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Abstract Many voltage-dependent ion channels are regulated by accessory proteins. We

recently reported powerful regulation of Kv1.2 potassium channels by the amino acid transporter

Slc7a5. In this study, we report that Kv1.1 channels are also regulated by Slc7a5, albeit with

different functional outcomes. In heterologous expression systems, Kv1.1 exhibits prominent

current enhancement (’disinhibition’) with holding potentials more negative than �120 mV.

Knockdown of endogenous Slc7a5 leads to larger Kv1.1 currents and strongly attenuates the

disinhibition effect, suggesting that Slc7a5 regulation of Kv1.1 involves channel inhibition that can

be reversed by supraphysiological hyperpolarizing voltages. We investigated chimeric combinations

of Kv1.1 and Kv1.2, demonstrating that exchange of the voltage-sensing domain controls the

sensitivity and response to Slc7a5, and localize a specific position in S1 with prominent effects on

Slc7a5 sensitivity. Overall, our study highlights multiple Slc7a5-sensitive Kv1 subunits, and identifies

the voltage-sensing domain as a determinant of Slc7a5 modulation of Kv1 channels.

Introduction
A wide array of ion channels underlie distinct and regulated patterns of electrical signaling in excit-

able cells (Gutman et al., 2005; Yu et al., 2005). Ion channel subtypes possess different voltage

dependence, kinetics, sensitivity to signaling cascades, regulation by physiological ions, and other

stimuli that contribute to the moment-to-moment and long-term adaptability of electrical signaling

in the body. In contrast to the rich complexity of multi-protein complexes known to regulate many

synaptic neurotransmitter receptors (Jacobi and von Engelhardt, 2018; Tomita, 2019), the majority

of research on voltage-dependent potassium (Kv) channels has focused on mechanisms of voltage

sensitivity. Studies of the Drosophila Shaker channel, the first cloned Kv channel, have generated a

detailed understanding of core principles of voltage-dependent regulation (Bezanilla, 2008; Beza-

nilla, 2006; Tempel et al., 1988; Timpe et al., 1988). In comparison, regulation of mammalian Kv

channels by extrinsic factors such as accessory proteins or signaling cascades is less understood. It is

noteworthy that the Kv channels are the most diverse ion channel gene family, with nearly 50 human

genes known to encode pore-forming subunits, but there are a relatively small number of recognized

and well-studied accessory proteins (Gutman et al., 2005).

Based on prior observations of variable Kv1.2 function in different cell types, we hypothesized

that Kv1.2 is influenced by a variety of unidentified regulators (Abraham et al., 2019;

Baronas et al., 2017, Baronas et al., 2016, Baronas et al., 2015; Rezazadeh et al., 2007). We

have pursued the identification of novel regulatory proteins that may influence this Kv channel, which

has served as a structural model for interpretation of functional data (Long et al., 2007;
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Matthies et al., 2018). We identified powerful effects of an amino acid transporter, Slc7a5, on the

gating and expression of Kv1.2 (Baronas et al., 2018). Slc7a5 has been primarily studied in its role

as a transporter of drugs and amino acids (Barollo et al., 2016; Dickens et al., 2017; Soares-da-

Silva and Serrão, 2004), and also in the context of nutrient regulation of mTOR signaling

(Nicklin et al., 2009; Wolfson et al., 2016), but is not recognized as a regulator of ion channel func-

tion. Recessively inherited Slc7a5 mutations were recently identified in patients with neurological

symptoms including autism and motor delay. These traits were attributed to defective Slc7a5-medi-

ated amino acid transport in endothelial cells in the blood–brain barrier, where it is prominently

expressed (Kanai et al., 1998; Tărlungeanu et al., 2016), although Slc7a5 likely has diverse physio-

logical roles in many cell types. For example, low levels of Slc7a5 have been reported in neurons,

and other studies have suggested transport-independent functions of Slc7a5 in early development

(Katada and Sakurai, 2019; Matsuo et al., 2000). In addition, Slc7a5 is essential for T cell differenti-

ation and clonal expansion (Marchingo et al., 2020), correlated to negative outcomes and growth

of many proliferating tumor cell types (Salisbury and Arthur, 2018), and causes embryonic lethality

in Slc7a5 knockout mice (Poncet et al., 2020).

Several structures of Slc7a5 have been recently reported, highlighting its conserved LeuT fold

comprising 12 transmembrane helices (Lee et al., 2019; Yan et al., 2019), but there are few clues

into the mechanisms underlying the powerful modulation of Kv1.2 by Slc7a5. Features of Slc7a5-

dependent modulation of Kv1.2 currents include a pronounced shift (~�50 mV) of the voltage-

dependence of activation, along with prominent inhibition of currents that is relieved by strong neg-

ative holding voltages. This voltage-dependent relief of inhibition can be very pronounced, often

exceeding 10-fold enhancement of whole cell current. Strikingly, certain epilepsy-linked mutations of

Kv1.2 are hypersensitive to Slc7a5-mediated modulation, leading to extraordinarily large (some-

times >100 mV) gating shifts when co-expressed with Slc7a5 (Baronas et al., 2018; Masnada et al.,

2017; EuroEPINOMICS RES consortium et al., 2015). Although these effects are very prominent,

the underlying structural determinants of the Slc7a5:channel interaction, its specificity among other

Kv channels, and the role of Slc7a5 modulation in vivo, remain unclear.

In this study, we expanded our investigation of Slc7a5-mediated regulation to include another

prominent neuronal potassium channel, Kv1.1. This channel subunit exhibits overlapping patterns of

expression with Kv1.2 in the central nervous system, and often assembles with Kv1.2 into hetero-

meric channels (Coleman et al., 1999; Manganas and Trimmer, 2000; Shamotienko et al., 1997).

Our findings demonstrate that Kv1.1 is especially sensitive to modulation by Slc7a5, with endoge-

nous levels of Slc7a5 having prominent regulatory effects. However, Kv1.1 exhibits different out-

comes of Slc7a5 modulation relative to Kv1.2, whereas Kv1.5 is Slc7a5-insensitive. We use these

differences to probe for sequence elements that influence Slc7a5 sensitivity, and identify the volt-

age-sensing domain as an important determinant. In summary, this study highlights a non-canonical

regulatory influence of Slc7a5 on multiple Kv1 channels and identifies critical channel segments

involved in these effects.

Results

Kv1.1 sensitivity to Slc7a5
We recently reported several powerful effects of Slc7a5 on the voltage-gated potassium channel

Kv1.2 (Baronas et al., 2018). This included a prominent Slc7a5-mediated shift of the voltage-

dependence of activation by roughly �50 mV (Figure 1A, dashed lines, data reproduced from

Baronas et al., 2018 for comparison). We tested the effects of Slc7a5 co-expression with

another prominent neuronal Kv1 channel, Kv1.1. Our initial characterization of Kv1.1 did not

reveal a significant shift in the voltage-dependence of activation in the presence of Slc7a5

(Figure 1A,B).

A second signature feature of Slc7a5 modulation of Kv1.2 is prominent current enhancement

(‘disinhibition’) when membrane voltage is held at supraphysiological voltages near �120 mV (or

more negative). This behavior arises due to an initial Slc7a5-mediated inhibition of channels,

which is apparent immediately upon break-in and is then relieved by hyperpolarization. Exemplar

records illustrating this relief of Slc7a5-mediated inhibition (Figure 2A,B) were generated with

intermittent 50 ms depolarizations to +10 mV from a holding potential of �120 mV (note that

Lamothe, Sharmin, et al. eLife 2020;9:e54916. DOI: https://doi.org/10.7554/eLife.54916 2 of 26

Research article Neuroscience Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.54916


sweeps are concatenated for illustration, the interpulse interval was 2 s). Kv1.2 expressed alone

exhibits relatively large currents, and no apparent relief of inhibition (Figure 2A,C). However,

Kv1.2 co-expression with Slc7a5 (Figure 2A,D) leads to baseline currents that are small shortly

after whole cell break-in but increase substantially after 20–30 s at a holding potential of �120

mV. We observed an average 5.1 ± 2.2 fold (mean ± S.D.) current enhancement of Kv1.2 with

Slc7a5, although this is variable and reached 11.5-fold in some cells (Figure 2C,D). In contrast,

this effect was prominent for Kv1.1 (Figure 2B), even in the absence of co-transfected Slc7a5

(Figure 2B), with an average current enhancement of 3.2 ± 1.2 fold (Figure 2E). These features

(inhibition of baseline current, and relief of inhibition with �120 mV holding potential) became

more prominent when Slc7a5 was co-expressed with Kv1.1, with a 6.1 ± 2.6 fold change

(Figure 2B,F). Taken together, these findings indicate that Slc7a5 causes prominent inhibition of

both Kv1.1 and Kv1.2. Reversal of Slc7a5-mediated inhibition by strong hyperpolarizing voltages

leads to enhancement of current.

Knockdown and rescue of Slc7a5-mediated modulation of Kv1.1
Slc7a5 modulation differs between Kv1.1 and Kv1.2, as there is no shift of Kv1.1 activation (Figure 1).

Also, Kv1.1 channels appear more sensitive to Slc7a5, as they exhibit features of Slc7a5-dependent

modulation without co-transfection of Slc7a5 cDNA. Based on these observations, we tested

Figure 1. Slc7a5 has no effect on voltage-dependent activation of Kv1.1. (A) Conductance-voltage relationships

were determined for indicated combinations of Kv1.1 and Slc7a5 expressed in LM mouse fibroblasts. Cells were

stepped between �130 mV and +110 mV in 10 mV increments, with a tail current voltage of �20 mV. Dashed lines

indicate previously reported conductance-voltage relationship in Kv1.2±Slc7a5 (Baronas et al., 2018). Fit

parameters for Kv1.1 were (co-expression with Slc7a5 in parentheses): V1/2 = -34.9 ± 0.3 mV (�37.5 ± 0.2 mV);

k = 6.9 ± 0.9 mV (7.3 ± 0.9 mV). No statistical difference in voltage-dependent gating parameters were detected

for Kv1.1±Slc7a5. (B) Exemplar records illustrating voltage-dependent activation of Kv1.1±Slc7a5 (20 mV interval

between voltage steps). Current traces with a �30 mV step are bolded in black.

