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Cancerous tumors are severe diseases affecting human health that have a complicated
etiology and pathogenesis. Microbes have been considered to be related to the
development and progression of numerous tumors through various pathogenic
mechanisms in recent studies. Bacteria, which have so far remained the most studied
microbes worldwide, have four major possible special pathogenic mechanisms
(modulation of inflammation, immunity, DNA damage, and metabolism) that are related
to carcinogenesis. This review aims to macroscopically summarize and verify the
relationships between microbes and tumoral in situ tissues from cancers of four major
different systems (urinary, respiratory, digestive, and reproductive); the abovementioned
four microbial pathogenic mechanisms, as well as some synergistic pathogenic
mechanisms, are also discussed. Once the etiologic role of microbes and their precise
pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis,
and treatment of cancers would progress significantly.
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INTRODUCTION

Malignant tumors are the second leading cause of death for men and the third leading cause of death
for women (Whitlock et al., 2015). The most common malignant tumors are related to lung cancer,
colorectal cancer, breast cancer, and prostate cancer in high-income countries and stomach cancer,
liver cancer, esophageal cancer, and cervical cancer in low-income countries. Tumors are complex
entities formed by cancer cells and the tumor stroma via multiple and bidirectional interactions to
establish dependencies essential for initiating tumorigenesis (Zanconato et al., 2019). The
pathogenesis of malignant tumors is correlated with genetic inheritance, environment, dietary
habits, radiation, and endocrine disorders (Torre et al., 2016). The factors related to cancer can be
divided into two categories: exogenous and endogenous (Whitlock et al., 2015; Torre et al., 2016;
Collaborators, U.S.B.o.D et al., 2018; D’Souza et al., 2019; Zanconato et al., 2019). Existing studies
have proposed some possible relationships between tumors and microbes in different types of
cancers (Nilsson et al., 2006; Guo et al., 2012; Kostic et al., 2012; Garrett, 2015; Mitsuhashi et al.,
2015; Audirac-Chalifour et al., 2016; Lee Y. C. et al., 2016; Liu H. X. et al., 2018; Okushin et al., 2018;
Aykut et al., 2019; Haruki et al., 2019). Cancers from different systems have unique observable
microbes and modes of pathogenesis (Table 1). The cancer-related microbes, which play a potential
vital role in carcinogenesis, might originate from exogenous infections or microbial dysbiosis. The
latter means the composition of microbial community in dysbiotic individuals is significantly
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TABLE 1 | The main mentioned cancers in this review and the usually observable and representative microbes and pathogenesis.

Cancers Microbes Possible pathogenic mechanisms

Prostate cancer Mycoplasma genitalium Infecting and inducing both symptomatic and asymptomatic inflammatory responses in the prostate
(Yoon et al., 2012; Caini et al., 2014; Cavarretta et al., 2017); bacterial protein products, such as p37,
that exert oncogenic effects (Ketcham et al., 2005; Goodison et al., 2007).

Lung cancer Haemophilus influenzae,
Enterobacter spp., Escherichia
coli, Capnocytophaga and
Veillonella, Streptococcus
viridans, Firmicutes, TM7,
Megasphaera, Granulicatella,
Abiotrophia, Thermus,
Streptococcus viridans,
Legionella, tuberculosis

Microbial dysbiosis, genotoxicity and virulence effects, inflammation, immune responses, and
metabolism (Weitzman and Gordon, 1990; Coussens and Werb, 2002; Ballaz and Mulshine, 2003;
Roesler et al., 2012; Liu H. X. et al., 2018); chronic inflammation-associated carcinogenesis, with an
increase in tumor necrosis factor and excessive and persistent local inflammation at sites of repair and
fibrosis (Coussens and Werb, 2002; Ardies, 2003); low immunity (Christopoulos et al., 2014; Khoruts,
2018; Pandey et al., 2019); some metabolic-related signaling pathways, such as amino acid
metabolism, carbohydrate metabolism, energy metabolism, and lipid metabolism (Gomes et al., 2019);
upregulate the phosphoinositide 3-kinase pathway to participate in regulating cell proliferation, survival,
and differentiation (Mendoza et al., 2011; Tsay et al., 2018); reduced signal transduction, increased
excretory systems, amino acid metabolism, aldosterone-regulated sodium reabsorption, or amoebiasis
pathways (Gomes et al., 2019); the cytokines might induce a cytokine cascade and a proliferation of the
lung epithelial cells, the breaks in the chromosomal strands and the accumulation of DNA mutational
changes might be eventually activated (Weitzman and Gordon, 1990; Ballaz and Mulshine, 2003);
regional tumor peptides and even radiotherapy might lead to a microenvironment deregulation in
granulomas (Christopoulos et al., 2014).

Pancreatic cancer H. pylori, Fusobacterium,
Lepotrichia, Malassezia

Activate selected toll-like receptors (TLR) in monocytic cells to generate a tolerogenic immune program,
TLR2 and TLR5 ligation was demonstrated to induce innate and adaptive immune suppression to
promote PDA (Pushalkar et al., 2018); the activation of the mannose-binding lectin–C3 cascade through
the C3 complement pathway might cause inflammation induced by the oncogenic Kras, leading to
fungal dysbiosis and promoting tumor progression (Aykut et al., 2019).

Colorectal cancer Fusobacterium, Oribacterium,
Prevotella, Citrobacter
rodentium, Salmonella enterica,
E.coli, Pseudomonas aeruginosa,
Bacteroides fragilis,
Campylobacter spp., E. Faecalis

Destroy the intestinal barrier, leading to the subsequent induction of pro-inflammatory cytokines, such as
the reactive oxygen species (ROS), which promoted regeneration and predisposed to tumorigenesis
(Kuraishy et al., 2011; Kux and Pitsouli, 2014; Li et al., 2019); Fusobacterium could bind to host
epithelial Cadherin 1 through the adhesion of FadA and invade epithelial cells from through the
E-cadherin/b-catenin signaling to induce inflammation and tumor cell growth in transformed cells
(Rubinstein et al., 2013; Wong and Yu, 2019; Guo P. et al., 2020); enhance genomic instability both in
two-dimensional and organotypic three-dimensional tissue models (Fearon, 2010); the deficiency in APC
is associated with the sustained activation of the DNA damage response and the reduced capacity to
repair different types of damage, including DNA breaks and oxidative damages. Infection with genotoxic
Salmonella was shown to prevent cell cycle arrest in APC-deficient cells (Martin et al., 2019); The
cytolethal distending toxin produced by Escherichia and Campylobacter spp. could induce double-
strand DNA break via its deoxyribonuclease activity to develop cancer (Cuevas-Ramos et al., 2010; He
et al., 2019); Colibactin produced by members of the Enterobacteriaceae family could also induce DNA
strand break (Buc et al., 2013); B. fragilis toxin (Goodwin et al., 2011) and ROS produced by E. Faecalis
were both associated with DNA damage and genomic instability in vitro (Huycke, 2002; Wang and
Huycke, 2007); produce metabolites or genotoxins, such as cytolethal distending toxin and colibactin,
some of them can be directly pro-carcinogenic or opportunistic microorganisms in the tumor-associated
microenvironment. The cytolethal distending toxin produced by Escherichia and Campylobacter spp.
(Cuevas-Ramos et al., 2010; He et al., 2019), Colibactin produced by members of the
Enterobacteriaceae family (Buc et al., 2013), B. fragilis toxin (Goodwin et al., 2011), and ROS produced
by E. Faecalis could induce the DNA strand break which might be associated with tumorigenesis
(Huycke, 2002; Wang and Huycke, 2007); activate the pro-carcinogenic signaling pathways and result in
molecular changes, ultimately leading to cancer (Wong and Yu, 2019; Zorron Cheng Tao Pu et al.,
2019); interfere with signaling pathways to affect several cytokines and growth factors, such as IL-6, IL-
2, and tumor necrosis factor, to control the process of regeneration in injured intestinal mucosa (Stavria
and Yiorgos, 2013; Karin and Clevers, 2016); induce double-strand DNA breaks via its
deoxyribonuclease activity to develop cancer (Cuevas-Ramos et al., 2010; He et al., 2019); the
exposure of CRC cells to bacterial flagellin increased IL6 and CCL2/MCP-1 mRNA expression and IL6
excretion. Flagellin was shown to decrease caspase-1 activity and the production of reactive oxygen
species to increase cytotoxicity in C26 cells, deteriorate the C2C12-myotubes, and decrease their
numbers (Pekkala et al., 2019); the DNA damage was obviously enhanced in the mice colon epithelial
cells (2012); Bacteroides fragilis promoted the IL-17 induction with early augmentation by pks+ E. coli
cocolonization (2018); transform the tolerogenic apoptosis of ileal intestinal epithelial cells into
immunogenic cell demise, then elicit IL-1b-dependent follicular T helper responses (Roberti et al., 2020);
Chronic mucosal formation of IL17A produced by Th 17 cell might alter signaling pathways in colon
epithelial cells or induce changes or mutations in DNA structure that facilitated the transformation of
colon epithelial cells contributing to carcinogenesis (Hurtado et al., 2018); upregulated the spermine
oxidase (SMOX) gene expression in human normal colon epithelial cells, the SMO protein played an
important role in the alteration of polyamine metabolism, which catalyzed the oxidation of spermine to
spermidine and produced hydrogen peroxide and aldehydes to result in apoptosis, DNA damage, and

(Continued)
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different from healthy individuals (Goodwin, 1988; Tan and
Wong, 2011; Shanmughapriya et al., 2012; Cavarretta et al.,
2017; Mao et al., 2018; Pushalkar et al., 2018; Brüssow, 2020).

