM. A one-sample T-test and a familywise error
correction were employed to revise the statistics of the group
analysis results. (4) Significant area (p < 0.05) with the threshold
(T-value > 10, size > 27) was selected to obtain the brain regions
associated with the functional connectivity of the hippocampus
at the group level.

To confirm the locations of the hippocampus-related ROIs,
the following steps were conducted: (1) The functional
connectivity maps of the MCI and NC groups were compared
with AAL templates. The percentage of overlapping voxels taken
in the AAL was calculated (Supplementary Figure 3). (2) To
select as many ROIs as possible in the AAL and prevent false
positives, a volume percentage threshold of 10% was set. If one
of the 90 regions in the AAL had a volume fraction greater than
the threshold value, the brain region in the AAL was selected as
an ROI (Supplementary Figure 4). The selected ROIs are listed in
Supplementary Table 1, including their abbreviations. (3) Totally
43 ROIs related to the hippocampus were used to extract features
of the whole-brain WM network (90 × 90 matrices), and the HIP-
related WM network (43 × 43 matrices) was established. The
rank sum test with Bonferroni correction of HIP-related WM
network between MCI and NC was used to extract significant
features. The significant HIP-related WM network was acquired
(300 vectors) (Figure 1).

Machine Learning for Mild Cognitive Impairment
Recognition
To train features of different WM networks for MCI
classification, the process of machine learning was as
follows (Figure 2): (1) The whole-brain WM network, the
hippocampus-related WM network (HIP-related WM network),
and the significant HIP-related WM network were separately
used as features for machine learning. The recursive feature
elimination (RFE) algorithm was used for both dimension
reduction and features ranking. (2) The machine learning

FIGURE 2 | The flowchart for machine learning. Recursive feature elimination
was used to search for the optimal feature subset. The classification algorithm
was respectively used KNN, RF, SVM (linear, poly, rbf, sigmoid). The hold-out
method was repeated 100 times randomly with 80% of the data for training
and 20% for testing.
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methods included SVM, KNN, and RF. For SVM, four different
kernel functions were tried, namely, linear kernel (linear),
polynomial kernel (polynomial), radial basis function kernel
(rbf), and sigmoid kernel (sigmoid). For KNN, neighbors of 1,
3, 5, and 7 were used. For RF, 50, 100, 150, and 200 decision
trees were used. (3) The hold-out method was used to evaluate
classification performance; 80% of the data set was selected
as the training set and the remaining 20% as the test set. This
process was repeated 100 times randomly to obtain the average
classification accuracy and the area under the curve (AUC). All
the above experiments were based on the Scikit-Learn library.6

Performance Comparison for Searching Optimal
Feature and Classifier
The following steps were conducted to search for optimal
features and classifiers. (1) To demonstrate the effectiveness
of the feature extraction method, the classification accuracies
(100 times hold-out method) were statistically analyzed in the
rank sum test between three features (i.e., whole-brain WM
network, HIP-related WM network, and significant HIP-related
WM network), and the AUC values were compared in the
identical coordinate system (Figure 3). (2) To obtain a better
classifier for MCI recognition, the classification accuracies (100
times hold-out method) were statistically analyzed in the rank
sum test between different classifiers, and the AUC values
were compared in the identical coordinate system (Figure 4).
(3) To compare which biomarker is more effective for MCI
recognition, the classification accuracies (100 times hold-out
method) were statistically analyzed in the rank sum test between
MD and FA features, and the AUC values were compared
in the identical coordinate system (Figure 5). (4) To rank
all features’ contribution to the classification, recursive feature
elimination (RFE) was performed. Feature ranking order of
the most contributing connectivity was selected based on their
classification performance (Figure 6A and Table 4). A schematic
illustration of degenerated white matter in MCI was made
according to the ranking features (Figure 6B).

RESULTS

Participant Characteristics
There were no significant differences in demographic
information between the MCI and NC. There were only
significant differences in the cognitive scales (CDR and
MMSE, Table 1). This indicates that irrelevant variables’
influence was eliminated between the MCI and NC, and the
results were credible.