The online version of this article includes the following source data for figure 1:

Source data 1. Slc7a5 effects on voltage-dependence of activation of Kv1.1.
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Figure 2. Kv1.1 exhibits prominent disinhibition in response to hyperpolarizing (�120 mV) voltage. (A,B) Disinhibition of Kv1.2 (A) or Kv1.1 (B) was

tested by delivering repetitive 50 ms depolarizations to +10 mV (every 2 s), with an interpulse holding voltage of �120 mV. When Kv1.2 is expressed

alone, currents remain stable during this protocol (A), whereas Kv1.1 exhibits prominent recovery from Slc7a5-mediated inhibition (B). (C–F) Cell-by-cell

currents before and after a hyperpolarizing pulse train to �120 mV is illustrated for indicated combinations of Kv1.1, Kv1.2, and Slc7a5 (1st pulse refers

to current density of the first +10 mV depolarization, post-train refers to current density of the final +10 mV pulse). Data for Kv1.2±Slc7a5 is reproduced

from Lamothe and Kurata, 2020. A prominent difference between Kv1.2 and Kv1.1 is that Kv1.1 exhibits disinhibition without a requirement for

overexpression of Slc7a5 by co-transfection. Current density pre and post-train was compared using a paired t-test (* indicates p<0.05). Kv1.2 (n = 11,

no statistical difference); Kv1.2 + Slc7a5 (n = 16, p=0.001); Kv1.1 (n = 11, p=0.004); Kv1.1 + Slc7a5 (n = 13, p=0.003).

The online version of this article includes the following source data for figure 2:

Source data 1. Disinhibition of Kv1.1 at hyperpolarized voltages.
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whether Kv1.1 is modulated by endogenous levels of Slc7a5 in LM cells. We generated several

Slc7a5 shRNA knockdown cell lines, using lentiviral delivery and puromycin selection to maintain sta-

ble shRNA expression. Initial patch clamp recordings from Slc7a5 shRNA cell lines exhibited signifi-

cant cell-to-cell variability, but many cells exhibited larger baseline current density (immediately after

break-in) relative to the parental LM cell line, together with weak current enhancement/disinhibition

(Figure 3—figure supplement 1A,B). We further isolated individual clonal cell lines by serial dilution

of the ShR1 and ShR4 groups, and these clonal cell lines exhibited more consistently attenuated

modulation of Kv1.1 (Figure 3—figure supplement 1C). Most of the clonal cell lines also exhibited

prominent reduction of Slc7a5 protein expression (Figure 3—figure supplement 1D). We selected a

cell line (ShR4-1) with prominent knockdown of Slc7a5, confirmed by qPCR and Western blot

(Figure 3A–C).

Expression of Kv1.1 in ShR4-1 cells generated larger currents relative to parental LM cells, and

although some modest Kv1.1 current disinhibition persisted in ShR4-1 cells (Figure 3F), the magni-

tude of this effect was significantly attenuated relative to parental LM cells (Figure 3G). This was

consistent with a loss of Slc7a5-mediated inhibition due to Slc7a5 knockdown. We also used ShR4-1

cells to test whether endogenous Slc7a5 influences voltage-dependent activation of Kv1.1 (which

activates at significantly more negative voltages relative to Kv1.2, see Figure 1). Knockdown of

Slc7a5 in the ShR4-1 cell line did not affect Kv1.1 voltage-dependent activation relative to parental

LM cells (Figure 3—figure supplement 2), confirming that Kv1.1 and Kv1.2 exhibit distinct func-

tional responses to Slc7a5. The human Slc7a5 transcript is resistant to the mouse-targeted shRNA

sequence used for the ShR4-1 cell line, due to two base pair mismatches. Thus, we could rescue

Slc7a5 expression in ShR4-1 cells by transfection with human Slc7a5 cDNA (~91% sequence identity,

Figure 3B,E–G). This rescued Kv1.1 modulation similar to parental LM cells (Figure 3E), including

suppression of baseline Kv1.1 current density, and prominent current enhancement after holding at

�120 mV (Figure 3F,G, increased currents between ‘1st’ and ‘last’ pulses of a �120 mV train). These

findings indicate that Slc7a5 is an important contributor to the Kv1.1 modulation observed in LM

cells. Additionally, this illustrates that Kv1.1 is particularly sensitive to Slc7a5, leading to modulation

by endogenous levels of Slc7a5 in a heterologous cell line.

Slc7a5 effects on Kv1.2–1.1 heterotetramers
Kv1.2 and Kv1.1 co-assemble to form heteromers (Al-Sabi et al., 2013; Coleman et al., 1999). Using

a concatemeric construct of linked Kv1.2 and Kv1.1 (Baronas et al., 2015), we tested Slc7a5 modula-

tion of Kv1.2-Kv1.1 heteromeric channels. Kv1.2-Kv1.1 dimers exhibited a V1/2 of �25.5 ± 2.8 mV in

parental LM cells and �24.2 ± 3.3 mV in ShR4-1 (Figure 3—figure supplement 3A). The linked chan-

nel did not undergo any current enhancement in either cell line (Figure 3—figure supplement 3B–

D) indicating that sensitivity to endogenous Slc7a5 levels is not fully retained in Kv1.2-Kv1.1 hetero-

mers. Overexpression of Slc7a5 in LM and ShR4-1 cells shifted Kv1.2-Kv1.1 channel activation by 30–

35 mV, along with pronounced inhibition that was relieved with a �120 mV holding voltage (Fig-

ure 3—figure supplement 3A–D). We have not determined the stoichiometric requirement for the

full Slc7a5-mediated gating shift in Kv1.2 (~�50 mV); however, smaller effects observed in Kv1.2-

Kv1.1 linked dimers relative to either homomeric channel suggests that subunit composition influen-

ces the functional outcome of Slc7a5 modulation.

Slc7a5-mediated amino acid transport is not required for Kv1
modulation
It is not known whether Kv1 modulation is due to direct physical interaction with Slc7a5, or via

an intermediary or downstream signaling cascade. Slc7a5-mediated amino acid transport is an

important contributor to nutrient-dependent activation of mTORC1 (Nicklin et al., 2009;

Saxton and Sabatini, 2017; Wolfson et al., 2016, Wolfson et al., 2016), so a signal arising

from Slc7a5-mediated transport could underlie Kv1 channel modulation (Figure 4A). We tested

whether pharmacological inhibition of Slc7a5 or mTOR would influence Slc7a5 modulation of

Kv1.1. We incubated Kv1.1-transfected LM cells with the Slc7a5 inhibitor BCH (2-amino-bicyclo

[2,2,1]heptane-2-carboxylic acid), or the mTOR inhibitor rapamycin (Figure 4). Untreated cells

exhibited hallmarks of active mTORC1 (Figure 4B), in contrast to rapamycin treatment which

strongly inhibited basal mTORC1 signaling. This was most obvious as suppression of phospho-S6
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Figure 3. Modulation of Kv1.1 function by knockdown and rescue of Slc7a5. (A) Quantitative real-time PCR of RNA extracted from parental mouse LM

fibroblasts or ShR4-1 (Slc7a5 knockdown cell line) (n = 4, student’s t-test). (B) Western blot of endogenous Slc7a5 in parental LM cells or ShR4-1 cells.

Actin was used as a loading control. (C) Densitometry measurements of Slc7a5 expression from parental and ShR4-1 cells (statistical comparison with

paired t-test, n = 5). (D,E) Exemplar current records illustrating recovery from Slc7a5 inhibition of Kv1.1 during at �120 mV, as described in Figure 2,

using LM or ShR4-1 cells as indicated. In panel (E), Slc7a5 expression is rescued by overexpression with a plasmid encoding human Slc7a5. (F) Cell-by-

cell currents before and after the �120 mV pulse train of Kv1.1, in parental LM cells or ShR4-1 cell line (n = 9–15, statistical comparison with paired t-test

between 1 st pulse and last pulse). (G) Fold disinhibition from the first to last pulses of a �120 mV pulse train of Kv1.1 in parental LM cells (mean ± S.D.;

2.96 ± 1.29), ShR4-1 cells (1.36 ± 0.20), or ShR4-1 with Slc7a5 rescue (7.83 ± 4.12)(n = 9–15, Kruskal-Wallis multiple comparisons test, Dunn’s post-hoc

test).

Figure 3 continued on next page
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(p-S6), but also apparent in reduced levels of phospho-mTOR, and the appearance of lower

molecular weight forms (likely due to dephosphorylation) of 4-EBP1 (Figure 4B). However, after

rapamycin treatment, electrophysiological features of Slc7a5 modulation of Kv1.1 remained prom-

inent (Figure 4C). There was no alteration of baseline Kv1.1 current levels, and prominent relief

of inhibition of Kv1.1 was observed (Figure 4C, increased currents between the 1st and last

pulses of a �120 mV train). In LM or ShR4-1 cells, pharmacological suppression (by BCH) or

shRNA knockdown of Slc7a5 did not influence p-S6 abundance or other markers of mTORC1 sig-

naling (Figure 4—figure supplement 1A). However, even though Slc7a5 knockdown clearly

attenuates Kv1.1 modulation (Figure 3), Slc7a5-mediated gating effects were resistant to phar-

macological inhibition by BCH (Figure 4C). Lastly, BCH or rapamycin did not influence the volt-

age-dependence of activation of Kv1.1 (Figure 4—figure supplement 1B–D).

Investigation of Slc7a5 modulation of Kv channels was originally prompted by mass spectrom-

etry identification of proteins in proximity to Kv1.2, and we previously demonstrated proximity

of heterologously expressed Kv1.2 and Slc7a5 using a BRET assay (Baronas et al., 2018). We

also detect a BRET signal between heterologously expressed Kv1.1 and Slc7a5 (Figure 4D–F).