The number of microbes living on and inside the human body
is about the same as the human cells (3.8×1013 bacterial cells
relative to 3.0×1013 human cells) (Ron et al., 2016). Different
microbes colonize different habitats in the human body, which
can not only affect human health by aiding in nutrition,
combating pathogens, modulating the immune system, and so
on, but also be related to the high-risk of tumorigenesis
(Dethlefsen et al., 2007; Cong and Zhang, 2018; Whisner and
Aktipis, 2019). Because of the high mortality associated with
malignant tumors (Whitlock et al., 2015; Collaborators,
U.S.B.o.D et al., 2018; D’Souza et al., 2019), a new direction in
therapy for treating microbes is innovatively put forward.
Although possible relationships have been stated in various
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
separate systems and pathogenic pathways, there is little
correlative literature that sums up different cancers in a
macroscopic view. Systematic information on microbes in
different cancers has been hard to find.

This review aims to macroscopically summarize and verify
the relationships between microbes (mainly bacteria) and
tumoral in situ tissues from urinary, respiratory, digestive,
reproductive, and other systems and to discuss the four major
microbial pathogenic mechanisms related to carcinogenesis
(the modulation of inflammation, immunity, DNA damage,
and metabolism), as well as some synergistic pathogenic
mechanisms (Table 2). We hypothesized that the regular
monitoring of microbial changes might play a supervisory and
manageable role in the development of cancer. This would
represent a new challenge and opportunity for cancer
prevention and treatment.
TABLE 1 | Continued

Cancers Microbes Possible pathogenic mechanisms

consequently the development of CRC (Pekkala et al., 2019); the intestinal infection with Pseudomonas
aeruginosa with a latent oncogenic form
of the Ras1 oncogene was found to lead to massive over-proliferation of intestinal cells through
activating the c-Jun N-terminal kinase (JNK) pathway as a homeostatic compensatory mechanism to
replenish the apoptotic enterocytes (Apidianakis et al., 2009). The Imd–dTab2–dTak1 innate immune
pathway was converged with Ras1V12 signaling on JNK pathway activation to induce the basal invasion
and distant spread of drosophila’s posterior intestinal cells (Bangi et al., 2013).

Gastric cancer H. pylori, Lactic acid bacteria The N-terminus of CagA could interreact with the tumor-suppressing protein and apoptosis-stimulating
protein of p53 to subsequently disrupt the apoptotic function of the p53 tumor suppressor gene, which
meant the possibility of progression to cancer was enhanced (Junaid et al., 2019); reduce the
expression of the AU-rich element RNA-binding factor 1 via the CagA/p-ERK/AUF1 pathway to promote
the incidence of gastric cancer (Guo Y. et al., 2020); the nucleotide transport and metabolism, amino
acid transport and metabolism and the inorganic ion transport and metabolism were significantly
abundant in the tumoral microbes (Liu et al., 2018); H. pylori penetrates the mucosal layer and settles on
the surface of the gastric epithelial cells; releases toxic factors that damage the gastric epithelial cells;
various inflammatory cells and mediators appear; produce immunoreactive substances, in addition to
others (Goodwin, 1988).
Lactic acid bacteria supply the exogenous lactate, which is a fuel source for cancer cells, promoting
inflammation, angiogenesis, metastasis, epithelial-mesenchymal transition, immune evasion, production
of reactive oxygen species and N-nitroso compounds (Vinasco et al., 2019).

HCC H. pylori The intrahepatic immune status and hemodynamics might be changed (Ki et al., 2010; Garcia et al.,
2013; Okushin et al., 2018).

Cervical cancer HPV, Fusobacterium spp.,
Chlamydia trachomatis,
Atopobium vaginae, Dialister
invisus, Finegoldia magna,
Gardnerella vaginalis, Prevotella
buccalis, P. timonensis

Modify the tumor-immune microenvironment through the E-cadherin/b-catenin signaling pathway to
cause cancer (Audirac-Chalifour et al., 2016); induce Th2 immunity through the RORgt+Treg cells, IL-10,
and Th17 cells in the cervical epithelium (Punt et al., 2015).

Ovarian cancer Chlamydia, Gemmata
obscuriglobus, Halobacteroides
halobius, Methyloprofundus
sedimenti, Pediococcus,
Pneumocystis, Acremonium,
Cladophialophora, Malassezia,
Microsporidia Pleistophora,
Brucella, Mycoplasma

Inhibiting apoptosis, inducing the DNA damage response and increasing the susceptibility to other
infections (Shanmughapriya et al., 2012); disrupt genetic stability (Kidane et al., 2014); gene members of
the homologous recombination repair pathway might have frequent genetic and epigenetic alterations in
ovarian cancer; the deficiency in homologous recombination repair was shown to induce genomic
instability and a hyper-dependence on alternative DNA repair mechanisms and to enhance the sensitivity
of double-strand break-inducing agents (Konstantinopoulos and Matulonis, 2018); the metabolic
characteristics have been found to be changed in the tumors, including the enriched and reduced
metabolism (Li, 2020).

Head and neck squamous
cell carcinomas

Actinomycetes, Parvimonas,
Tissierellaceae

Without the secreting protease inhibitors that inhibited tumorigenesis (Hozumi et al., 1972).

OSCC Actinomyces (Actinobacteria),
Firmicutes (Schwartzia and
Selenomonas), Spirochaetes
(Treponema), Porphyromonas
gingivalis

Promote the overexpression of nuclear factor kappa-light-chain-enhancer of activated B cells and the
activation of cyclin-D1, an epidermal growth factor receptor ligand that promote the growth of tumors,
eventually provoking nuclear translocation; epithelial mesenchymal transformation in malignant cells,
tumor proliferation and tumor invasion (Hoppe et al., 2016; Lafuente Ibanez de Mendoza et al., 2019).
November 2020 | Volume 10 | Article 572570
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RELATIONS BETWEEN MICROBES IN
THE IN SITU TISSUE AND TUMORS

Prostate Cancer
A chronic persistent bacterial infection has been hypothesized as
a possible etiology of prostate cancer due to the signs of
inflammation in most precancerous and cancerous tissues (Lax
and Thomas, 2002; Z, 2002; Nelson et al., 2003; Feng et al., 2019).
To discover the relationship between microbes and prostate
cancer, Feng et al. used integrated metagenomics and
metatranscriptomics approaches to analyze 65 Chinese radical
prostatectomy tumoral specimens and the adjacent benign
tissues. The results showed that there was no microbial
difference between the two groups in terms of alpha-diversity.
This phenomenon was different from the expected difference,
which might occur due to the close proximity of the compared
regions and to the field effect. It was unclear whether the
difference in genera or species existed (Feng et al., 2019).

However, Cavarretta et al. used extensive ultradeep
pyrosequencing to detect the microbes in different tissues,
including tumor, peri-tumor (PT), and non-tumor (NT)
tissues from 16 white Caucasian non-diabetic nonobese
prostate cancer patients who had not reported a prior known
sexually transmitted infection or a recent history of urinary tract
infection. Differences in terms of the microbial environment
existed among the different zones of the prostate, especially the
transition zone versus the peripheral zone. The microbes
belonging to the PT region were more similar to the tumor
region with respect to the NT region. This opposite result might
be related to the rigorous entry standard for patients without
other infectious diseases (Cavarretta et al., 2017).

To reduce the impact of close proximity of the compared
regions and the field effect thoroughly, Miyake et al. examined 45
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
prostate cancer patients who underwent robotic prostatectomy
and 40 benign prostatic hyperplasia patients. The rate of
Mycoplasma genitalium infection in the prostate cancer
patients was higher than in the benign prostatic hyperplasia
patients (Miyake et al., 2019). The above microbial differences
between the tumoral lesions and the nonneoplastic tissues
indicated that microbes might be novel biomarkers and/or
therapeutic targets for prostate cancer. In addition to being
affected by microbes, the extracellular environment in prostate
cancer might also conversely promote the establishment of
specific microbes. The dysbiosis of the urinary microbes has
not been fully confirmed as a cause or an effect for cancer
(Cavarretta et al., 2017).