Regions of Interest Related to
Hippocampus in Resting-State
Functional Magnetic Resonance Imaging
A total of 43 ROIs related to hippocampus in rs-fMRI were
obtained by comparing with AAL (Supplementary Figure 4).
Full names and abbreviations of the 43 ROIs were shown in

6https://scikit-learn.org/

Supplementary Table 1. Among them, 15 ROIs belong to the
limbic lobe, 16 ROIs belong to the frontal lobe, 5 ROIs belong
to the temporal lobe, 3 ROIs belong to the central region, 3
ROIs belong to the parietal lobe, and 1 ROI belongs to the
occipital lobe. Most ROIs are concentrated in the limbic, frontal,
and temporal lobes.

Classification Performance Promoted by
Screening Features in
Hippocampus-Related Regions of
Interest
For the WM network of MD in the same classifier, the
performances of progressively optimized features (whole-brain
WM network, HIP-related WM network, and significant HIP
related WM network) were significantly promoted (p < 0.05,
rank sum test with Bonferroni correction) (Figure 3 and Table 2).
It proved that our feature extraction method in this experiment
significantly improved the performance of the MCI classification.

Comparison of Mild Cognitive
Impairment Classification Performance
Under Different Algorithms
The three machine learning classifiers (of which SVM contains
four kernel functions) were compared separately (Figure 4).
The performance in order of average classification accuracy (100
times hold-out method) was as follows: SVM rbf (ACC = 89.4%,
AUC = 0.954), SVM sigmoid (ACC = 88.2%, AUC = 0.950),
KNN (ACC = 86.9%, AUC = 0.920), SVM linear (ACC = 86.2%,
AUC = 0.937), RF (ACC = 84.8%, AUC = 0.935), and SVM ploy
(ACC = 78.5%, AUC = 0.951). The performance of the SVM rbf
was significantly better than other classifiers. Therefore, training
with the significant HIP-related WM network as features using
SVM rbf can better recognize MCI.

Comparison of Classification
Performance Under Mean Diffusivity and
Fractional Anisotropy Features
For the same machine learning classifier, the performance of the
feature MD was significantly better than FA (p < 0.05, rank
sum test with Bonferroni correction) in the case of both using
optimal features for training (Figure 5 and Table 3). Therefore,
the biomarker MD is superior to FA for MCI diagnosing from a
machine learning perspective.

Ranking the Contribution of White Matter
Structural Connectivity to Mild Cognitive
Impairment Classification
According to the significant HIP-related WM network’s feature
ranking order through RFE (Figure 6A and Table 4), schematic
illustrations of degenerated white matter in MCI were made
(Figure 6B). The most common connections between MCI and
NC are HIP-temporal connectivity, limbic connectivity, and
THA-frontal connectivity.
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FIGURE 3 | Classification performance comparison between different mean diffusivity (MD) feature sets for different classifier. (A) KNN. (B) RF. (C) SVM linear. (D)
SVM poly. (E) SVM rbf. (F) SVM sigmoid. ‘red’: the significant HIP related WM network; ‘green’: HIP related WM network; ‘blue’: the whole brain WM network.
Classification performance including mean accuracy (mean ± std; *p < 0.05, **p < 0.005, and ***p < 0.0005; ranksum test with bonferroni correction) and AUC of
randomly 100 times hold out method.

FIGURE 4 | Classification performance comparison between different algorithm through optimal feature set. Classification performance including mean accuracy
(mean ± std; ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.0005; ranksum test with Bonferroni correction) and AUC of randomly 100 times hold-out method.
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FIGURE 5 | Optimal classification performance comparison between mean diffusivity (MD) and fractional anisotropy (FA) feature sets (the significant HIP related WM
network) for different classifier. (A) KNN. (B) RF. (C) SVM linear. (D) SVM poly. (E) SVM rbf. (F) SVM sigmoid. ‘red’: classification performance of mean diffusivity
feature sets; ‘gray’: classification performance of fractional anisotropy feature set. Classification performance including mean accuracy (mean ± std; *p < 0.05,
**p < 0.005, and ***p < 0.0005; rank sum test with Bonferroni correction) and AUC of randomly 100 times hold out method.

DISCUSSION

This study proposes a feature extraction method for whole-brain
white matter connectivity networks driven by ROIs related to the
hippocampus. The whole-brain WM network, HIP-related WM
network, and significant HIP-related WM network were obtained
in the process of feature extraction and optimization. Different
classification algorithms, such as KNN, RF, and SVM (linear, poly,
rbf, sigmoid), were used to test the classification performance.
The pathological mechanisms of MCI were also revealed by RFE.
Our study found that feature extraction of whole-brain white

matter connectivity by hippocampus-related brain regions can
significantly improve MCI classification performance. It can be
summarized in three points:

1. In the feature, compared with the whole-brain WM network,
the HIP-related WM network can significantly promote the
MCI classification performance in machine learning.