Since Kv1.1 can assemble as a homotetramer, co-expression of Kv1.1-nanoluc (bioluminescent

donor) with EGFP-Kv1.1 (acceptor) generates an emission with a peak wavelength of 510–520

nm, consistent with excitation of the EGFP tag by nanoluc. Although not as large as the EGFP-

Kv1.1-positive control, EGFP-Slc7a5 also generated a consistent BRET signal when co-expressed

with Kv1.1-nanoluc. In contrast, the closely related transporter Slc7a6 did not generate a discern-

ible BRET signal (Figure 4F).

Taken together, Figure 4 illustrates that Slc7a5 is likely in close proximity to Kv1.1, and that

amino acid transport or mTORC1 activation downstream of Slc7a5 are not required for modulation

of Kv1 channels. It should be noted that we have not consistently observed co-immunoprecipitation

of Kv1.1 and Slc7a5, suggesting that the association is detergent sensitive or may involve additional

unknown proteins. Also, we have not explicitly ruled out involvement of mTORC2, and there are vari-

able outcomes of mTORC2 inhibition by rapamycin in different cell types (Sarbassov et al., 2006).

However, mTORC1 is considered to be the primary amino-acid-responsive mTOR complex that

would be expected to be modulated by Slc7a5 (Saxton and Sabatini, 2017).

Slc7a5-mediated inhibition is distinct from C-type inactivation
Slc7a5-mediated inhibition of Kv1.1 and Kv1.2 traps channels in a non-conducting state and can be

relieved by supraphysiological hyperpolarizing voltages (Figures 2–4). We previously demonstrated

that mutations that enhance susceptibility to C-type inactivation in Kv1.2 could alter Slc7a5 modula-

tion (Baronas et al., 2018; Lamothe and Kurata, 2020), although the detailed molecular mechanism

of Slc7a5-mediated inhibition has remained unclear. We investigated the relationship between

C-type inactivation and Slc7a5-mediated inhibition of Kv1.1. In ShR4-1 cells transfected with Kv1.1,

currents exhibit very slow inactivation, and Slc7a5 has no consistent effect on the extent of inactiva-

tion observed during 5 s depolarizing pulses (+40 mV, Figure 5A,B). Building on previous experi-

ments demonstrating that Kv1.1 modulation persists in the presence of the Slc7a5 inhibitor BCH

(Figure 4), we also tested a transport-deficient Slc7a5[F252A] mutant (Singh and Ecker, 2018),

which also has no consistent effect on Kv1.1 inactivation (Figure 5A,B). In Kv1.2, prominent accelera-

tion of inactivation by Slc7a5 was apparent in Kv1.2[V381T] mutant channels, equivalent to Shaker

position T449, which influences susceptibility to C-type inactivation in Shaker (López-Barneo et al.,

1993) and Kv1.2 (Goodchild et al., 2012). We tested inactivation of the analogous mutation Kv1.1

[Y379T] with Slc7a5 and Slc7a5[F252A] (Figure 5—figure supplement 1), and observed that Slc7a5

Figure 3 continued

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Modulation of Kv1.1 by endogenous Slc7a5.

Figure supplement 1. Generation of Slc7a5 knockdown cell lines.

Figure supplement 2. Knockdown of Slc7a5 does not alter voltage-dependent activation of Kv1.1.

Figure supplement 3. Slc7a5 suppresses current and shifts the voltage-dependence of activation of Kv1.2–1.1 heterotetramers.
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Figure 4. Slc7a5-mediated inhibition of Kv1.1 is resistant to suppression of the Slc7a5-mTORC1 signaling axis. (A) Schematic model depicting distinct

possibilities for Slc7a5 modulation of Kv1 channels via (a) direct interaction or (b) indirect effects arising from amino acid activation of mTOR. (B)

Western blot detection of markers of mTOR activation, including total mTOR, phospho-mTOR, total S6, phospho-S6, total 4EBP, in parental LM or

ShR4-1 cells treated with 10 mM rapamycin (Rapa) and/or Slc7a5 overexpression, as indicated. b-tubulin was used as a loading control. (C) Cell by cell

current density before and after a �120 mV pulse train (30 s) is illustrated for Kv1.1 channels ± Slc7a5 (LM cells) treated with 1 mM BCH, or 10 mM

rapamycin as indicated. (D) Emission spectra were collected from LM cells transfected with indicated combinations of Kv1.1-nanoluc, EGFP-Kv1.1,

EGFP-Slc7a5, or EGFP-Slc7a6. (E) EGFP spectra (nanoluc-subtracted) were measured for the indicated EGFP-tagged acceptors co-expressed with

Kv1.1-nanoluc. (F) Area under the curve (AUC) for each BRET acceptor in (E) was normalized to the positive control AUC (Kv1.1-nanoluc + EGFP-Kv1.1).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Rapamycin and BCH effects on Slc7a5 modulation of Kv1.1.

Figure supplement 1. Slc7a5 or mTORC1 inhibition does not influence voltage-dependent gating of Kv1.1.
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and Slc7a5[F252A] enhance the rate of inactivation, although this effect exhibited significant cell-to-

cell variability (Figure 5—figure supplement 1C). We suspect this variation arises from variable

expression of Slc7a5, although there may also be other regulatory factors that influence the

response of Kv1.1 to Slc7a5. The absence of effects of Slc7a5 on inactivation of WT Kv1.1 suggests

that accelerated C-type inactivation does not underlie Slc7a5-mediated inhibition. However, the

effects of the Kv1.1[Y379T] mutation suggest that there may be some interplay between C-type inac-

tivation and Slc7a5-mediated inhibition. It is also noteworthy that effects of Slc7a5 on the inactiva-

tion rate (and the V1/2 of activation of Kv1.2 as reported in Baronas et al., 2018) remain intact even

after relieving Slc7a5-mediated inhibition of currents. We interpret this to indicate that strong hyper-

polarizing stimuli allow channels to recover from an inhibited state, but do not ‘break apart’ the

complex that underlies Slc7a5 modulation.

To further explore the mechanism of Slc7a5 inhibition of Kv1.1, we compared recovery from

Slc7a5-mediated inhibition versus inactivation (Figure 6). Exemplar currents (Figure 6A, left) illus-

trate recovery from Slc7a5-mediated inhibition in a sequence of three depolarizations to +10 mV:

point ‘a’ shortly after whole cell break-in, point ‘b’ after 30 s holding at �80 mV, and point ‘c’ after

30 s holding at �120 mV. In the absence of Slc7a5, Kv1.1 channels exhibit large currents at point ‘a’.

As there is very little initial Slc7a5-mediated inhibition, very little relief is observed at holding vol-

tages of either �80 mV or �120 mV. However, co-expression of Slc7a5 or Slc7a5[F252A] strongly

suppressed initial currents (Figure 6A, left). A holding voltage of �80 mV did not effectively rescue

this inhibition, but a holding voltage of �120 mV prominently recovered currents (summarized cell-

by-cell in Figure 6B). These data recapitulate the relief of inhibition effect described in Figures 2

and 3, but further illustrate the requirement for repolarization to �120 mV.

Following hyperpolarizations to relieve Slc7a5-mediated inhibition, channels were inactivated with

5 s pulses to +40 mV, and held at �80 mV to recover from inactivation (exemplar currents in

Figure 6A, right panels). In all conditions, Kv1.1 recovers from inactivation with a holding voltage of

�80 mV, as currents measured at point ‘e’ are comparable to point ‘d’ (Figure 6C). This finding sug-

gests that Slc7a5-induced inhibition is not equivalent to C-type inactivation, because different

Figure 5. Slc7a5 does not accelerate WT Kv1.1 inactivation. (A) WT Kv1.1 channels were expressed in mouse LM cells with Slc7a5 or Slc7a5[F252A], as

indicated. Exemplar current traces illustrate inactivation elicited by depolarization to 40 mV for 5 s (�80 mV holding potential). Prior to this long

depolarization, currents have been disinhibited with a �120 mV holding voltage, as described in Figure 2. (B) Cell-by-cell inactivation of WT

Kv1.1±Slc7a5 and Slc7a5[F252A]. Current amplitude after 5 s was normalized to peak current (% of peak) on a cell-by-cell basis. No statistical difference

was detected in the % residual current between all three groups.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Modulation of Kv1.1 inactivation by Slc7a5.

Figure supplement 1. Slc7a5 enhances inactivation of Kv1.1[Y379T] channels.
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Figure 6. Distinct recovery from Slc7a5 inhibition versus inactivation of Kv1.1. (A) Exemplar patch clamp recordings of Kv1.1 and Slc7a5 combinations as

indicated, in ShR4-1 cells. Left panel illustrates recovery from Slc7a5 inhibition. Currents were recorded at 10 mV after break-in, after 30 s at �80 mV

holding voltage, and after 30 s at �120 mV. Right panel illustrates recovery from inactivation (measured after the recovery from Slc7a5 inhibition shown

in the left panel). Cells were depolarized to 40 mV for 5 s, held at a �80 mV recovery potential (25 s) followed by a 2nd pulse to 40 mV. (B) Cell-by-cell

Figure 6 continued on next page
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voltages are required for recovery from these different conditions. To test this more stringently, we

carried out similar experiments using Kv1.1[Y379T] (Figure 6—figure supplement 1). Although

Kv1.1[Y379T] exhibits far more prominent inactivation than WT Kv1.1, a similar outcome was

observed. Strong hyperpolarization to �120 mV was required to rescue currents from Slc7a5 inhibi-

tion after break-in (Figure 6—figure supplement 1B). However, once this inhibition was relieved,

channels could recover from nearly complete inactivation with a holding potential of �80 mV (Fig-

ure 6—figure supplement 1A,C). The disparity in the voltage-dependence of recovery from inacti-

vation versus Slc7a5-mediated inhibition is summarized in Figure 6D, highlighting that nearly

complete recovery from C-type inactivation (solid symbols, ratio of points e/d) is observed with a

holding voltage of �80 mV, whereas this voltage does not recover Slc7a5-mediated inhibition (open

symbols, ratio of points b/c). These findings indicate that Slc7a5-mediated inhibition stabilizes chan-

nels by a mechanism distinct from C-type inactivation. Nevertheless, there appears to be some inter-

action between these processes because Slc7a5 can influence the inactivation rate in channel

mutants that are prone to C-type inactivation (Figure 5—figure supplement 1; Baronas et al.,

2018).