Lung Cancer
The field of lung microbial studies is rapidly growing and has
achieved provocative results regarding the relationship between
lung microbes and cancer (Dickson et al., 2013; Goto, 2020;
Sommariva et al., 2020; Xu et al., 2020). Because lung biopsy
extraction from healthy people is unethical, some experiment
data has been based on bronchoalveolar lavage, bronchoscopic
brushing, or sputum samples, which have showed an abnormal
increase in microbes in lung cancer (Hosgood et al., 2014; Perez-
Losada et al., 2017; Tappenden et al., 2017). Laroumagne et al.
showed that gram-negative bacteria, such as Haemophilus
influenzae, Enterobacter spp. and Escherichia coli, colonized
39.8% of 216 lung cancer bronchoscopic samples (Laroumagne
et al., 2011). Hosgood et al. discovered that Granulicatella,
Abiotrophia, and Streptococcus were enriched in non-smoker
lung cancer cases compared with healthy controls (Hosgood
et al., 2014). Yan et al. compared the salivary samples of 20 lung
cancer patients and 10 control subjects and discovered that
Capnocytophaga, Selenomonas, and Veillonella were more
abundant while Neisseria was less abundant in both squamous
cell carcinoma and adenocarcinoma patients than controls. In
addition, the combination of Capnocytophaga and Veillonella,
two bacterial biomarkers, performed well in the prediction of
squamous cell carcinoma and adenocarcinoma, which might be
related to lung cancer screening (Yan et al., 2015). In a study with
10 sputum samples, Streptococcus viridans was more abundant in
lung cancer patients than controls. Other sixteen bacterial species
were found only in lung cancer patients, meanwhile 7 other
species were revealed only in controls (Cameron et al., 2017). Lee
et al. discovered that two phyla (Firmicutes and TM7) and two
genera (Veillonella and Megasphaera) were relatively abundant
in broncho alveolar lavage fluid of lung cancer patients (Lee S. H.
et al., 2016).

However, samples from these alternative locations might
contain contamination from the upper respiratory tract. The
analysis of lung tissues has provided a more accurate assessment
of microbes in lung cancer (Tappenden et al., 2017; Mao et al.,
2018). H.-X. Liu et al. chose 24 patients with lung cancer,
collecting cancerous sites and contralateral noncancerous sites
as paired samples, and 18 healthy controls undergoing
bronchoscopies. The microbial alpha diversity declined steadily
from the healthy sites to the noncancerous sites to the cancerous
sites. At the genus level, Streptococcus was more abundant in the
TABLE 2 | The main mentioned cancers and microbes in this review from
different pathogenic mechanisms.

Pathogenic mechanisms Cancers Microbes

Inflammation Prostate cancer –

Lung cancer M. tuberculosis
Colorectal cancer Fusobacterium

Immunity Lung cancer M. tuberculosis
PDA -
Colorectal cancer Bacteroides, Fusobacterium
HCC H. pylori
Cervical cancer Fusobacterium spp., HPV

Gene CRC Salmonella enterica
Ovarian cancer Chlamydia
HCC H. pylori

Metabolism Lung cancer Thermus, Legionella
Gastric cancer H. pylori
HCC H. pylori
Ovarian cancer -
OSCC Porphyromonas gingivalis

Synergistic pathogenesis Prostate cancer Mycoplasma genitalium
Lung cancer M. tuberculosis
CRC –

HCC –

gastric cancer H. pylori, lactic acid bacteria
pancreatic cancer –
November 2020 | Volume 10 | Article 572570
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cancer samples than in the controls, while Staphylococcus was
more abundant in the controls (Liu H. X. et al., 2018). Yu et al.
discovered that the alpha diversity in lung tumor tissues was
lower than normal tissues, which was the same as the discovery
by Jin J et al. (Yu et al., 2016; Jin et al., 2019). The phylum
Proteobacteria (predominantly genera Acinetobacter and
Acidovorax) showed a higher abundance and phylum
Firmicutes (genus Streptococcus) and Bacteroides (genus
Prevotella) exhibited a lower abundance in patients with lung
cancer than emphysema (Liu Y. et al., 2018). In addition to
nonmalignant and tumoral tissues, different types of lung cancer
also showed a big difference in microbial content. Adenocarcinoma
tumor tissues were found to have a significantly higher phylogenetic
diversity, an increased relative abundance of Thermus and a
decreased relative abundance of Ralstonia in comparison to
squamous cell carcinoma (Yu et al., 2016). Acinetobacter,
Propionibacterium, Phenylobacterium, Brevundimonas, and
Staphylococcus were the major genera of adenocarcinoma, while
Enterobacter, Serratia, Kluyvera, Morganella, Achromobacter,
Capnocytophaga, and Klebsiella in squamous cell carcinoma.
Legionella was found to be higher in patients with metastatic
tumors (Yu et al., 2016; Gomes et al., 2019). Greathouse et al.
detected that Acidovorax, Klebsiella, Rhodoferax, and Anaerococcus
bacteria showed a significantly higher abundance in squamous cell
carcinoma than in adenocarcinoma (Greathouse et al., 2018). The
abovementioned differences between tumoral and noncancerous
tissues and between different types of lung cancer, whether in
samples of bronchoalveolar lavage, bronchoscopic brushing,
sputum or lung tissues, have greatly advanced microbial studies of
the development of lung cancer (Hosgood et al., 2014; Perez-Losada
et al., 2017; Tappenden et al., 2017; Mao et al., 2018).

Pancreatic Cancer
To learn more about pancreatic cancer, some studies have
pointed out the possible existing relationship between microbes
and tumors (Siegel et al., 2018). The specific microbial
identification might be helpful for the early detection and
treatment of pancreatic cancer (Zhang et al., 2019b).

Ertz-Archambault et al. concluded that Helicobacter pylori
(H. pylori), only for cag-A negative H. pylori strains but not cag-
A positive, and Fusobacterium were possibly the major microbes
affecting pancreatic cancer incidence (Ertz-Archambault et al.,
2017). Mitsuhashi et al. observed 283 formalin-fixed, paraffin-
embedded tissue specimens of pancreatic cancers. Fusobacterium
was detected in 8.8% of the tumor tissues. The Fusobacterium
species in the tumor was associated with a shorter survival in
patients with pancreatic cancer (Mitsuhashi et al., 2015).
However, Fan et al. supposed that Fusobacterium and
Lepotrichia were protective and associated with a reduced risk
of pancreatic cancer (Fan et al., 2018). The diverse results should
also be drawn attention (Mitsuhashi et al., 2015; Fan et al., 2018).
Nilsson et al. detected the DNA of enteric strains of Helicobacter
that colonized the pancreas in 75% of the adenocarcinoma
patients, 57% of the patients with neuroendocrine cancer, 38%
of the patients with multiple endocrine neoplasia, 60% of the
patients with chronic pancreatitis, but not in the control patients
with benign disease or normal pancreas (Nilsson et al., 2006;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Ertz-Archambault et al., 2017). Smruti Pushalkar et al. observed
a greater presence and a larger abundance of bacteria in both
mouse and human pancreatic ductal adenocarcinoma (PDA)
tissues compared with normal pancreas tissues (Pushalkar et al.,
2018). Berk Aykut et al. discovered that there were differences in
the composition of fungi in tumoral samples and normal
pancreatic samples. The Malassezia species was enriched in
PDA tissues in both mice and humans. In addition, ablation of
the microbes could prevent the progression of PDA and
repopulation of the Malassezia species. The presence of H.
pylori and Malassezia in pancreatic cancer was possibly due to
passage of the intestinal flora through the pancreatic duct
(Matsuda et al., 2009; Aykut et al., 2019).

Gastric Cancer
H. pylori is a type of diverse bacterium with several virulent
strain variations. The presence of H. pylori is mainly responsible
for gastric inflammation and ulceration and significantly
increases the risk of gastric cancer. This phenomenon was
discovered by Barry J. Marshall and J. Robin Warren, who
were awarded the Nobel Prize in physiology for this discovery
(Tan and Wong, 2011; Kalaf et al., 2013; Chen et al., 2014).

Uemura et al. chose 1,526 Japanese patients with duodenal
ulcers, gastric ulcers, gastric hyperplasia, or non-ulcer dyspepsia
who underwent endoscopy with biopsy at enrollment and then
again at between 1 and 3 years after enrollment. After the follow-
up period of 7 years, 36 gastric cancers (2.9%) were
demonstrated in 1,246 patients with H. pylori infection and
none in 280 patients without H. pylori infection. It appears
that gastric cancer rarely occurs in the absence of H. pylori
infection. Continuous H. pylori infection has been shown to lead
to a high risk of gastric cancer (Luan et al., 2019). With the
widespread recognition that H. pylori leads to gastric cancer,
people have paid more attention to the eradication of H. pylori,
and the use of quadruple drug therapy is common (Kim, 2019).
Lee et al. conducted a meta-analysis to discover the effectiveness
of treating H. pylori infection. Individuals who underwent an
eradication ofH. pylori demonstrated a lower incidence of gastric
cancer than those who did not receive eradicative therapy. This
result helped to confirm the therapeutic effectiveness of
eradicating H. pylori (Lee Y. C. et al., 2016).