2. In the algorithm, the classification performance of the SVM
rbf is optimum when taking significant HIP-related WM
networks as features.
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FIGURE 6 | Feature ranking of MD feature (the significant HIP-related WM network) as the result of RFE in SVM rbf model. (A) Feature ranking order of the most
contributing connectivity (25 features). The bar represents connectivity in different groups. “black”: limbic connectivity (15 features). “gray”: Hip-temporal connectivity
(5 features). “white”: THA-frontal connectivity (5 features). (B) Schematic illustration of degenerated white matter in MCI. Nodes represented ROIs from AAL
templates. Edges represented connectivity; the value represents MD variation, MCI vs. NC.

3. In the pathology, the hippocampus- and thalamus-related
white matter connectivity greatly contributed to MCI
recognition. So, the method that combines MCI pathology

and uses a suitable classifier can significantly improve the
classification performance, while the ranking of features
contribution can reveal MCI pathology in turn.
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Mild Cognitive Impairment Classification
Performance Significantly Promoted by
Feature Extraction of
Hippocampus-Related Regions of
Interest
For the same classifier on features, the performance on MCI
classification was significantly higher for features screening
by HIP-related ROIs than the whole brain. First, in our
results, the whole-brain WM network, HIP-related WM network,
and significant HIP-related WM network had sequentially
significantly higher classification performance (Figure 3).
Second, in terms of AD pathogenesis, the degeneration of MCI

TABLE 2 | Classification performance based on mean diffusivity (MD) feature sets.

Classifier Feature ACC (mean ± sem) Sen Spe AUC

A. KNN Significant 86.90% ± 0.80% 0.938 0.778 0.920

HIP related 60.90% ± 1.20% 0.97 0.142 0.646

Whole brain 58.90% ± 1.10% 0.837 0.265 0.584

B. RF Significant 84.80% ± 0.90% 0.916 0.781 0.935

HIP related 61.60% ± 1.00% 0.958 0.144 0.654

Whole brain 57.10% ± 1.10% 0.935 0.117 0.573

C. SVM linear Significant 86.20% ± 0.80% 0.905 0.808 0.937

HIP related 67.30% ± 1.60% 0.886 0.419 0.637

Whole brain 60.90% ± 1.00% 0.791 0.406 0.549

D. SVM poly Significant 78.50% ± 1.20% 0.965 0.609 0.951

HIP related 67.10% ± 1.60% 0.886 0.414 0.632

Whole brain 56.70% ± 1.20% 0.972 0.029 0.550

E. SVM rbf Significant 89.40% ± 0.70% 0.938 0.849 0.954

HIP related 67.10% ± 1.60% 0.887 0.413 0.627

Whole brain 56.90% ± 1.10% 0.991 0.011 0.522

F. SVM sigmoid Significant 88.20% ± 0.60% 0.945 0.806 0.946

HIP related 67.20% ± 1.60% 0.888 0.414 0.633

Whole brain 60.80% ± 1.00% 0.708 0.501 0.550

ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; Ave,
average; Std, standard error; Sem, standard error mean.

TABLE 3 | Classification performance of MD and FA feature sets.

Classifier Feature ACC (mean ± sem) Sen Spe AUC

A.KNN MD 86.90% ± 0.80% 0.938 0.778 0.92

FA 75.70% ± 0.90% 0.905 0.571 0.853

B. RF MD 84.80% ± 0.90% 0.916 0.781 0.935

FA 81.40% ± 1.00% 0.878 0.743 0.902

C. SVM linear MD 86.20% ± 0.80% 0.905 0.808 0.937

FA 81.40% ± 0.80% 0.891 0.728 0.742

D. SVM poly MD 78.50% ± 1.20% 0.965 0.609 0.951

FA 77.50% ± 1.20% 0.877 0.672 0.8

E. SVM rbf MD 89.40% ± 0.70% 0.938 0.849 0.954

FA 79.00% ± 0.80% 0.841 0.738 0.901

F. SVM sigmoid MD 88.20% ± 0.60% 0.945 0.806 0.946

FA 67.30% ± 1.60% 0.886 0.418 0.635

ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; Ave,
average; Std, standard error; Sem, standard error mean.