Slc7a5 sensitivity is controlled by the voltage-sensing domain
Our findings illustrate that Kv1.1 is sensitive to endogenous levels of Slc7a5, but does not exhibit a

prominent gating shift. In contrast, Kv1.2 requires higher expression of Slc7a5 to observe an effect

(i.e. it is less sensitive to Slc7a5), but it exhibits a ‘signature’ �50 mV shift of voltage-dependent acti-

vation. Additionally, we have reported that Kv1.5 exhibits no hallmarks of Slc7a5 modulation (i.e. no

voltage shift or disinhibition; Baronas et al., 2018). We used these differences to investigate struc-

tural determinants of Slc7a5 sensitivity. Our first approach involved chimeras of Kv1.2 and Kv1.1 (Fig-

ure 7). For each chimera, Slc7a5 effects on current magnitude before and after a �120 mV holding

voltage is illustrated in Figure 7A, and effects on voltage-dependent gating are presented in

Figure 7B–E. The N-terminus, S1, and S2 segments of Kv1.2 can be replaced with Kv1.1 sequence,

while still preserving a large Slc7a5-mediated shift in voltage-dependent gating (Figure 7A–D). Fur-

ther replacement of the S3 and S4 segments (and a small portion of the pore) in the Kv1.1S5/Kv1.2

chimera led to a significant switch toward a Kv1.1-like phenotype (Figure 7A,E), with a minimal

Slc7a5-mediated gating shift and prominent current enhancement, even in the absence of trans-

fected Slc7a5.

We also tested more subtle chimeric replacements of segments of the Kv1.2 voltage sensor to

potentially map these effects more precisely. The only sequence differences between the Kv1.1S2/

Kv1.2 and the Kv1.1S5/Kv1.2 chimeras were in the S3-S4 linker, and residue I257 in S4. We replaced

the S3-S4 linker of Kv1.2 with the corresponding sequence from Kv1.1 (Kv1.2(1.1-S3/S4)), and also

tested the I257F mutation. However, neither of these chimeras/mutants caused Kv1.2 to switch to a

Kv1.1-like response (Figure 7—figure supplement 1A–C). These findings suggest that sequence dif-

ferences in isolated segments of the voltage sensor do not account for the different functional

effects of Slc7a5 on Kv1.1 vs. Kv1.2.

VSD chimeras swap prominent features of Slc7a5 sensitivity
We also swapped the entire S1-S4 segments of Kv1.1 and Kv1.2 (Figure 7—figure supplement 2).

Introduction of the voltage-sensing domain of Kv1.2 into Kv1.1 (Kv1.2VSD/Kv1.1) transferred

Figure 6 continued

changes in current density (at +10 mV) in response to recovery from Slc7a5 (depicted in panel A, left). Currents were measured where indicated by a, b,

c, in panel A (Kv1.1, n = 11; Kv1.1 + Slc7a5, n = 11; Kv1.1 + Slc7a5[F252A], n = 17). (C) Cell-by-cell changes in peak current density in response to

recovery from inactivation (depicted in panel A, right). Currents were measured where indicated by d, e, in panel A (Kv1.1, n = 14; Kv1.1 + Slc7a5,

n = 15; Kv1.1 + Slc7a5[F252A], n = 17). (D) Percentage of peak current achieved during the �80 mV disinhibition protocol (calculated as b/c in panel A)

versus the �80 mV recovery from inactivation protocol (calculated as e/d). See Figure supplement for additional details on Kv1.1[Y379T].

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Distinct voltage-dependence of recovery from inactivation versus Slc7a5-mediated inhibition.

Figure supplement 1. Distinct recovery from Slc7a5 inhibition versus inactivation of Kv1.1[Y379T].
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Figure 7. Chimeric analysis of Kv1.1 and Kv1.2 sensitivity to Slc7a5-mediated disinhibition and shifts of voltage-dependent activation. (A) Cartoons

illustrate chimeric channel design, in which increasing segments of Kv1.1 (white) were introduced into Kv1.2 (grey), beginning with the N-terminus.

Current disinhibition by a hyperpolarizing train to �120 mV was assessed as described in Figure 2, in the presence or absence of Slc7a5. (B–E)

Conductance-voltage relationships were measured for all chimeric channels, in the presence and absence of Slc7a5. Gating parameters (+Slc7a5 in

parentheses) for Kv1.1N/Kv1.2 were: V1/2 = -8.7 ± 2 mV (�61 ± 3 mV); k = 7 ± 1 mV (8.3 ± 0.5 mV); for Kv1.1S1/Kv1.2: V1/2 = -21.5 ± 0.7 mV (�42 ± 6 mV);

k = 7.1 ± 0.2 mV (9 ± 1 mV), for Kv1.1S2/Kv1.2: V1/2 = -30.1 ± 0.4 mV (�53 ± 8 mV); k = 7.4 ± 0.2 mV (8.2 ± 0.4 mV), and for Kv1.1S5/Kv1.2: V1/2 = �25 ± 2

mV (�30 ± 2 mV); k = 7.4 ± 0.3 mV (7.2 ± 0.3 mV). Prominent shifts in voltage-dependent gating were observed in all chimeras except the Kv1.1S5/Kv1.2,

comprising primarily the transmembrane domains of Kv1.1.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Voltage sensor modulation of Slc7a5 sensitivity of Kv1.1 and Kv1.2.

Figure supplement 1. Slc7a5-mediated gating shift is preserved in I257 or S3-S4 linker mutants of Kv1.2.

Figure supplement 2. The voltage-sensing domain influences Slc7a5 sensitivity and response.
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characteristic features of Kv1.2 modulation by Slc7a5. These chimeric channels exhibited a promi-

nent Slc7a5-dependent shift in voltage-dependent gating, and current disinhibition, comparable to

Kv1.2 (Figure 7—figure supplement 2A,B). In addition, these features of Slc7a5 modulation were

absent when the Kv1.2VSD/Kv1.1 chimera was expressed alone (Figure 7—figure supplement 2A,

B). The complimentary chimera with the voltage-sensing domain of Kv1.1 transplanted into Kv1.2

(Kv1.1VSD/Kv1.2) did not have such clear cut effects, but altered the Slc7a5 sensitivity of Kv1.2 (Fig-

ure 7—figure supplement 2C,D). The Kv1.1VSD/Kv1.2 chimera exhibited prominent disinhibition of

current even in the absence of Slc7a5, and an attenuated shift in voltage dependence of activation

when co-expressed with Slc7a5 (Figure 7—figure supplement 2C,D). Overall, although these find-

ings illustrate the importance of the VSD, they reinforce our finding (Figure 7—figure supplement

1) that this approach does not reveal a clear structural determinant of the different Slc7a5 responses

of Kv1.1 and Kv1.2. This may be an inherent shortcoming of this chimeric approach, as both Kv1.1

and Kv1.2 are sensitive to Slc7a5.

Precise mapping of determinants of Slc7a5 sensitivity
In order to more clearly pinpoint regions of the VSD involved in Slc7a5 sensitivity, we used a

chimeric strategy with Kv1.2 and Kv1.5. We believe this was a more useful approach because

Kv1.5 is not sensitive to Slc7a5. The initial chimeric design is illustrated in Figure 8—figure sup-

plement 1A. Although Slc7a5-mediated gating shifts were sometimes variable, we observed that

channels became clearly resistant to Slc7a5-mediated gating shifts after the S1-S2 transmem-

brane helices of Kv1.2 were replaced with the sequence from Kv1.5 (Figure 8—figure supple-

ment 1B).

We generated additional chimeric channels in which small segments of the S1-S2 region of Kv1.2

were replaced with corresponding segments of Kv1.5. We generated conductance-voltage relation-

ships for each of these chimeric channels (Figure 8—figure supplement 2A–D). Swapping the S1-S2

linker, S2 segment, or S2-S3 linker, had no consistent effect on the Slc7a5-mediated shift of Kv1.2

gating. In contrast, replacing the S1 transmembrane segment of Kv1.2 with Kv1.5 sequence strongly

attenuated the Slc7a5-mediated gating shift (Figure 8—figure supplement 2E).

Point mutations in S1 influence Slc7a5 sensitivity
We extended these chimeric analyses with point mutants based on five amino acid differences in S1

of Kv1.2 and Kv1.5 (Figure 8A). Conductance-voltage relationships for each mutant (Figure 8C–G)

and a summary of V1/2 of activation (Figure 8B) reveal that most point mutants did not weaken

Slc7a5-mediated effects. However, the Kv1.2[I164A] mutation near the intracellular boundary of S1

prominently attenuated the Slc7a5-mediated gating shift. (Figure 8B–G). This highlights a single

amino acid position that strongly influences Slc7a5 sensitivity of Kv1 channels.