Colorectal Cancer
Because the nonuniform bacteria present in different regions and
stages of colorectal cancer, bacteria might play a role in
prediction of early versus invasive cancer (Zorron Cheng Tao
Pu et al., 2019). In 1971, Moore et al. analyzed the human fecal
floras to know whether bacterial species were directly associated
with high risk of colon cancer. However, this project was
discontinued due to the complexity of the human intestinal
flora and the limitations of statistical and analytical methods
(Finegold et al., 1974; Moore and Holdeman, 1974; Holdeman
et al., 1976). Since then, microbes had been investigated and
recognized as major environmental factors relevant to colorectal
cancer all over the world. Moore et al. reported that 15 bacterial
species were significantly associated with a high risk of colorectal
cancer in 1995 (Moore and Moore, 1995). Iradj Sobhani et al.
November 2020 | Volume 10 | Article 572570
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used pyrosequencing to detect the bacterial genes and reported
on the bacterial differences between cancer tissues and normal
tissues. Bacteroides and Prevotella revealed an elevated level in
cancer compared to normal groups, while other microbes
showed no obvious difference (Sobhani et al., 2011). Kostic
et al. characterized the composition of the microbes in
colorectal cancer using whole genome sequences from nine
tumoral and normal pairs. Fusobacterium sequences were
enriched in carcinomas, while the Bacteroidetes and Firmicutes
phyla were depleted (Kostic et al., 2012). Castellarin et al.
reported that the presence of Fusobacterium nucleatum DNA
was 415 times greater in tumor tissues than adjacent normal
tissues, which might be associated with colorectal cancer
(Castellarin et al., 2012). However, in a replication study,
Fusobacterium nucleatum was detected in only 25% of
colorectal carcinomas, which had no significant difference
between tumor and adjacent tissues. This conflicting results
might due to the differences of the populations or the technical
issues (Repass et al., 2016). The following replication study
showed that the difference in Fusobacterium nucleatum
expression between colorectal cancer and adjacent normal
tissues was smaller than the original research, and this
bacterium was not detected in most samples, which could not
confirm the results previously published, either. It was waiting to
be solved whether the method of qPCR and primer and probe
sequences, similarities, and differences in patient characteristics
(Klevorn and Teague, 2016), and influence of diet on the gut
microbiota (Mehta et al., 2017) could affect the result of this
study (Repass et al., 2018). Just as for tumoral and normal pairs,
the early and invasive colorectal cancer had different
composition of microbes. Oribacterium, Bacterioides, and
Prevotella were enriched in early cancer. Meanwhile,
Bacterioides, Oribacterium, and Fusobacterium were found
more abundant in the invasive cancer samples. The relative
abundance of Fusobacterium increased in invasive cancer
samples compared with early cancer samples in this study
(Kostic et al., 2012; Haruki et al., 2019). Escherichia coli (E.coli)
and Bacteroides fragilis were frequent, persistent mucosal
colonizers of the familial adenomatous polyposis (FAP)
gastrointestinal tract (2018). Citrobacter rodentium infection
has been shown to promote the development of colon tumors
in a murine model (Tan and Wong, 2011). The Apc min/+mice
(the mice model with adenomatous polyposis coli (APC) gene
mutation) gavaged with feces from colorectal cancer patients had
more intestinal tumors compared with healthy controls or the
mice gavaged with phosphate-buffered saline (Li et al., 2019).

Cervical Cancer
The changeable factors altering the vaginal microenvironment,
such as bacterial vaginosis (Guo et al., 2012) or sexually
transmitted infections (Vriend et al., 2015), have been
identified as cofactors in persistent human papillomavirus
(HPV) infections (Clarke et al., 2012). The bacterial differences
of diversity between cancerous and noncancerous tissues had
been discovered. Tango et al. discovered that nine genera and 21
species were significantly more abundant in cervical cancer
group compared to the controls (Tango et al., 2020). Audirac-
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Chalifour et al. selected 32 cases containing 20 non-cervical
lesions (NCL: 10 HPV-negative; 10 HPV-positive), four
squamous intraepithelial lesions (SILs: all HPV-positive), and
eight cervical cancer lesions (CCL: all HPV-positive) to analyze
the alpha-diversity and the b-diversity in each group. HPV-
negative NCL showed a significant difference in the diversity of
the bacteria with SIL and CCL. The CCL samples showed a
higher diversity compared with the NCL-HPV negative samples.
Sneathia spp., Megasphaera elsdenii, and Shuttleworhia satelles
were most representative in SIL. The most abundant species in
the cervix of women with SIL was Sneathia spp., which was less
abundant in patients with cervical cancer, whereas the most
abundant species was Fusobacterium spp. in CCL samples and L.
crispatus and L. iners in samples with a normal cytology.
(Audirac-Chalifour et al., 2016). Not only cervical microbes
but also abnormal vaginal ones were associated with the
development of cervical cancer (Guijon et al., 1992). The
Chlamydia trachomatis were reported to be a possible co-factor
for cervical cancer development (Lehtinen et al., 2011). So et al.
exhibited that the diversity of vaginal microbes was higher in
cervical cancer than normal women. The proportion of
Lactobacillus species were decreased in cervical disease. The
abundance of L. crispatus in vagina was significantly reduced
in cervical cancer. The infections of Atopobium vaginae, Dialister
invisus, Finegoldia magna, Gardnerella vaginalis, Prevotella
buccalis, and P. timonensis were significantly associated with
the high risk of high-grade squamous intraepithelial neoplasia
and cervical cancer (So et al., 2020). The depletion of
Lactobacillus spp. and overgrowth of diverse obligate and strict
anaerobic bacteria were supposed to be relevant to an increased
risk of HPV acquisition and decreased clearance of HPV (Watts
et al., 2005; Gillet et al., 2011; Guo et al., 2012).

Ovarian Cancer
The miscellaneous different microbes in ovarian cancers and
control samples indicate that they might affect the
microenvironment of ovarian tissues. Shanmughapriya et al.
discovered that Chlamydia were present in 70% of the ovarian
cancer tissues compared with healthy controls (Shanmughapriya
et al., 2012). Li et al. proposed that the composition of bacteria
and archaea was significantly different between cancerous and
noncancerous ovarian tissues in situ. Aquificae and
Planctomycetes were found to be increased in cancerous
tissues, while the Crenarchaeota were found to decreased when
compared to noncancerous tissues at the phylum level. In
cancerous tissues at the class level, Spartobacteria were found
to be increased and Sphingobacteriia were found to be reduced.
The phylum, class, order, family, genus and species level of
bacteria were all found to be significantly different between
cancerous and noncancerous tissues. At the species level,
Gemmata obscuriglobus dominated the cancer group, followed
by Halobacteroides halobius and Methyloprofundus sedimenti.
Halobacteroides halobius dominated the control group, followed
by Gemmata obscuriglobus and Methyloprofundus sedimenti. In
genus level, the relative abundance of Paenibacillus, Haloferula,
Subdivision, Zavarzinella, Photorhabdus, Volucribacter,
Blastococcus, Mesotoga, Defluviitoga , and Dorea was
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significantly different between cancer and control groups.
Particularly, the relative abundance of Anoxynatronum
sibiricum might be associated with the stage of tumor (Li,
2020). Banerjee et al. used PathoChip, a very sensitive
approach to detect human pathogenic microorganisms, to
screen the microbes in 99 ovarian cancer samples and 20
matched (tissues adjacent to the tumor deemed to be
noncancerous), as well as in 20 unmatched control samples.
Proteobacteria and Firmicutes were found in the majority of all
three samples, as well as Bacteroidetes, Actinobacteria,
Chlamydiae, Fusobacteria, Spirochaetes, and Tenericutes at
lower percentages. The composition of microbes were quite
different among the ovarian cancer samples, matched samples
and unmatched samples. The bacterial signatures detected in the
cancer samples were significantly higher than the controls.
Pediococcus signatures were detected with the highest
hybridization signal in the ovarian cancer samples, closely
followed by Burkholderia, Sphingomonas, Chryseobacterium,
Enterococcus, Staphylococcus, Treponema, Francisella, and
Shewanella signatures. For other microbes, signatures of
Pneumocystis, Acremonium, Cladophialophora, Malassezia, and
Microsporidia Pleistophora were detected in all ovarian cancer
samples. Rhizomucor, Rhodotorula, Alternaria, and Geotrichum
were shown in more than 95% of ovarian cancer samples.
Brucella, Chlamydia and Mycoplasma were detected in 76%,
60%, and 74% of the ovarian cancer samples, respectively. The
viral sequences were integrated widely into the genome of the
tumor tissue, especially the high risk HPV16 and 18 along with
other low risk HPVs. The integration of HPV genomic regions
into the human genome had been considered as an important
event in cancer development (Funda, 2007; Al-Shabanah et al.,
2013; Kadhim et al., 2014). Merkel cell Polyomaviruses were
significantly detected in the ovarian cancers but undetectable
in the controls (Banerjee et al., 2017). Herpesviruses
(Shanmughapriya et al., 2012; Pandya et al., 2014), and
Retroviruses (McLaughlin-Drubin and Munger, 2008; Johal
et al., 2010) had been detected in 50% and 16%, respectively,
of ovarian cancers. The specific retroviral probes in the majority
of cancers were Mammary Tumor Virus and Foamy Virus. The
genomic integration of human herpesviruses -6a at the telomeric
region could be a contributing factor to ovarian cancer (Banerjee
et al., 2017). The abnormal microenvironment might influence
the incidence and progression of ovarian cancer. However, it
cannot be denied that the specific tumoral environment might
also provide a specialized niche for the microbial colonization
(Banerjee et al., 2017).