first appears in specific fiber tracts and gradually spreads to the
whole brain when developing to the AD stage (Daianu et al.,
2015; Jones et al., 2015; Wang et al., 2016). Furthermore, in either
specific fiber tracking (Nir et al., 2015; Dou et al., 2020) or whole-
brain white matter connectivity network measures (Wee et al.,
2011; Prasad et al., 2015) in previous studies, the accuracies of
MCI classification were around 60%, while the accuracies of AD
can be about 80%. It also corroborates the pathogenesis of AD
from an engineering perspective. Finally, for MCI recognition,
a single use of whole-brain white matter would weaken the
features considering AD’s pathogenesis. Based on the pathology
of MCI, our study improves the MCI classification performance
effectively by feature extraction of HIP-related ROIs.

Mean Diffusivity Can Be a Valid
Biomarker for Mild Cognitive Impairment
Recognition
For MCI, the MD is more sensitive than FA values to reflect
white matter degeneration. First, our results showed that the
MD of WM networks as features outperformed FA in all the
machine learning classifiers (Figure 5). Second, research showed
the sensitivity of the MD index to MCI (Yu et al., 2017), while

TABLE 4 | Feature ranking order for WM connectivity.

Feature ranking order ROI pairs for connectivity

1 HIP-THA L Hippocampus Thalamus

2 HIP-AMYG R Hippocampus Amygdala

3 HIP-THA R Hippocampus Thalamus

4 HIP-PHIP L Hippocampus Parahippocampal gyrus

5 HIP-PCIN L Hippocampus Posterior cingulate

6 HIP-T1 L Hippocampus Superior temporal gyrus

7 HIP-T1 R Hippocampus Superior temporal gyrus

8 HIP-T1P R Hippocampus Temporal pole: superior temporal
gyrus

9 AMYG-F2O R Amygdala Middle frontal gyrus, orbital part

10 HIP-HES L Hippocampus Heschl gyrus

11 HIP-FUSI R Hippocampus Fusiform gyrus

12 THA-PUT L Thalamus Lenticular nucleus, putamen

13 THA-CAU L Thalamus Caudate nucleus

14 THA-PAL L Thalamus Lenticular nucleus, pallidum

15 PUT-PAL L Lenticular
nucleus,
putamen

Lenticular nucleus, pallidum

16 THA-CAU R Thalamus Caudate nucleus

17 THA-F1O L Thalamus Superior frontal gyrus, orbital part

18 THA-F1O R Thalamus Superior frontal gyrus, orbital part

19 THA-F2O R Thalamus Middle frontal gyrus, orbital part

20 THA-IN L Thalamus Insula

21 THA-ACIN R Thalamus Anterior cingulate and
paracingulate gyri

22 THA-IN R Thalamus Insula

23 THA-ACIN L Thalamus Anterior cingulate and
paracingulate gyri

24 THA-F1 L Thalamus Superior frontal gyrus, dorsolateral

25 THA-F1 R Thalamus Superior frontal gyrus, dorsolateral
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FA only begins to have statistical differences in multiple fiber
tracts during AD (Mito et al., 2018). Our experiment confirmed
that the MD index was more sensitive in the MCI stage from
classification performance. Furthermore, FA reflects the density
of white matter fibers and is influenced by the axon diameter of
fiber tracts. MD represents the integrity of the myelin outer the
fiber tracts. Demyelination can cause MD to increase (Tournier,
2019). It can be inferred that disintegrated myelin appeared more
obvious than axon loss during MCI. Therefore, the MD index can
be an effective biomarker for MCI compared with FA.

Comparison With Previous Studies
Compared with previous studies that used white matter as
the feature to recognize MCI, our method using HIP-related
ROIs to extract white matter features significantly improved
MCI classification performance (Table 5). By comparing the
classification performance between all of our classifiers, the SVM
classifier with rbf kernel significantly outperformed the other
classifiers (Figure 4). It can also be seen from previous studies
that the SVM classifier with rbf kernel for MCI recognition
performed well when taking the white matter as features
(Table 5). Therefore, training with the white matter as features
after HIP-related ROIs extraction can better recognize MCI when
using the SVM rbf classifier.