We investigated whether a role for this position would extend/generalize to Slc7a5-mediated inhi-

bition of Kv1.1. We mutated the equivalent V168 position in Kv1.1 to I or A (from Kv1.2 or Kv1.5,

respectively, Figure 9A), and tested for hallmarks of Slc7a5 modulation (Figure 9B). Recordings in

parental LM cells (with Slc7a5 modulation intact) illustrate that Kv1.1[V168I] (gray symbols) retains

Slc7a5 sensitivity, as these channels exhibited suppressed currents upon break-in (‘1st pulse’), along

with prominent enhancement after holding at �120 mV (‘last’ pulse). In contrast, Kv1.1[V168A]

(green) exhibited large basal currents and comparably little current enhancement, suggesting

weaker sensitivity to Slc7a5 (Figure 9B, summarized in lower panel). In ShR4-1 cells, larger currents

and negligible disinhibition were observed in all cases (Figure 9B), further emphasizing that Slc7a5

strongly influences the outcome observed for Kv1.1[V168] mutations. An alternative visualization of

these data (Figure 9C,D) illustrates cell-by-cell the relationship between baseline currents (i.e. 1st

pulse immediately after break-in) and disinhibition of current arising from a �120 mV holding poten-

tial. In LM cells (Figure 9C), WT or Kv1.1[V168I] currents are typically small immediately after break-

in, but exhibit prominent recovery from Slc7a5-mediated inhibition (black and grey). In contrast,

Kv1.1[V168A] (green) exhibits large currents and very modest disinhibition (illustrating weak inhibi-

tion by Slc7a5). In ShR4-1 cells (Figure 9D), effects of V168 mutations are blunted, illustrating that

outcomes of V168 mutants are strongly influenced by the presence of Slc7a5, rather than effects on

intrinsic channel function.

Lamothe, Sharmin, et al. eLife 2020;9:e54916. DOI: https://doi.org/10.7554/eLife.54916 13 of 26

Research article Neuroscience Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.54916


Figure 8. Amino acid residue I164 influences Kv1.2 sensitivity to Slc7a5 modulation. (A) Top, amino acid sequence comparison of the S1 domain

between Kv1.2 and Kv1.5. Different amino acid residues between the two channels are highlighted in green. Bottom, Schematic model (side view) of

the Kv1.2 channel with dissimilar amino acids from Kv1.5 highlighted in green. (B) Voltage at half activation (V1/2) plots of individual cells of Kv1.2 point

mutants in the S1 domain substituted with the corresponding amino acid in Kv1.5. The Kv1.2 point mutants were recorded and analyzed in the

presence or absence of Slc7a5. (C–G) Conductance-voltage relationships of the Kv1.2 point mutants were measured in the presence or absence of

Slc7a5. Fit parameters were (mean ± S.D., Slc7a5 in parentheses): P161S, V1/2 = -12.6 ± 3.0 mV (�55.7 ± 4.4 mV), k = 8.7 ± 1.4 mV (10 ± 2.5 mV); I164A,

V1/2 = -14.4 ± 2.1 mV (�16.9 ± 1.2 mV), k = 8.4 ± 1.3 mV (11.0 ± 3.9 mV); M171L, V1/2 = -8.6 ± 2.1 mV (�49.5 ± 3.7 mV), k = 8.7 ± 1.4 mV (10.8 ± 1.2 mV);

V178I, V1/2 = -8.9 ± 2.3 mV (�52.8 ± 7.2 mV), k = 8.8 ± 1.8 mV (9.2 ± 2.6 mV); S179T, V1/2 = -11.9 ± 2.0 mV (�52.5 ± 4.4 mV), k = 7.8 ± 0.5 mV (�11.9 ± 0.2

mV).

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Voltage sensor modulation of Slc7a5 sensitivity of Kv1.2 and Kv1.5.

Figure supplement 1. Chimeric analysis of Kv1.5 and Kv1.2 sensitivity to Slc7a5-mediated shifts of voltage-dependent activation.

Figure supplement 2. Kv1.2 sensitivity to Slc7a5 is localized to the S1 transmembrane segment.
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Figure 9. Altered Slc7a5 modulation of Kv1.1 V168 mutations. (A) Top, amino acid sequence comparison of S1 in Kv1.1, Kv1.2 and Kv1.5. Sequence

variation at Kv1.1 position V168 is highlighted in green (I164 in Kv1.2, A251 in Kv1.5). Bottom, structural model of Kv1.2 channel highlighting amino acid

position I164 (equivalent to Kv1.1 V168). (B) Cell-by-cell current density before and after a �120 mV pulse train of indicated channel mutants, in the

parental LM cells or ShR4-1 cell line. Lower panel, fold disinhibition for Kv1.1 S1 mutant channels (fold disinhibition = last pulse/1st pulse) after a �120

mV pulse train. (C and D) Cell-by-cell correlation of baseline (1st pulse) current density and fold disinhibition after a �120 mV pulse train, for Kv1.1

mutants and cell lines as indicated.

The online version of this article includes the following source data for figure 9:

Source data 1. Altered Slc7a5 sensitivity in S1 mutant Kv1.1 channels.
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Discussion
While the function of core a-subunits of Kv channels has been investigated in depth in the context of

voltage-dependent gating, regulation of Kv channels by signaling pathways and regulatory proteins

has been less widely studied. Our efforts to identify novel regulatory proteins of Kv channels

revealed that Slc7a5, a widely studied amino acid transporter, exerts a powerful influence on gating

and expression of Kv1.2 channels (Baronas et al., 2018; Lamothe and Kurata, 2020). Prominent

effects of Slc7a5 include suppression of channel expression, a �50 mV shift of voltage-dependent

activation, and marked suppression of current that can be relieved/disinhibited by negative holding

potentials. While powerful, the broader significance and underlying molecular mechanisms of these

varied effects remain unclear. In this study, we have continued to investigate Slc7a5 regulation of Kv

channels to address some of these lingering questions.

We previously demonstrated some Kv1 subtype specificity of Slc7a5 regulation, as Kv1.2 was

prominently affected by Slc7a5, while Kv1.5 was not (Baronas et al., 2018). Further investigation

of other subtypes revealed that Kv1.1 exhibits some of the Slc7a5-mediated hallmark gating fea-

tures observed in Kv1.2, most notably, the prominent Slc7a5-mediated inhibition relieved by

holding the membrane voltage at �120 mV. Surprisingly, this effect persists in the absence of

heterologous expression of Slc7a5 (Figures 2 and 3). The influence of endogenous levels of

Slc7a5 on Kv1.1 was confirmed using an shRNA knockdown approach, along with rescue by

shRNA-resistant Slc7a5 cDNA (Figure 3). The inhibitory effect of Slc7a5 on Kv1.1 or Kv1.2 is

observed immediately upon whole-cell break-in, with current amplitudes significantly reduced

compared to expression of either channel alone. It should be noted that after holding at �120

mV, channels typically remain ‘disinhibited’ such that Kv1 current suppression by Slc7a5 does not

re-occur during the recording in most cells. However, other features of Slc7a5 regulation (accel-

erated inactivation of Kv1.1[Y379T] and Kv1.2[V381T], hyperpolarizing shift of Kv1.2 channel acti-

vation) persist even after Slc7a5 inhibition has been relieved. We have not identified a method

to accelerate development of the Slc7a5-inhibited state. The underlying mechanism is not yet

clear, although the requirement of strong negative voltages (�120 mV) for disinhibition is inter-

esting as it lies outside the voltage range where most gating charge of Kv1.2 channels is dis-

placed (Goodchild et al., 2012). At this stage, we have not ruled out whether the strong

negative voltages required to relieve Slc7a5-mediated inhibition are related to voltage-depen-

dent conformational changes of the channel, transporter, or both. Interestingly, Kv1.2’LT’ (I304L

and S308T) mutant channels, with altered coupling between the VSD and the pore, prevent the

Slc7a5-mediated inhibition effect but retain sensitivity to the Slc7a5-mediated gating shift in

Kv1.2 (Baronas et al., 2018). Based on these effects, we hypothesize that Slc7a5-mediated inhi-

bition involves the pore domain (and can also trigger C-type inactivation in channels that are

susceptible), which is influenced by coupling to Slc7a5 interactions in the VSD.

We have taken steps to determine whether the Slc7a5-mediated effects on Kv1.1 are due to a

direct interaction with the channel, or some indirect effect related to Slc7a5 function. Slc7a5 can

indirectly influence mTOR activity (primarily mTORC1), due to activation of mTORC1 by amino acids

like leucine (Nicklin et al., 2009; Saxton et al., 2016; Wolfson et al., 2016). Also, mTOR signaling

has been shown to modulate Kv1.1 translation in dendrites, although this mechanism is unlikely to

be involved here, as it was shown to rely on UTR elements that are not present in our Kv1.1 cDNA

(Niere and Raab-Graham, 2017; Raab-Graham et al., 2006). We used a variety of approaches,

including pharmacological inhibition of Slc7a5 (BCH) and mTORC1 (rapamycin) (Figure 4), but found

no effect on Kv1.1 regulation by Slc7a5. The transport deficient Slc7a5[F252A] mutant also sup-

pressed Kv1.1, although we occasionally observed more prominent recovery of current at �80 mV in

Slc7a5[F252A] versus WT Slc7a5 effects in these experiments (Figure 5—figure supplement 1, Fig-

ure 6). Based on recent cryo-EM structures, F252 is located in TM6 of Slc7a5, in very close proximity

to the substrate-binding site. Mutations of F252 or other critical sites might influence the conforma-

tions achieved by the transporter, and alter its influence on the channel, but this will require further

investigation. At present, we have not determined whether there is reciprocal modulation of Slc7a5

function by Kv channels. However, this possibility will continue to be explored, as certain combina-

tions of Kv7 channels and myo-inositol transporters exhibit mutual regulation, along with other chan-

nel:transporter combinations (Abbott et al., 2014; Lebowitz et al., 2019; Manville et al., 2017;

Neverisky and Abbott, 2017).
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Slc7a5 is expressed in a wide variety of cell types and undergoes prominent changes in certain

physiological or pathological conditions. For example, T cell activation and proliferation requires

prominent upregulation of Slc7a5, leading to protein abundance orders of magnitude larger than Kv

channel expression (Marchingo et al., 2020; Sinclair et al., 2013). Slc7a5 upregulation has also

been reported in a variety of tumor types (Barollo et al., 2016), and Slc7a5 inhibition attenuates

proliferation of cells (Salisbury and Arthur, 2018). In most instances, the role of Slc7a5 is considered

in the context of providing nutrients for cell growth and division, and also activation of mTOR signal-

ing. However, changes in ion channel activity and cellular excitability are also linked to cell division

and proliferation in normal development and cancer or other pathologies (Huang and Jan, 2014;

Pardo and Stühmer, 2014; Satou et al., 2020; Serrano-Novillo et al., 2019; Yang et al., 2012).