Other Cancers
In squamous cell carcinomas, such as head and neck squamous
cell carcinomas and oropharyngeal squamous cell carcinoma
(OSCC), a difference of the relative abundance and diversity in
the microbes between tumoral and normal tissues is proposed to
exist, which reveals the possible relationships between microbes
and cancers in most parts of the human body (Hozumi et al.,
1972; Wang et al., 2017; Wolf et al., 2017; Zhao et al., 2017).
Wang et al. compared the relative abundance of individual taxa
between tumoral and normal tissues in head and neck squamous
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cell carcinomas. For not only Actinomycetes themselves, but also
the parent taxa of Actinomycete which could be up to the phylum
level, their relative abundance was significantly relatively
increased in low-stage patients compared with high-stage
patients. Actinomycetes might play a protective role by
secreting protease inhibitors that inhibit tumorigenesis
(Hozumi et al., 1972). In contrast, the Parvimonas genus and
its family Tissierellaceae were found to be increased in tumors
relative to normal tissues. These differences were more
pronounced in patients with a higher T stage (Wang et al., 2017).

Of the human oral microbes, there are probably 500 to 700
common oral species or phylotypes, which might impact the
luminal system to lead to OSCC (Samaranayake and Matsubara,
2017; Wolf et al., 2017). The oral microbes showed a significant
difference between cancer patients and healthy humans. Wolf
et al. analyzed saliva samples from 11 patients with OSCC and 11
healthy controls by high-throughput sequencing of the 16S
rRNA gene using the MiSeq platform. Signatures of
Bacteroidetes (e.g. Prevotella), Proteobacteria (e.g. Haemophilus
and Neisseria), and Firmicutes (e.g. Streptococcus and Veillonella
) were more abundant in the healthy controls, whereas signatures
of Actinobacteria (e.g. Actinomyces), Firmicutes (e.g. Schwartzia
and Selenomonas), and Spirochaetes (e.g. Treponema) were more
abundant in the OSCC patients (Wolf et al., 2017). Zhao et al.
observed 40 tumoral and matched normal control samples from
the same individual with OSCC. Compared with the
corresponding clinically normal control samples, the diversity
of the bacterial community in the cancer samples was
significantly increased. The lesion surface of OSCC showed a
higher phylogenetic diversity. The bacterial taxa between the
cancer and control samples showed the opposite relationships.
This implies that the enormous changes of bacterial symbiotic
relationships might be associated with the occurrence of OSCC
(Zhao et al., 2017).
DIFFERENT MECHANISMS OF
CARCINOGENESIS

Inflammation
Inflammation can result in a series of pathological changes, such
as cancer and fibrosis (Hanahan and Weinberg, 2000; Karin and
Clevers, 2016). Soluble and cellular inflammatory mediators are
responsible for tumor development and progression (Galdiero
et al., 2017). Up to 10%–20% of all cancers could be attributed to
infections (Grivennikov et al., 2010). The following results
showed some cancers that were related to inflammation caused
by microbes.

In recent studies, human microbes might influence the
initiation and/or progression of prostate cancer through both
direct and indirect interactions, such as infecting and inducing
both symptomatic and asymptomatic inflammatory responses in
the prostate (Yoon et al., 2012; Caini et al., 2014; Cavarretta
et al., 2017).

The distribution of microbes in the lung has been shown to be
affected by many factors, such as environment and geography
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(Ubags and Marsland, 2017). Pre-existing Mycobacterium
tuberculosis might increase the risk of lung cancer (Ardies,
2003; Khoruts, 2018). The relationship between M. tuberculosis
and lung cancer was proposed based on previous studies of
chronic inflammation-associated carcinogenesis, showing
increase in tumor necrosis factor and excessive and persistent
local inflammation at sites of repair and fibrosis (Coussens and
Werb, 2002; Ardies, 2003). Some cytokines might promote the
survival of malignant cells as autocrine growth factors
(Mantovani, 2001).

The animal and human studies showed that inflammation
might have an impact on the development of colorectal cancer
(de Visser et al., 2006; Kuraishy et al., 2011; Kux and Pitsouli,
2014; Karin and Clevers, 2016; Li et al., 2019). Microbes in
colorectal cancer patients might destroy the intestinal barrier,
leading to the subsequent induction of pro-inflammatory
cytokines, such as the reactive oxygen species (ROS), which
promoted regeneration and predisposed to tumorigenesis
(Kuraishy et al., 2011; Kux and Pitsouli, 2014; Li et al.,
2019). The blood cell infiltration was thought to be induced
by in te s t ina l inflammat ion and tumor-promot ing
inflammation in mammals possibly (de Visser et al., 2006).
It was reported that the tissue regeneration caused by
inflammation might play a role in inflammation-driven
carcinogenesis. Inflammation due to microbial pathogens
could interfere with signaling pathways to affect several
cytokines and growth factors, such as IL-6, IL-2, and tumor
necrosis factor, to control the process of regeneration in
injured intestinal mucosa. The signaling pathways included
mitogen-activated protein kinase–AP-1, IKK–NF-kB, Hippo–
YAP, Notch, the Epidermal Growth Factor Receptor, Target-
of-rapamycin/Vascular Endothelial Growth Factor Receptor,
JAK/STAT, and Wnt/Wg signaling, and so on (Stavria and
Yiorgos, 2013; Kux and Pitsouli, 2014). Inflammation and
cancer might affect and promote each other. The cancer cells
could also express inflammatory cytokines in turn to recruit
immune cells to cause tumor-related inflammation (Kuraishy
et al., 2011). Fusobacterium sequences were enriched in
carcinomas (Kostic et al., 2012), which could bind to host
epithelial Cadherin 1 through the adhesion of FadA and
invade epithelial cells from through the E-cadherin/b-
catenin signaling to induce inflammation and tumor cell
growth in transformed cells (Rubinstein et al., 2013; Wong
and Yu, 2019; Guo P. et al., 2020).

Immunity
Microbes might affect the immune status to promote the
development and progression of several cancers, as described
in a number of studies (Rooks and Garrett, 2016; Goodman and
Gardner, 2018; Pushalkar et al., 2018). Different immune status
can promote the tumor progression. Cancer and cancer-related
disease can be affected by the immune status in turn. For
example, the occurrence of tuberculosis in lung cancer patients
might be accelerated after chemotherapy due to low immunity
(Christopoulos et al., 2014; Khoruts, 2018; Pandey et al., 2019). A
low immune status that means immunosuppression is one of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
potential mechanisms of microbial carcinogenesis that allow the
tumor to grow and infiltrate (Shalapour and Karin, 2019). The
tumor-associated macrophages play a key role in inhibiting T cell
recruitment and function, thus facilitating tumor immune escape
(Quaranta and Schmid, 2019). Not only the low but also the
wrong and excessive immune status could affect the incidence of
cancer. Once the innate immunity is activated, the MHC class I
and II and costimulatory molecules are upregulated, as well as
numerous inflammatory chemokines and cytokines, then the
adaptive immune cells are activated to amplify the initial
inflammatory response (Monney et al., 2002; Steinman, 2012).
Tumor-associated neutrophils could release ROS and neutrophil
elastase to mediate cancer cell killing and promote metastasis
(Galdiero et al., 2013). Tumor-associated macrophages could
induce the wrong immune reaction to play a supportive role in
cancer development and progression (Galdiero et al., 2013;
Ruffell et al., 2014)

In PDA, it was demonstrated that microbes might activate
selected toll-like receptors (TLR) in monocytic cells to generate a
tolerogenic immune program. TLR2 and TLR5 ligation was
demonstrated to induce innate and adaptive immune
suppression, which promote PDA. Without the TLR signaling,
the immune suppression by the macrophages would not occur.
Therefore, the management of microbes to reduce immune
suppression might be an attractive method for pancreatic
cancer treatment (Pushalkar et al., 2018).

