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Abstract

Background: This study assessed the effects of ursolic acid (UA) on airway-vessel remodeling and muscle atrophy
in cigarette smoke (CS)-induced emphysema rats and investigated potential underlying mechanisms.

Methods: Emphysema was induced in a rat model with 3 months of CS exposure. Histology and
immunohistochemistry (IHC) stains were used to assess airway-vessel remodeling and muscle atrophy-associated
changes. Levels of cleaved-caspase3, 8-OHdG, and S100A4 were measured in airways and associated vessels to
evaluate cell apoptosis, oxidant stress, epithelial-to-mesenchymal transition (EMT), and endothelial-to-mesenchymal
transition (EndMT)-associated factors. Western blot and/or IHC analyses were performed to measure transforming
growth factor-beta 1(TGF-31)/Smad2.3, alpha-smooth muscle actin (a-SMA), and insulin-like growth factor 1 (IGF1)
expression. We also gave cultured HBE and HUVEC cells Cigarette Smoke Extract (CSE) administration and UA
intervention. Using Western blot method to measure TGF-31/Smad2.3, a-SMA, S100A4, and IGF1 molecules expression.

Results: UA decreased oxidant stress and cell apoptosis in airway and accompanying vascular walls of cigarette smoke-
induced emphysema model rats. UA alleviated EMT, EndMT, changes associated with airway-vessel remodeling and
muscle atrophy. The UA effects were associated with IGF1 and TGF-31/Smad2.3 pathways.

Conclusions: UA reduced EMT, EndMT, airway-vessel remodeling, and musculi soleus atrophy in CS-induced
emphysema model rats at least partly through IGF1 and TGF-31/Smad2.3 signaling pathways.

Background

Chronic obstructive pulmonary disease (COPD) is a sys-
temic disease characterized by persistent respiratory
symptoms and airway limitation. It has high prevalence
and associated mortality, with a prevalence among
people 40 years of age or older of 10.1% worldwide and
13.7% in China [1, 2] and was estimated to be the third
leading cause of death worldwide in 2030 [3]. The dis-
ease gives rise to enormous social and economic bur-
dens [4, 5]. Nearly 90% of COPD cases are caused by
Cigarette Smoke (CS) [6, 7]. Major pathological manifes-
tations of COPD include chronic airway inflammation,
airway-vessel remodeling [8], and emphysema [9].
Muscle atrophy is an important complication of COPD
[10]. Although they are significant indicators of poor
prognosis [8, 11-13], there are currently no effective
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interventions for airway-vessel remodeling and muscle
consumption in COPD.

Airway-vessel remodeling is the main contributor to
pulmonary dysfunction in COPD [14]. Potential mecha-
nisms contributing to the airway-vessel remodeling of
COPD include proliferation of airway epithelial cells,
vascular endothelial cells, airway and vessel smooth
muscle cells, fibroblast-myofibroblast transformation,
epithelial-to-mesenchymal  transition = (EMT), and
endothelial-to-mesenchymal transition (EndMT) [15-17].
Beyond the well-known airway remodeling processes asso-
ciated with COPD [18], there has been a growing interest
in vessel remodeling in COPD [19-22], for which the
mechanism is not yet clear. The 2018 GOLD guide sug-
gested that pulmonary microvascular blood flow was ab-
normal in smokers with even mild COPD. Meanwhile,
patients with moderate or severe COPD often show pro-
nounced pulmonary vascular remodeling, leading to pul-
monary hypertension and pulmonary heart disease, which

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-019-0826-6&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:qywang2002@hotmail.com

Lin et al. BMC Pulmonary Medicine (2019) 19:103

are directly related to patient prognosis. Patients with
combined pulmonary fibrosis and emphysema, which are
on the rise, are at increased risk of pulmonary hyperten-
sion and have a worse prognosis than patients with em-
physema only, further indicating that vessel remodeling
affects COPD progression [23].