The cellular signals that control ion channel activity and expression during cell growth and division

remain unestablished. We will continue to investigate how Slc7a5 or other related proteins may link

cellular metabolism with electrical activity, growth, and proliferation. Recent work has also sug-

gested that the inhibitory effect of Slc7a5 on Kv1.1 and Kv1.2 may enhance excitability in neuro-

pathic pain (Alles et al., 2020). Gene expression (mousebrain.org) of Slc7a5 overlaps with Kv1.1/1.2

in the NF1-3 subclass of DRG neurons and INH2 subclass of spinal cord neurons, each with varying

degrees of expression between cell types. Therefore, excitability in certain cell types in the nervous

system may be influenced by Slc7a5-mediated regulation of Kv1 channels, and altered during pain

and inflammation. Overall, differential sensitivity, expression, and assembly of Kv1 isoforms and

Slc7a5 may fine tune the interplay between channel and transporter. However, physiological modula-

tion of Kv1 channels by Slc7a5 is still under investigation.

Auxiliary subunits can interact with voltage-gated ion channels in a variety of ways. The canonical

auxiliary subunits of the Kv1 channel family are the Kvb subunits, which are soluble proteins that

interact with a cytoplasmic scaffolding domain that is structurally distinct from the Kv1 transmem-

brane domains (Gulbis et al., 2000; Long et al., 2005). However, there is great diversity amongst

known modulators of other Kv channels, including several transmembrane proteins. BK channels can

be modulated simultaneously by both the BKb and BKg subunits, which are thought to associate

with the pore-forming subunits via transmembrane domains (Gonzalez-Perez et al., 2015; Gonza-

lez-Perez and Lingle, 2019; Yan and Aldrich, 2012, Yan and Aldrich, 2010). Similarly, the widely

studied KCNE subunits are transmembrane proteins that have been proposed to integrate into clefts

between neighboring voltage-sensing domains to modulate channel function (Murray et al., 2016;

Wang et al., 2012; Xu et al., 2013). Another Kv channel with prominent regulation of channel gat-

ing by multiple classes of regulatory proteins is the Kv4 family, which is sensitive to both KChIP (a

soluble cytoplasmic protein) and DPP-like proteins (transmembrane), leading to modulation of chan-

nel expression and gating (Jerng et al., 2005; Kitazawa et al., 2015; Zagha et al., 2005). Although

we have not yet collected direct evidence of an interaction between Slc7a5 and Kv1.1 or Kv1.2, our

findings indicate that Slc7a5 sensitivity is encoded by the voltage-sensing domains of these channels,

and is significantly weakened by mutations in the S1 segment. While we suspect this is a site of inter-

action, Slc7a5 may also influence these channels via an intermediary, or through other nearby

regions of the channel that interact allosterically with mutations in S1. Our previous studies have

demonstrated co-regulation of Kv1.2 by Slc7a5 and Kvb subunits (Baronas et al., 2018;

Lamothe and Kurata, 2020), indicating the possibility that Kv1 channels might assemble with multi-

ple accessory subunits simultaneously (similar to the putative Kv4 complex with KChIP and DPP-like

proteins). It is also noteworthy that we have previously identified powerful regulation of Kv1.2 gating

by extracellular redox conditions, by a mechanism that is not intrinsic to the Kv1.2 a-subunit

(Baronas et al., 2017). This effect is vastly different from Slc7a5 modulation, indicating an additional

regulatory mechanism, and a recent study has suggested a possible role for the sigma opioid recep-

tor (Abraham et al., 2019). Thus, there are likely multiple unrecognized regulatory mechanisms that

can strongly influence Kv1 channel gating, but it remains unclear how these pathways may interact in

cell lines or native tissues.

In summary, our study highlights that Slc7a5 influences multiple targets in the Kv1 family, includ-

ing Kv1.1 and Kv1.2. Moreover, we map Slc7a5 sensitivity to the voltage-sensing domain of Kv1

channels, highlighting a specific residue in the S1 segment rather than a cytoplasmic signal. We are

hopeful that ongoing investigation of Kv channel regulatory proteins will broaden our understanding

of voltage-gated channel function and regulation in vivo.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Mus musculus)

LM(tk-) cells ATCC CCL-1.3 Fibroblast cells
(Male)

Cell line
(Homo-sapiens)

Human Embryonic
Kidney 293T
(HEK 293T) cells

ATCC CRL-3216

Chemical
compound, drug

jetPrime Polyplus transfection reagent

Gene GFP Addgene 54705

Gene mCherry Addgene 30125

Gene
(Rattus norvegicus)

Kv1.2 Lab clone Accession:
NM_012970.3

Gene
(Homo sapiens)

Kv1.5 Lab clone Accession:
NM_002234.4

Gene
(Homo sapiens)

Kv1.1 Lab clone Accession:
NM_000217.3

Gene eGFP Addgene 54759

Gene
(Homo sapiens)

Slc7a5 DNASU Accession:
NM_003486.7

Gene
(Homo sapiens)

Slc7a6 DNASU Accession:
NM_001076785.3

Recombinant
DNA reagent

pcDNA3.1(-) Invitrogen

Recombinant
DNA reagent

pcDNA3.1(-)-
ccdB-Nanoluc

Addgene 87067

Strain
(Escherichia-coli)

DH5-a Prepared in lab

Antibody anti-Slc7a5
(rabbit polyclonal)

Trans Genic Inc KE026 1:1000 dilution

Antibody HRP-conjugated
(goat anti-rabbit)

Applied Biological
Materials

SH012 1:15,000 dilution

Antibody Anti-b actin
(mouse monoclonal)

GeneTex Cat #: GTX629630 1:2000 dilution

Antibody HRP-conjugated
(goat anti-mouse)

Applied Biological
Materials

SH023 1:20,000 dilution

Antibody b-tubulin CST Ref: #86298, D3U1W

Antibody Mouse IgG CST Ref: #5470 DyLight 680-conjugated

Antibody Rabbit IgG CST Ref: #5151 DyLight 800-conjugated

Antibody mTOR CST Ref: #4517, L27D4

Antibody mTOR
(phosphor-Ser2448)

CST Ref: #5536

Antibody S6 CST Ref: #2317, 54D2

Antibody S6 (phosphor-
Ser240/244)

CST Ref: #5364, D68F8

Antibody 4-EBP1 CST Ref: #9644, 53H11

Reagent SuperSignal West
Femto Max Sensitivity
Substrate

Thermo
Fisher Scientific

34095 Chemiluminescent
detection reagent

Chemical
compound, drug

2-Amino-bicyclo[2,2,1]
heptane-2-carboxylic
acid (BCH)

Sigma Aldrich A7902-100MG

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Rapamycin Alfa Aesar,
Fisher Scientific

J62473-MF

Sequence-
based reagent

Slc7a5Taqman probe Thermo Fisher Cat #:
(Mm00441516_m1)

Sequence-
based reagent

GAPDH Thermo Fisher Cat #:
(Mm99999915_g1)

Commercial
assay, kit

Taqman Fast
Advance Master Mix

Applied Biosystems 4444556

Commercial
assay, kit

Superscript IV
First-strand
synthesis system

Invitrogen 18091050

Commercial
assay, kit

Nano-Glo live
cell assay reagent

Promega N1620

Chemical
compound, drug

Puromycin Gibco Ref #:
A11138-03

Chemical
compound, drug

Polybrene Sigma Aldrich TR-1003-G

Genetic reagent pLV-RNAi
vector system

Biosettia Cat #: Sort-B21

Cell culture and expression
Mouse LM(tk-) fibroblast cells (ATCC CCL-1.3), referred to throughout as LM cells, were used for

patch clamp experiments, Western blots, qPCR, and BRET experiments. LM cells were purchased

directly from ATCC and screened periodically (3–6 months) for mycoplasma contamination with com-

mercial real time PCR kits. LM(tk-) fibroblasts are not listed on the ICLAC register of commonly misi-

dentified cell lines. Cells were maintained in culture in a 5% CO2 incubator at 37˚C in DMEM

supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were split into 12-well plates to

achieve 70% confluence the subsequent day, then transfected with cDNA using jetPRIME transfec-

tion reagent (Polyplus). Fluorescent proteins were co-transfected to identify transfected cells for

electrophysiological recording. In 12-well plates, cells were transfected with 400 ng of total DNA

plasmid, with the amount of channel DNA plasmid held constant, and either GFP plasmid or

mCherry-Slc7a5 (or mEGFP-Slc7a5) in order to maintain a constant amount of DNA in the transfec-

tion mixture. For electrophysiological recordings, cells were consistently transfected with 1:1 ratios

of channel DNA to eGFP or mCherry-Slc7a5 (unless otherwise indicated). 6–10 hr after transfection,

cells were split onto glass coverslips at low density for electrophysiological recordings from single

cells the following day. Electrophysiological recordings were done 24–36 hr after transfection.

Stable shRNA-mediated knockdown cell lines were generated by puromycin selection after lenti-

viral infection of parental LM cells (see ‘Lentiviral vector construction and delivery’ for details)

(Satou et al., 2020). Puromycin-resistant cells were plated in serial dilutions to isolate clonal cell

lines. Knockdown cell lines were maintained in the same media as parental LM fibroblasts, along

with 2.5 mg/mL puromycin to maintain shRNA expression.

Potassium channel constructs
Kv1 channel cDNAs (human Kv1.1, rat Kv1.2, human Kv1.5 and various chimeras) were expressed

using the pcDNA3.1(-) vector (Invitrogen).