The importance of gut microbes in intestinal carcinogenesis
in modulating the tumor immune microenvironment has been
improved by several researches (Rooks and Garrett, 2016;
Goodman and Gardner, 2018; Gopalakrishnan et al., 2018;
Routy et al., 2018; Tilg et al., 2018). In MSI-high colorectal
cancer, the abundant neoantigens due to a large number of
transcoding mutations could lead to a strong immune response
to the tumor (Ogino et al., 2009; Nosho et al., 2010; Rizvi et al.,
2015; Chantziantoniou et al., 2017; McDermott et al., 2017).
The microbes in ileum could transform the tolerogenic
apoptosis of ileal intestinal epithelial cells into immunogenic
cell demise, then elicit IL-1b-dependent follicular T helper
responses (Roberti et al., 2020). As for the sustained survival
of colorectal carcinoma (CRC) cells, Fusobacterium could exert
an immunosuppressive effect in the cancer microenvironment
(Saito et al., 2016; Thiele Orberg et al., 2016; Hussan et al.,
2017; Park et al., 2017; Ye et al., 2017). IL17 immune cells and
Bacteroides were found to have infiltrated the majority of the
tumor samples and the lamina propria of homologous normal
mucosa in cancer patients, while they were rarely or not
detected in the mucosa of normal individuals. It was
concluded that Bacteroides might change the immune
microenvironment relative to the incidence of cancer
(Sobhani et al., 2011). Jasemi et al. classified Bacteroides
fragilis into three groups based on biofilm formation ability
and toxin encoding gene presence and its flanking region.
Enterotoxigenic Bacteroides fragilis strains with Bacteroides
fragilis toxin gene was defined as pattern I, and non-toxigenic
strains were defined as Pattern II and III. Pattern II was defined
as strains without the pathogenicity island region and flanking
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region. Pattern III was defined as strains without the
pathogenicity island and with flanking region. The
abundance of patterns were different between CRC and
normal tissues, which meant pattern I > III > II in normal
tissue and pattern II > III > I in CRC tissue. The strains isolated
from CRC tissue had higher biofilm forming ability than the
strains isolated from normal tissue (Jasemi et al., 2020).
Intestinal mucosal IL17A could not only protect the intestine
from pathogens but also provide transition to promote CRC
development. Chronic mucosal formation of IL17A produced
by Th 17 cells might alter signaling pathways in colon epithelial
cells or induce changes or mutations in DNA structure that
facilitated the transformation of colon epithelial cells
contributing to carcinogenesis (Hurtado et al., 2018).

H. pylori has been shown to play a possible role in
hepatocellular carcinoma (HCC) because the H. pylori genes
frequently has been detected in resected HCC specimens (Guo
et al., 2012; Mitsuhashi et al., 2015; Lee Y. C. et al., 2016; Okushin
et al., 2018; Haruki et al., 2019). Some in vitro studies using
cancer cell lines discovered an indirect pathogenesis, possibly
including immune changes, due to H. pylori in HCC (Zhang
et al., 2005; Ito et al., 2008; Pekkala et al., 2019). HCC is usually
accompanied by liver fibrosis in which the intrahepatic immune
status and hemodynamics might be changed, leading to the
inflow of H. pylori and escape from immunity in the liver.
However, it was not confirmed whether H. pylori played a
causative role in the development of HCC. In animal
experiment, H. pylori infection did not promote the
development of HCC in transgenic mice expressing HCV
proteins (Ki et al., 2010; Garcia et al., 2013; Okushin et al.,
2018). Therefore, a correlation between H. pylori infection and
HCC was not strongly supported. Further experiment should
be performed.

Microbes might produce immune substances to modulate the
development of SIL and cervical cancer, which could be potential
biomarkers in cervical cancer (Audirac-Chalifour et al., 2016).
Specific bacteria might induce Th2 immunity through the
RORgt+Treg cells, IL-10, and Th17 cells in the cervical
epithelium (Punt et al., 2015). The activities of these
substances induced an abnormal state in the epithelial cells
which promoted the incidence of cervical cancer (Bermudez-
Morales et al., 2008; Punt et al., 2015).

Cancer immunotherapy has become increasingly
sophisticated, especially cancer vaccines that stimulate the
active immune system to target the tumor neo-antigens, which
are unique to each patient’s tumor, and to facilitate recognition
and elimination of transformed cells by the immune system
(Fioretti et al., 2014; Mannan, 2016; Hobernik and Bros, 2018;
Pandey et al., 2019; Shukla et al., 2020). For example, the creation
of the HPV vaccine is well known for the prevention of cervical
cancer. For the vaccines using recombinant DNA technology to
prevent HPV infection, there are three types at present, including
a bivalent vaccine against HPV16 and HPV18 (Cervarix), a
tetravalent vaccine against HPV6, 11, 16, and 18 (Gardasil),
and a nonavalent vaccine against HPV6, 11, 16, 18, 31, 33, 45, 52,
and 58 (Gardasil 9) (Garbuglia et al., 2020). The immunotherapy
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of breast cancer has been explored, including the use of targeted
antibodies such as trastuzumab and pertuzumab. However, these
antibodies are effective approaches only for patients whose
tumors overexpress the human epidermal growth factor
receptor 2 (HER2) antigen. For those patients without the
HER2 antigen, these antibodies might not be useful (Coussens
and Werb, 2002; Combadiere and Mahe, 2008; Mittendorf et al.,
2011; Berger and Wunderink, 2013; Mattheolabakis et al.,
2016). Therefore, a vaccine for breast cancer has been explored
as an alternative to support the unmet needs of such patients,
such as a particulate vaccine delivered via the skin, which
was found to be a better route of immunization in a murine
model (Weitzman and Gordon, 1990).The vaccines mentioned
above were shown to be effective in cancer immunotherapy.
Therefore, new cancer vaccines would greatly progress the
treatment of cancer (Mattheolabakis et al.; Mittendorf et al.;
Coussens and Werb, 2002; Combadiere and Mahe, 2008; Berger
and Wunderink, 2013; Chablani et al., 2019; Garbuglia
et al., 2020).

DNA Damage
Genetic changes, mainly those associated with DNA damage and
repair, are known to be linked to cancer. If the DNA damage
induced by microbes is not appropriately repaired, this might
lead to mutations and genomic instability, eventually leading to
cancer (De Bont and van Larebeke, 2004; Trabulus et al., 2012;
Kidane et al., 2014). All of the following cancers involved DNA
damage including CRC, ovarian cancer, HCC, gastric cancer, and
lung cancer (Nalbandian et al., 2009; Shanmughapriya et al.,
2012; Konstantinopoulos and Matulonis, 2018; Junaid et al.,
2019b; Martin et al., 2019).

The enrichment of bacterial families in the CRC microbes is
shown to produce genotoxins inducing damage in the host cell
DNA, which might possibly lead to colorectal cancer. Martin
et al. discovered that infection with Salmonella enterica, a
genotoxin-producing bacterium, could enhance genomic
instability both in two-dimensional and organotypic three-
dimensional tissue models in FAP and the majority of sporadic
CRC (Fearon, 2010). The APC gene might be lost after exposure
to the genotoxic bacteria. The deficiency in APC is associated
with the sustained activation of the DNA damage response and
the reduced capacity to repair different types of damage,
including DNA breaks and oxidative damages. Infection with
genotoxic Salmonella was shown to prevent cell cycle arrest in
APC-deficient cells (Martin et al., 2019). The cytolethal
distending toxin produced by Escherichia and Campylobacter
spp. could induce double-strand DNA break via its
deoxyribonuclease activity to develop cancer (Cuevas-Ramos
et al., 2010; He et al., 2019). Colibactin produced by members
of the Enterobacteriaceae family could also induce DNA strand
break (Buc et al., 2013). B. fragilis toxin (Goodwin et al., 2011)
and ROS produced by E. Faecalis were both associated with DNA
damage and genomic instability in vitro (Huycke, 2002; Wang
and Huycke, 2007).

In ovarian cancer, Chlamydia were found to exist in tumor
tissues, which might contribute to cancer through inhibiting
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apoptosis, inducing the DNA damage response and increasing
the susceptibility to other infections (Shanmughapriya et al.,
2012). Like Chlamydia, microbes might disrupt genetic stability
to increase the incidence of ovarian cancer (Kidane et al., 2014).
Large-scale genomic studies have shown that gene members of
the homologous recombination repair pathway might have
frequent genetic and epigenetic alterations in ovarian cancer.
The deficiency in homologous recombination repair was shown
to induce genomic instability and a hyper-dependence on
alternative DNA repair mechanisms and to enhance the
sensit iv i ty of double-strand break-inducing agents
(Konstantinopoulos and Matulonis, 2018).

As far as we know, H. pylori is related to HCC and gastric
cancer. The cytotoxin-associated gene (Cag) pathogenicity
island, which encodes a type IV secretion system that injects
CagA into epithelial cells, is well known among the H.
pylori virulence factors (Censini et al., 1996; Odenbreit,
2000; Asahi et al., 2000; Stein et al., 2000; Lai et al., 2006;
Moore et al., 2011). The N-terminus of CagA could interreact
with the tumor-suppressing protein and apoptosis-
stimulating protein of p53 to subsequently disrupt the
apoptotic function of the p53 tumor suppressor gene, which
meant the possibility of progression to cancer was enhanced
(Junaid et al., 2019).

Regional tumor peptides and even radiotherapy might lead to
a microenvironment deregulation in granulomas, allowing the
consequent proliferation of M. tuberculosis (Christopoulos et al.,
2014). Chronic M. tuberculosis infection in a mouse model also
induced squamous cells to aggregate in the lung, with
malignancy and tumorigenicity possibly due to the DNA
damage. The accumulation of DNA damage would be
malignant and ultimately lead to lung cancer (Nalbandian
et al., 2009).