Important Hubs of the White Matter
Connectivity Network for Mild Cognitive
Impairment: Hippocampus and Thalamus
White matter connections related to hippocampal and thalamic
contribute most to MCI classification. First, previous studies have
shown that the white matter associated with the hippocampus
and thalamus degenerates during MCI. The white matter
microstructure between the hippocampus and medial temporal
lobe changes during MCI (Teipel et al., 2016; Zhuo et al., 2016;
Dumont et al., 2019). The fornix connects the hippocampus to the

thalamus, and its white matter degeneration leads to decreased
memory function (Christiansen et al., 2016). Degeneration of the
projection tracts connecting the thalamus to the prefrontal lobes
leads to a decrease in executive function (Gu and Zhang, 2019;
Liu et al., 2021).

Second, in our results, features connected with the
hippocampus or thalamus in the white matter connectivity
network ranked high in contributions for MCI classification, and
features connected with the hippocampus ranked more advanced
than the thalamus (Figure 6). This result also confirmed our
previous findings (Zhou et al., 2021). In our previous study, the
MD of all voxels in a single fiber tract was taken as features.
The fiber tract with high separability for MCI recognition
passed through the hippocampus or thalamus. So, whether
single fiber tract or whole-brain network had corroborated that
hippocampus and thalamus were important hubs of the white
matter connectivity network for MCI.

Furthermore, in our previous study, the highest average
accuracy for MCI classification reached 71.0% when taking MD
of all voxels in the left inferior longitudinal fasciculus. In this
study, the highest average accuracy reached 89.4% by taking
white matter networks related to the hippocampus. Compared
with the single fiber tract, white matter networks related to the
hippocampus as features can improve classification performance.
Finally, the contribution of every white matter connectivity can
be sorted by RFE. Thus, the hippocampus and thalamus are
important hubs for MCI. Features of combinational white matter
connectivity networks outperform single fiber tracts.

Limitations
This study mainly focused on feature extraction for MCI
recognition. However, the valuable contributions of this study
must be considered within the context of certain limitations.
First, a certain amount of new data will be added as the test set
alone. Data in this article will be used as the training set and

TABLE 5 | Summary of the studies using dMRI features for MCI classification.

Comparison with the previous studies Classifier Subjects Feature Database Performance

MCI/NC ACC AUC

Ebadi et al. (2017) KNN 15/15 Network Local 60.0% 0.560

Our study KNN 42/54 Network Local 86.9% 0.920

Maggipinto et al. (2017) RF 90/89 MD/FA voxel ADNI 54.0% 0.600

Wang et al. (2018) RF 169/379 Network ADNI/NACC 75.0% 0.850

Our study RF 42/54 Network Local 84.8% 0.935

Xie et al. (2015) SVM linear 64/64 MD/FA voxel Local 78.9% 0.856

Our study SVM linear 42/54 Network Local 86.2% 0.937

Cui et al. (2012) SVM rbf 79/204 FA voxel SMA 71.1% 0.700

Dyrba et al. (2015a) SVM rbf 35/42 MD/FA voxel EDSD 77.0% 0.680

Demirhan et al. (2015) SVM rbf 43/70 FA voxel ADNI 78.5% 0.758

Nir et al. (2015) SVM rbf 113/50 Network ADNI 79.0% -

Ahmed et al. (2017) SVM rbf 58/52 MD voxel ADNI 79.4% 0.788

Our study SVM rbf 42/54 Network Local 89.4% 0.954

local, collect by hospital; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center; SMA, Sydney Memory and Aging; EDSD,
European DTI Study on Dementia; -, not applicable.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 June 2022 | Volume 14 | Article 866230

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-866230 June 8, 2022 Time: 12:54 # 12

Zhou et al. Network Based MCI Classification

validation set. Second, cross-validation will be added to obtain
more accurate parameters for the classifier further to improve
performance in the future. Third, deep learning will be used based
on our existing findings, and generalization could be improved
in the future. More subjects and multiple datasets will be
acquired from different hospitals to test the generalization of the
classifier. Furthermore, future studies should recruit participants
with both MCI and AD. The NC, MCI, and AD should be
divided to investigate the pathological mechanisms underlying
AD development. Finally, the behavior scale would be added, and
the support vector regression (SVR) will be used to predict MCI
patients’ behavior.

CONCLUSION

Our study proposes a feature extraction method driven
by hippocampus-related ROIs for white matter connectivity
networks. In the feature extraction process, the whole-brain
WM network, the HIP-related network, and the significant HIP-
related network continuously optimize the performance of MCI
classification. By recursive feature elimination, the pathological
mechanism revealed that the hippocampus and thalamus are
important hubs in white matter networks for MCI. Our results
provide a valid basis for the early diagnosis of AD.
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