Kv1.1/Kv1.2 chimeras
Chimeric constructs of human Kv1.1 and rat Kv1.2 were generated using overlapping PCR

approaches. N-terminal fragments of Kv1.1 were amplified by PCR using a 5’ flanking primer

(Kv1.1Forward) and each of the following primers (1.1/1.2-S1; 1.1/1.2-S2; 1.1/1.2-S3; 1.1/1.2-Pore).

Additional channel segments from Kv1.2 were amplified using the reverse complement of primers,

Lamothe, Sharmin, et al. eLife 2020;9:e54916. DOI: https://doi.org/10.7554/eLife.54916 19 of 26

Research article Neuroscience Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.54916


and a 3’ flanking primer (Kv1.2-Reverse). Primer sequences are listed in an appendix

(Supplementary file 1).

Resulting full length channel fragments were then cloned into pcDNA3.1(-) using EcoRI and Hin-

dIII restriction digests and ligation. This generated chimeric Kv1.1/Kv1.2 ion channels with break

points at amino acid numbers, 147, 226, 256, 350 (Kv1.1 numbering, schematics of chimera design

are shown in Figure 5A). Constructs were all verified by diagnostic restriction digestion and Sanger

sequencing (Genewiz, Inc, or University of Alberta Applied Genomics Core).

Chimeric switching of voltage-sensing domains was accomplished using similar overlapping PCR

approaches, with break points corresponding to amino acid numbers 147 and 350 (Kv1.1) or 145

and 352 (Kv1.2). To generate the Kv1.2(Kv1.1VSD) chimera we used a previously made Kv1.1/Kv1.2

chimera (breakpoint at Kv1.1 amino acid 350, labeled Kv1.1S6/Kv1.2 in Figure 6) and replaced the

N terminus with sequence from Kv1.2 using the Kv1.2-Forward and Kv1.2 N-term Reverse primers

(see Appendix).

Similarly, the Kv1.1(Kv1.2VSD) chimera was made by switching the pore and C-terminus of our

previously made Kv1.1N/Kv1.2 chimera (Figure 6) with corresponding Kv1.1 sequence using the

Kv1.1 Reverse and Kv1.1 Pore Forward primers (see Appendix, Supplementary file 1).

The Kv1.2(1.1-S3/S4) chimera (replacing the S3-S4 linker of Kv1.2 with corresponding sequence

from Kv1.1) was generated by amplifying the 3’ side of Kv1.2(Kv1.1VSD) with the Kv1.2(1.1-S3/S4)-

forward and Kv1.2-Reverse primers, and the 5’ side of Kv1.2 with the Kv1.2-Forward and Kv1.2(1.1-

S3/S4)-reverse primers. This generated a chimera replacing Kv1.2 residues 274–288 with correspond-

ing sequence from Kv1.1.

Kv1.2/Kv1.5 chimeras
Chimeras described in Figure 8—figure supplement 1 were constructed by amplifying segments of

Kv1.5 using the Kv1.5-Reverse primer, and each of the following primers S1 chimera; S3 chimera;

Pore chimera; C-terminal chimera. These were fused to Kv1.2 sequence using overlapping PCR, and

cloned into pcDNA3.1(-) using NheI and HindIII.

Segments of the Kv1.5 S1 and S2 segments were amplified with the following primer sets (1.5S1F

and 1.5S1R; 1.5S1S2F and 1.5S1S2R; 1.5S2F and 1.5S2R; 1.5S2S3F and 1.5S2S3R), and used to

replace corresponding sequence in Kv1.2 by overlapping PCR. This generated chimeras that replace

Kv1.2 sequence with Kv1.5 between amino acid positions (Kv1.2 numbering): 153–187 (S1 chimera);

187–217 (S1-S2L chimera); 217–242 (S2 chimera); 242–269 (S2-S3L chimera).

Point mutants
Point mutations in Kv1.1 and Kv1.2 were generated with overlapping PCR approaches using the fol-

lowing mutagenic primers and their reverse complement (Kv1.1[Y379T]; Kv1.1[V168I]; Kv1.1[V168A];

Kv1.2[P161S]; Kv1.2[I164A]; Kv1.2[M171L]; Kv1.2[V178I]; Kv1.2[S179T]; Kv1.2[I257F]).

Electrophysiology
Patch pipettes were manufactured from soda lime capillary glass (Fisher), using a Sutter P-97 puller

(Sutter Instrument). When filled with standard recording solutions, pipettes had a tip resistance of 1–

3 MW. Recordings were filtered at 5 kHz, sampled at 10 kHz, with manual capacitance compensation

and series resistance compensation between 70 and 90%, and stored directly on a computer hard

drive using Clampex 10 software (Molecular Devices). Bath solution had the following composition:

135 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, and was adjusted to pH 7.3

with NaOH. Pipette solution had the following composition: 135 mM KCl, 5 mM K-EGTA, 10 mM

HEPES and was adjusted to pH 7.2 using KOH. Chemicals for electrophysiological solutions were

purchased from Sigma-Aldrich or Fisher. BCH (Slc7a5 inhibitor 2-amino-bicyclo[2,2,1]heptane-2-car-

boxylic acid, Sigma-Aldrich) was stored as a 100 mM stock solution in 1N NaOH, and diluted to

working concentrations each experimental day. Rapamycin (Alfa Aesar, Fisher Scientific) was stored

as a 10 mM stock solution in DMSO and diluted to working concentrations each experimental day.

Lentiviral vector construction and delivery
We generated shRNAs targeting four segments of mouse Slc7a5 (refseq: NM_011404), with the

ShR1, ShR2, ShR3, ShR4, and Negative control primers (see Appendix). Oligos were designed for
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hairpin formation and cloned into pLV-RNAi vector system (Biosettia, San Diego, USA. Cat#sort-B21)

according to the manufacturer’s instructions, as previously described (Satou et al., 2020). All con-

structs were confirmed by Sanger sequencing (Applied Genomics Core, University of Alberta).

HEK293T cells were co-transfected with packaging vectors (Provided in the pLV-RNAi vector system)

and an shRNA expression vector. Lentivirus was harvested by centrifugation of HEK293T cell culture

supernatant 48 hr after transfection. LM fibroblasts cells were seeded in six well plate at about 30%

confluence the day before viral transduction. After 24 hr, media was replaced with fresh complete

medium (DMEM with 10% FBS) containing 8 mg/mL polybrene and 0.5 mL of viral supernatant. After

24 hr of incubation, the virus-containing medium was replaced with fresh complete medium. After

further incubation for 48 hr, puromycin (2.5 mg/mL) was added and maintained in culture for selec-

tion of transduced cells. For the generation of clonal shRNA-expressing cell lines, transduced cells

were plated by serial dilution in 96 well plates, and wells with single cells were identified by visual

inspection under a microscope. After expansion of individual clones, effectiveness of knockdown

was assessed using Western blot and qPCR approaches.

Western blot
Detection of Slc7a5
Cell lysates from LM fibroblasts were harvested in NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 50

mM Tris-HCl) with 1% protease inhibitor cocktail (Sigma, P8340), 3 days after transfection. Samples

were separated on 8% SDS-PAGE gels, and transferred to nitrocellulose membranes using standard

Western blot apparatus (Bio-rad). Running buffer composition was 190 mM Glycine, 25 mM Tris, 4

mM SDS. Transfer buffer composition was 20% methanol, 3.5 mM Na2CO3, 10 mM NaHCO3. Slc7a5

was detected using a rabbit polyclonal Slc7a5 antibody (1:500 dilution, KE026; Trans Genic Inc) and

HRP-conjugated goat anti-rabbit antibody (1:15 000 dilution, SH012; Applied Biological Materials).

Chemiluminescence was detected using SuperSignal West Femto Max Sensitivity Substrate (Thermo

Fisher Scientific) and a FluorChem SP gel imager (Alpha Innotech).

Detection of phosphorylated and total mTOR, S6 and 4-EBP1
LM fibroblasts cells (parental LM or ShR4-1) were lysed for 2 hr at 4˚C in NP-40 lysis buffer (1% NP-

40, 150 mM NaCl, 50 mM Tris-HCl) with 1% protease inhibitor cocktail (Sigma, P8340) and 1% phos-

phatase inhibitor (Sigma, P5726). 18 mg of proteins were separated using 4–20% Mini-PROTEAN

precast gel (BioRad). Subsequently, these proteins were transferred onto PVDF membranes (Milli-

pore). The membrane was blocked by 5% skim milk dissolved with a wash buffer (Tris/HCl pH 7.5,

0.05% Tween-20) for 1 hr at room temperature. The membrane was incubated with the appropriate

primary antibody (listed in the corresponding table) followed by the compatible Fluorescein-conju-

gated secondary antibody (listed in the corresponding table). Fluorescence was detected by the

Odyssey Imaging System (LI-COR Biosciences).

Target Merchandiser Remarks

b-tubulin CST #86298, D3U1W

Mouse IgG CST #5470, DyLight 680-conjugated

Rabbit IgG CST #5151, DyLight 800-conjugated

mTOR CST #4517, L27D4

mTOR (phosho-Ser2448) CST #5536

S6 CST #2317, 54D2

S6 (phospho-Ser240/244) CST #5364, D68F8

4-EBP1 CST #9644, 53H11

Quantification of Slc7a5 mRNA expression using qPCR
Total cellular RNA was extracted from LM fibroblasts stably expressing shRNA constructs using an

illustra RNAspin Mini kit (GE, UK). RNA concentration was assessed using a Nanodrop 2000c spec-

trophotometer (Thermo Scientific). Reverse transcription was performed using the SuperScript IV
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First-Strand Synthesis System (Invitrogen, USA), using Oligo(dT)20 primers to make cDNA. Real-time

quantitative PCR was carried out with TaqMan Fast Advance Master Mix (Applied Biosystems, USA)

in an ABI 7900HT Fast Real Time PCR System (Applied Biosystems). Taqman probes used were:

Slc7a5 (cat: Mm00441516_m1), and GAPDH as an internal control gene (cat: Mm99999915_g1),

obtained from Thermo Fisher. The cycling protocol used an initial denaturation at 95˚C for 3 min; 40

cycles of denaturation at 95˚C for 3 s, annealing at 60˚C for 30 s. Data were analyzed using the 2-DD

CT method (Livak and Schmittgen, 2001) and expressed as Slc7a5 normalized to GAPDH.