Metabolism
Tumor cells must increase the import of nutrients from their
environment to maintain a high metabolic level, due to their
rapid growth compared with normal or quiescent cells, by
adapting their metabolism to be more dependent upon aerobic
glycolysis and glutaminolysis (Kidane et al., 2014; Deberardinis
and Chandel, 2016; Weyandt et al., 2017). Warburg effect is the
switched metabolism existing in cancerous cells, which primarily
undergo aerobic glycolysis instead of oxidative metabolism. The
tumor cells express increased glucose uptake and elevated lactate
production different from the normal metabolism. Butyrate is the
primary energy source of normal colonocytes, which could
accumulate and inhibit the proliferation of cancerous
colonocytes when the Warburg effect happens. Cancer cell
metabolism could drive the divergence of epigenomic and
transcriptome profiles in cancer cells away from their original
cells and promote tumor development (Racker, 1972; Vander
et al., 2009; Donohoe et al., 2012). The metabolic reprogramming
of tumor cells including altering bioenergetics, enhancing
biosynthesis, and redoxing balance improve cell fitness and
provide a selective advantage during tumorigenesis
(Deberardinis and Chandel, 2016). These activities enhance or
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suppress in tumor cells compared with normal metabolism
which has a stable anabolic program (Deberardinis and
Chandel, 2016). The tumor cells have various mechanisms to
maintain the viability in nutrient- and oxygen-poor
environments, such as decreasing their demand for ATP or
stimulating ATP production by activating adenylate kinase
(Strohecker and White, 2014; Deberardinis and Chandel,
2016). For microorganisms, all of them must regulate the
uptake of nutrients and coordinate the metabolism of carbon,
energy, and nitrogen (Chubukov et al., 2014). The normal
microbe-derived metabolites containing SCFAs (particularly
acetate, propionate, and butyrate) have the robust capacity to
dampen intestinal inflammation, protect against pathogen
invasion and maintain barrier integrity. Once this process is
disrupted, the abnormal metabolism might affect the tumor
growth (Zhang et al., 2019a). The metabolic substances, which
helps cells acquire the energy that they need for growth,
proliferation, and the maintenance of critical cellular processes,
can support the biological processes that enable tumor growth
(Vander Heiden and DeBerardinis, 2017; Weyandt et al., 2017).
In addition, many microbes can produce toxins, specifically
those that disrupt cellular signaling, to disturb the regulation
of cell growth (Wei et al., 2012). As the metabolic profiles of
tumor cells distinguishes them from normal cells and are
responsible for their growth and survival, the metabolism
would be innovative targets for the management and
prevention of cancers (Weyandt et al., 2017).

In lung cancer patients, Ke et al. discovered that the metabolic
characteristics of microbes were different in diverse sampling
sites. Microbes in the tumors exhibited metabolic behaviors;
antimicrobial resistance, protein folding, sorting and
degradation, glycan biosynthesis and metabolism, metabolism
of cofactors and vitamins and nucleotide metabolism were found
to be enriched only in cancer patients (Wang et al., 2019). For
example, airway microbes were observed to upregulate the
phosphoinositide 3-kinase pathway, involved in the incidence
of lung cancer, to participate in regulating cell proliferation,
survival, and differentiation (Mendoza et al., 2011; Tsay
et al., 2018). Thermus and Legionella were speculated to play a
potential role in tumor progression, partially through different
metabolic-related functions, such as reduced signal transduction,
increased excretory systems, amino acid metabolism,
aldosterone-regulated sodium reabsorption, or amoebiasis
pathways (Gomes et al., 2019).

H. pylori has been shown to significantly increase the risk of
gastric cancer (Tan and Wong, 2011; Kalaf et al., 2013; Chen
et al., 2014). Guo et al. concluded H. pylori infection might
reduce the expression of the AU-rich element RNA-binding
factor 1 via the CagA/p-ERK/AUF1 pathway to promote the
incidence of gastric cancer (Guo Y. et al., 2020). Xiaosun, et al.
revealed the differences in metabolism among tumoral,
peritumoral, and normal tissues. The nucleotide transport and
metabolism, amino acid transport and metabolism and the
inorganic ion transport and metabolism were significantly
more abundant in the tumoral microbes, which were relevant
to gastric cancer (Liu et al., 2018).
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H. pylori might induce the incidence of HCC through not
only the immune pathway but also metabolic-related way. Ki
et al. postulated that H. pylori infection might promote the TGF-
b1-dependent oncogenic pathway to disturb the balance between
hepatocyte apoptosis and proliferation in a murine model of
CCl4-induced fibrosis (Ki et al., 2010; Garcia et al., 2013;
Okushin et al., 2018). After the intestinal barrier is damaged,
the gut microbes might putatively flow into the portal vein to
settle into the liver (Okushin et al., 2018). Subsequently, these
microbes might cause HCC through multiple mechanisms,
including the release of cancer-promoting and senescence-
promoting metabolites, such as deoxycholic acid from the
dysbiotic microbes, and an increased hepatic exposure to gut-
derived microbiota-associated molecular patterns, such as
lipopolysaccharide. The above conditions might promote
hepatic inflammation, fibrosis, proliferation, and the activation
of anti-apoptotic signals in turn (Yu and Schwabe, 2017). HCC
might be prevented from manipulating the gut microbes by diet,
lifestyle, antibiotics and probiotics, due to the abovementioned
pathogenic mechanisms (Mima et al., 2017).

In ovarian cancer, it was found 46 different Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways in the
bacteria of ovaries between cancer and control groups. The
changeable metabolic characteristics in the tumors included
increased pathways related to streptomycin biosynthesis,
carbon fixation in photosynthetic organisms, glycosphingolipid
biosynthesis-globo series, cyanoamino acid metabolism,
glycerophospholipid metabolism, butirosin and neomycin
biosynthesis, other glycan degradation, and so on. As for the
decreased pathways in cancer tissue, the bacteria showed the
reduced alpha-linolenic acid metabolism, biosynthesis of
unsaturated fatty acids, sulfur metabolism, biotin metabolism,
protein kinase activity, biosynthesis of ubiquinone and other
terpenoid-quinones, two-component system, folate biosynthesis,
cell motility and secretion, citrate cycle, and ribosome biogenesis
in eukaryotes. These enrichments and reductions of pathways
might be the consequence of the microbial effect, which were
involved in the development of cancer (Li, 2020).

Lafuente Ibáñez de Mendoza et al. concluded that
Porphyromonas gingivalis might play an important role in
OSCC. The overexpressed defensins in the OSCC samples,
which contained human neutrophil peptide-2 and human a-
defensin, might promote the overexpression of nuclear factor
kappa-light-chain-enhancer of activated B cells and the
activation of cyclin-D1, an epidermal growth factor receptor
ligand that promoted the growth of tumors, eventually
provoking nuclear translocation. The possible mechanisms
include epithelial mesenchymal transformation in malignant
cells, tumor proliferation, and tumor invasion. However, the
accuracy of this finding is still waiting to be confirmed in in vitro
studies and animal models (Hoppe et al., 2016; Lafuente Ibanez
de Mendoza et al., 2019).

Synergistic Pathogenesis
Although the pathogenic mechanisms of microbes in cancer can
be divided into the four main areas of modulating inflammation,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
immunity, DNA damage, and metabolism, microbes can induce
the incidence of cancer through multiple pathogenic
mechanisms. In other words, the abovementioned pathogenic
mechanisms may not work absolutely independent of each other
(Francescone et al. 2011; Bouvard et al., 2009; Kidane et al., 2014;
Weyandt et al., 2017). One type of cancer might occur due to two
or more of these microbial mechanisms, as suggested in the
following studies. The different pathogenic mechanisms might
overlap in a single cancer.

The metabolic substances released by microbes can induce
inflammatory, immune, genetic, and metabolic responses. It has
been estimated that over 25% of human cancers are related to a
chronic inflammatory status, which might be a consequence of
microbial infection and immunologic abnormality (Bouvard
et al., 2009). The stressed or dying cells due to microbial
infection recruit different types of immune cells including
macrophages, neutrophils, T-cells, and B-cells to promote
inflammation further to activate various tumor-promoting
inflammatory cytokines (Kuraishy et al., 2011). Chronic
inflammation could produce an immunosuppressive
microenvironment to support tumor development and inhibit
anti-tumor immunity (Shalapour and Karin, 2019). In prostate
cancer, Mycoplasma hyorhinis might induce tumorigenesis not
only indirectly through a partial chronic inflammatory response,
but also directly through bacterial protein products, such as p37,
that exert oncogenic effects (Ketcham et al., 2005; Goodison
et al., 2007). In lung cancer, microbes might lead to malignancy
through microbial dysbiosis, genotoxicity and virulence effects,
inflammation, immune responses, and metabolism (Weitzman
and Gordon, 1990; Coussens and Werb, 2002; Ballaz and
Mulshine, 2003; Roesler et al., 2012; Liu H. X. et al., 2018).
After damaging the pulmonary epithelium, the cytokines,
released by infiltrating lymphocytes and macrophages, might
induce a cytokine cascade and a proliferation of the lung
epithelial cells. Subsequently, the breaks in the chromosomal
strands and the accumulation of DNAmutational changes might
be eventually activated by ROS (Weitzman and Gordon, 1990;
Ballaz and Mulshine, 2003).