Bioluminescence resonance energy transfer
Nanoluc was amplified from pcDNA3.1-ccdB-Nanoluc (a gift from Mikko Taipale, Addgene # 87067),

and fused to the C-terminus of Kv1.1 in pcDNA3.1(-) using EcoRI and HindIII restriction sites. Using

standard subcloning methods, WT Kv1.1, Slc7a5 and Slc7a6 cDNAs were tagged at the N-terminus

with mEGFP. Mouse LM fibroblast cells were plated at 30% confluency in 12-well plates and then

transiently transfected using jetPRIME the next day with cDNAs encoding BRET donors and accept-

ors. 48 hr after transfection, cells were replated onto white polystyrene 96-well plates (Thermo

Fisher). After 24 hr, cells were washed with PBS, and incubated with Nano-Glo live cell assay reagent

(Promega). Emission spectra were measured between 400 and 700 nm in 2 or 5 nm increments, and

measured for 2 s at each interval with a Synergy H4 Hybrid Reader (BioTek). All Spectral data were

normalized to the peak nanoluc emission, and subtraction of the normalized Kv1.1-nanoluc spectrum

(measured as a blank control) produced the EGFP emission. The area under the curve (AUC) for the

integrated EGFP emissions of Slc7a5 and Slc7a6 were normalized to the integrated EGFP emission

from Kv1.1 nanoluc + EGFP-Kv1.1 in each experiment.

Data analysis
Wherever possible, we have displayed data for all individual data points collected, in addition to

reporting mean ±S.D. or a box plot (where shown, box plots depict the median, 25th and 75th per-

centile (box), and 10th and 90th percentile (whiskers)). Conductance-voltage relationships were fit

with a Boltzmann equation (Equation 1), where G is the normalized conductance, V is the applied

voltage, V1/2 is the half activation voltage,and k is a fitted slope factor reflecting the steepness of

the curve.

G ¼ 1=ð1þ e
�ðv�v1=2Þ=kÞ (1)

Conductance-voltage relationships were fit for each individual cell, and the extracted fit parame-

ters were used for statistical calculations. Statistical tests are described in corresponding figure

legends throughout the manuscript.

Data files containing numerical data for each figure and their supplements have been associated

with the article, along with a list of primer sequences (Figure 1—source data 1, Figure 2—source

data 1, Figure 3—source data 1, Figure 4—source data 1, Figure 5—source data 1, Figure 6—

source data 1, Figure 7—source data 1, Figure 8—source data 1, Figure 9—source data 1,

Supplementary file 1).

Acknowledgements
This work was funded by a Canadian Institutes of Health Research Project Grant to HTK. SML was

supported by a Dr. Rowland and Muriel Haryett Neuroscience Fellowship, University of Alberta Neu-

roscience and Mental Health Institute. VAB was supported by a Canadian Institutes of Health

Research Vanier award. GS was supported by a Natural Sciences and Engineering Research Council

USRA award. During early stages of this project, HTK was supported by a Canadian Institutes of

Health Research Early Career Investigator award and salary support from the Alberta Diabetes

Institute.

Lamothe, Sharmin, et al. eLife 2020;9:e54916. DOI: https://doi.org/10.7554/eLife.54916 22 of 26

Research article Neuroscience Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.54916


Additional information

Funding

Funder Grant reference number Author

Canadian Institutes of Health
Research

Project Grant Harley T Kurata

Canadian Institutes of Health
Research

Vanier Studentship Victoria A Baronas

University of Alberta Rowland and Muriel Haryett
fellowship

Shawn M Lamothe

Natural Sciences and Engi-
neering Research Council of
Canada

USRA Grace Silver

Canadian Institutes of Health
Research

Early Career Investigator Harley T Kurata

Alberta Diabetes Institute Salary support Harley T Kurata

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Shawn M Lamothe, Conceptualization, Formal analysis, Funding acquisition, Investigation, Writing -

review and editing; Nazlee Sharmin, Victoria A Baronas, Conceptualization, Investigation, Writing -

review and editing; Grace Silver, Investigation, Writing - review and editing; Motoyasu Satou,

Resources, Investigation, Methodology, Writing - review and editing; Yubin Hao, Investigation,

Methodology, Writing - review and editing; Toru Tateno, Resources, Supervision, Investigation,

Methodology, Writing - review and editing; Harley T Kurata, Conceptualization, Data curation, For-

mal analysis, Supervision, Funding acquisition, Investigation, Visualization, Methodology, Writing -

original draft, Project administration, Writing - review and editing

Author ORCIDs

Shawn M Lamothe https://orcid.org/0000-0001-8722-2631

Harley T Kurata https://orcid.org/0000-0003-4357-4189

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.54916.sa1

Author response https://doi.org/10.7554/eLife.54916.sa2

Additional files
Supplementary files
. Supplementary file 1. List of primers.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source data files have been provided for all figures.

References
Abbott GW, Tai KK, Neverisky DL, Hansler A, Hu Z, Roepke TK, Lerner DJ, Chen Q, Liu L, Zupan B, Toth M,
Haynes R, Huang X, Demirbas D, Buccafusca R, Gross SS, Kanda VA, Berry GT. 2014. KCNQ1, KCNE2, and na
+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Science
Signaling 7:ra22. DOI: https://doi.org/10.1126/scisignal.2005025, PMID: 24595108

Lamothe, Sharmin, et al. eLife 2020;9:e54916. DOI: https://doi.org/10.7554/eLife.54916 23 of 26

Research article Neuroscience Structural Biology and Molecular Biophysics

https://orcid.org/0000-0001-8722-2631
https://orcid.org/0000-0003-4357-4189
https://doi.org/10.7554/eLife.54916.sa1
https://doi.org/10.7554/eLife.54916.sa2
https://doi.org/10.1126/scisignal.2005025
http://www.ncbi.nlm.nih.gov/pubmed/24595108
https://doi.org/10.7554/eLife.54916


Abraham MJ, Fleming KL, Raymond S, Wong AYC, Bergeron R. 2019. The sigma-1 receptor behaves as an
atypical auxiliary subunit to modulate the functional characteristics of Kv1.2 channels expressed in HEK293
cells. Physiological Reports 7:e14147. DOI: https://doi.org/10.14814/phy2.14147, PMID: 31222975

Al-Sabi A, Kaza SK, Dolly JO, Wang J. 2013. Pharmacological characteristics of Kv1.1- and Kv1.2-containing
channels are influenced by the stoichiometry and positioning of their a subunits. Biochemical Journal 454:101–
108. DOI: https://doi.org/10.1042/BJ20130297, PMID: 23725331

Alles SRA, Gomez K, Moutal A, Khanna R. 2020. Putative roles of SLC7A5 (LAT1) transporter in pain.
Neurobiology of Pain 8:100050. DOI: https://doi.org/10.1016/j.ynpai.2020.100050

Barollo S, Bertazza L, Watutantrige-Fernando S, Censi S, Cavedon E, Galuppini F, Pennelli G, Fassina A, Citton
M, Rubin B, Pezzani R, Benna C, Opocher G, Iacobone M, Mian C. 2016. Overexpression of L-Type amino acid
transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors. PLOS ONE 11:e0156044.
DOI: https://doi.org/10.1371/journal.pone.0156044, PMID: 27224648

Baronas VA, McGuinness BR, Brigidi GS, Gomm Kolisko RN, Vilin YY, Kim RY, Lynn FC, Bamji SX, Yang R, Kurata
HT. 2015. Use-dependent activation of neuronal Kv1.2 channel complexes. Journal of Neuroscience 35:3515–
3524. DOI: https://doi.org/10.1523/JNEUROSCI.4518-13.2015, PMID: 25716850

Baronas VA, Yang R, Vilin YY, Kurata HT. 2016. Determinants of frequency-dependent regulation of Kv1.2-
containing potassium channels. Channels 10:158–166. DOI: https://doi.org/10.1080/19336950.2015.1120390,
PMID: 26646078

Baronas VA, Yang RY, Kurata HT. 2017. Extracellular redox sensitivity of Kv1.2 potassium channels. Scientific
Reports 7:9142. DOI: https://doi.org/10.1038/s41598-017-08718-z, PMID: 28831076

Baronas VA, Yang RY, Morales LC, Sipione S, Kurata HT. 2018. Slc7a5 regulates Kv1.2 channels and modifies
functional outcomes of epilepsy-linked channel mutations. Nature Communications 9:4417. DOI: https://doi.
org/10.1038/s41467-018-06859-x

Bezanilla F. 2006. The action potential: from voltage-gated conductances to molecular structures. Biological
Research 39:425–435. DOI: https://doi.org/10.4067/S0716-97602006000300005, PMID: 17106575

Bezanilla F. 2008. How membrane proteins sense voltage. Nature Reviews Molecular Cell Biology 9:323–332.
DOI: https://doi.org/10.1038/nrm2376, PMID: 18354422

Coleman SK, Newcombe J, Pryke J, Dolly JO. 1999. Subunit composition of Kv1 channels in human CNS. Journal
of Neurochemistry 73:849–858. DOI: https://doi.org/10.1046/j.1471-4159.1999.0730849.x, PMID: 10428084

Dickens D, Chiduza GN, Wright GSA, Pirmohamed M, Antonyuk SV, Hasnain SS. 2017. Modulation of LAT1
(SLC7A5) transporter activity and stability by membrane cholesterol. Scientific Reports 7:43580. DOI: https://
doi.org/10.1038/srep43580

EuroEPINOMICS RES consortium, Syrbe S, Hedrich UBS, Riesch E, Djémié T, Müller S, Møller RS, Maher B,
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