The gut microbes, which are well known in the development
of colorectal cancer, induce various physiological functions,
including cell proliferation, angiogenesis and apoptosis (Dolara
et al., 2002; Stappenbeck et al., 2002; Rakoff-Nahoum and
Medzhitov, 2007; Cheesman et al., 2011). The intestinal
microbes in some sub-groups of colorectal cancer patients
contain more bacteria that could produce metabolites or
genotoxins, such as cytolethal distending toxin and colibactin,
to result in gastrointestinal tract inflammatory diseases or to
affect the tumorigenesis of colorectal cancer. Some of them can
be directly pro-carcinogenic or opportunistic microorganisms in
the tumor-associated microenvironment. For example, The
cytolethal distending toxin produced by Escherichia and
Campylobacter spp. (Cuevas-Ramos et al., 2010; He et al., 2019),
Colibactin produced by members of the Enterobacteriaceae family
(Buc et al., 2013), B. fragilis toxin (Goodwin et al., 2011) and ROS
produced by E. Faecalis could induce the DNA strand break which
might be associated with tumorigenesis (Huycke, 2002; Wang and
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Huycke, 2007). E. coli containing the polyketide synthase (pks)
genotoxic island induced the DNA damage in vitro and in vivo
and developed CRC in azoxymethane-treated IL-10 deficient mice
(2012). After the cocolonization with pks+ E. coli and Bacteroides
fragilis, the DNA damage was obviously enhanced in the mice
colon epithelial cells. The mucus degradation increased adhesion
of pks + E. coli and induced DNA damage in colon epithelial cells.
Bacteroides fragilis promoted the IL-17 induction with early
augmentation by pks+ E. coli cocolonization (Dejea et. al., 2018).

The interaction between microbes and colon tissue might
activate the pro-carcinogenic signaling pathways and result in
molecular changes, ultimately leading to cancer (Wong and Yu,
2019; Zorron Cheng Tao Pu et al., 2019). Human CRC tumors
expressed more chemokine (C-C motif) ligand 2/monocyte
chemoattractant protein 1 (CCL2/MCP-1) than the healthy
colon sites. Satu Pekkala et al. discovered that the exposure of
CRC cells to bacterial flagellin increased interleukin 6 (IL6) and
CCL2/MCP-1mRNA expression and IL6 excretion. Flagellin was
shown to decrease caspase-1 activity and the production of ROS
to increase cytotoxicity in CRC cells. Conditioned media from
flagellin-treated CRC cells deteriorated the C2C12-myotubes and
decreased their numbers. Increased flagellated microbes might
promote CRC survival by inducing inflammatory proteins,
including MCP-1 and others (Pekkala et al., 2019). In animal
studies, evidence has suggested that microbes can directly
contribute to the development of CRC through interaction
with the immune system, the production of cancer-associated
metabolites and the release of genotoxic virulence factors
(Arthur et al., 2012; Kostic et al., 2013; Zackular et al., 2013).
The Bacteroides fragilis toxin might be a risk factor for
developing CRC, which upregulated the spermine oxidase
(SMOX) gene expression in human normal colon epithelial
cells (Goodwin et al., 2011). The SMOX protein played an
important role in the alteration of polyamine metabolism,
which catalyzed the oxidation of spermine to spermidine and
produced hydrogen peroxide and aldehydes to result in
apoptosis, DNA damage, and consequently the development of
CRC (Goodwin et al., 2011; Snezhkina et al., 2016). In a
drosophila model of gut pathogenesis, the intestinal infection
with Pseudomonas aeruginosa could activate the c-Jun N-
terminal kinase (JNK) pathway as a homeostatic compensatory
mechanism to replenish the apoptotic enterocytes. However,
when Pseudomonas aeruginosa infected animals with a latent
oncogenic form of the Ras1 oncogene, this homeostatic
mechanism could lead to massive over-proliferation of intestinal
cells (Apidianakis et al., 2009). The Imd–dTab2–dTak1 innate
immune pathway was converged with Ras1V12 signaling on JNK
pathway activation to induce the basal invasion and distant spread
of drosophila’s posterior intestinal cells (Bangi et al., 2013). It
means that bacterial infection could directly synergize with the
genetic background to initiate stem cells-mediated tumorigenesis
(Apidianakis et al., 2009; Bangi et al., 2013).

In addition to CRC, intestinal microbes have been involved in
hepatic diseases due to the immunologic and metabolic
communications between the liver and the intestine (Aykut
et al., 2019). Yu et al. highlighted five potential key pathways
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that drove cancer-promoting liver inflammation, fibrosis, and
genotoxicity, including leaky gut, microbe-associated molecular
patterns (Toll-like receptor axis), dysbiosis, bacterial metabolites,
and immunosuppression, which might synergize (Yu and
Schwabe, 2017).

The tight connection betweenH. pylori and gastric cancer and
the specific pathogenic mechanisms involving inflammation,
immunity, and metabolism have been proposed (Goodwin,
1988). One well-known theory for the pathogenesis of H.
pylori in gastric cancer is known as the leaking roof theory,
which contains four potential steps that ultimately result in the
barrier mechanism of the gastric mucosa being damaged. First,
H. pylori penetrates the mucosal layer and settles on the surface
of the gastric epithelial cells. Second, the bacteria releases toxic
factors that damage the gastric epithelial cells. Third, various
inflammatory cells and mediators appear. Fourth, the bacteria
produce immunoreactive substances, in addition to others. The
stepwise reaction might promote the gastric cancer (Goodwin,
1988). Further research is needed to confirm this theory. It was
proposed that eradication of H. pylori infection could be used to
prevent and cure gastric cancer (Tan and Wong, 2011; Lee Y. C.
et al., 2016). In addition to H. pylori, lactic acid bacteria are
thought to be associated with gastric cancer. Its pathogenic
mechanism possibly includes the supply of exogenous lactate,
which is a fuel source for cancer cells, promoting inflammation,
angiogenesis, metastasis, epithelial-mesenchymal transition,
immune evasion, production of ROS and N-nitroso
compounds. Without the fuel, the survival rate of tumor cells
would be greatly reduced. Lactic acid bacteria have anti-H. pylori
properties that enable colonization by other non-H. pylori
carcinogenic pathobionts (Vinasco et al., 2019).

To discover whether some other microbial mechanisms
related to pancreatic cancer exist, besides changes in immune
status (Pushalkar et al., 2018), Berk Aykut et al. observed that
activation of the mannose-binding lectin–C3 cascade through
the C3 complement pathway might cause inflammation induced
by the oncogenic Kras, leading to fungal dysbiosis and promoting
tumor progression. Inflammation might work as a consequence
in metabolic progression, leading to cancer (Aykut et al., 2019).
CONCLUSIONS

From the abovementioned polysystemic cancers, we summarized
the diversity and distinguishing quantities of microbes, especially
bacteria, in normal and tumoral tissues in most types of
malignant tumors, which helped us promote the idea of an
existing relationship between cancer and microbes (Nilsson
et al., 2006; Guo et al., 2012; Kostic et al., 2012; Garrett, 2015;
Mitsuhashi et al., 2015; Audirac-Chalifour et al., 2016; Lee Y. C.
et al., 2016; Liu H. X. et al., 2018; Okushin et al., 2018; Aykut
et al., 2019; Haruki et al., 2019). Analyzing microbial changes
could indicate the etiopathology of disease, help in the design of
novel diagnostic and treatment strategies, supervise and manage
disease progression, and predict cancer prognoses (Liu H. X.
et al., 2018). Bacteria have so far remained as the most studied
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microbes worldwide, and bacteria might affect the incidence and
development of cancer through four major special pathogenic
mechanisms, including modulating inflammation, immunity,
DNA damage, and metabolism.

However, the formation of some cancers is not limited to only
one pathogenic mechanism. Different pathogenic mechanisms
might overlap in one cancer to induce tumorigenesis (Bouvard
et al., 2009; Francescone et al., 2014; Kidane et al., 2014; Weyandt
et al., 2017). Many exact microbial-driven pathogenic mechanisms
of cancers have not yet been discovered. It is not known whether
the role of the microbes is the etiology or the consequence
(Christopoulos et al., 2014; Banerjee et al., 2017; Cavarretta
et al., 2017; Khoruts, 2018; Pandey et al., 2019).Though many
studies have considered microbes as the etiology of cancers, we
cannot deny the possibility that microbial changes are an effect of
some cancers. The specific tumoral environment of low immunity
might provide a specialized niche to help microbes colonize
(Christopoulos et al., 2014; Banerjee et al., 2017; Cavarretta
et al., 2017; Khoruts, 2018; Pandey et al., 2019). More studies
should be performed to confirm the real role of microbes. If the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
etiologic role and the precise pathogenic mechanisms of microbes
in different cancers are determined clearly, the early prevention
and treatment of cancers will greatly progress with a higher
efficiency and accuracy.
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