CS activated cell oxidant stress and apoptosis can pro-
mote Transforming growth factor-beta 1(TGF-B1) secre-
tion [24-27]. The TGF-B1/Smads signaling pathways are
thought to mediate CS-induced airway-vessel remodeling
in COPD [8, 28-31]. TGF-P1 is a multi-functional cyto-
kine that regulates angiogenesis, extracellular matrix de-
position, and fibroblast/myofibroblast trans-differentiation
[29, 32-34]. Among its downstream pathways, TGF-p1/
Smad2.3 signaling is strongly implicated in EMT and
EndMT, which play key roles in COPD-associated airway-
vessel remodeling [15, 28, 30].

Sarcopenia is an important complication of COPD and
an indicator of poor prognosis of COPD patients [12,
35]. Exercise and glucocorticoids stimulate muscle re-
covery with variable efficacy, depending on the patient’s
clinical condition and medical treatment [36]. Insulin-
like growth factor 1(IGF1) is thought to play a key role
in bronchial epithelial and muscle cell regeneration in
COPD patients [36-39]. Thus, IGF1 intervention may
contribute to treat COPD through effects on airway-
vessel remodeling and muscle atrophy.

Ursolic acid (UA), a pentacyclic triterpenoid compound
exits in many plants. It has anti-oxidant [40, 41], anti-
inflammatory [42], anti-tumor [43], anti-apoptotic [44],
and anti-fibrotic effects [45], all of which could support
COPD treatment. In our previous experiment, we found
UA intervention could alleviate CS induced emphysema in
rats [46]. Researchers reported previously that UA is an an-
tagonist of TGF-P1 [47], but whether UA exerts its effect
through TGF-B1/Smads pathways remained unknown, es-
pecially in the context of COPD. UA was also reported to
alleviate muscle consumption through the IGF1 pathway
in an animal model of chronic kidney disease [48]. How-
ever, whether UA can alleviate CS-induced airway remod-
eling and muscle consumption in emphysema rats, and
whether UA exerts its effects through TGF-f1/Smads and
IGF1 pathways, remains to be established.

Therefore, we used CS induced rat emphysema model
to assessed the effect of UA on EMT, EndMT, airway-
vessel remodeling and muscle consumption and discuss
the underlying mechanisms through TGEF-B1/Smads
pathways and IGF1 molecule. This study offered a new
ademption for the treatment of clinical COPD patients.

Methods

Compounds and reagents

Antibodies against TGF-p1, 8-OHdG, a-SMA, S100A4,
and IGF1 were obtained from Abcam Biotechnology
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Company (Cambridge, UK). Antibodies against Smad2,
p-Smad2, Smad3, p-Smad3, and cleaved-caspase3 were
purchased from Cell Signaling Technology (Denver, CO)
. UA was purchased from Wanxiang Hengyuan Biotech-
nology (Tianjin, China). Masson and Alcian blue-
periodic acid Schiff (AB-PAS) kits were obtained from
Nanjing Jiancheng biological engineering research insti-
tute (Nanjing, China). BCA kit was obtained from Pierce
(Thermo-Scientific, Rockford, IL, USA), ECL chemilu-
minescence kit from Applygen (Beijing, China).

Animals

Six-week-old male Wistar rats, weighing between 150
and 250 g, were bought from Chansheng Biotechnology
Company (Liaoning, China). After two weeks of adapta-
tion time, rats were randomized into one of five treat-
ment groups (N =10 each): Sham, CS, UA10, UA20, and
UA40. UA rats were administrated 10 mg/kg, 20 mg/kg
or 40 mg/kg body weight UA via gavage thirty minutes
before the first CS exposure every day. Sham and CS rats
were given vehicle instead. CS and UA rats were exposed
to smoke of 16 filters removed 1R3F cigarettes for 30
min, two times a day, 6 days a week, for 3 months. Rats
from the same group were placed five at a time into a
glass chamber measuring 0.8 m x 0.6 m x 0.6 m, with a 2
cm x 2 cm spiracle on the top of the box. The time inter-
val between the two exposures each day was 4 to 6h.
Rats in the Sham group were exposed to normal air. [46]
The Animal Care and Use Ethics Committee of China
Medical University approved this study.

Cells culture and interventions

Human bronchial epithelial cells (HBEs) and human
umbilical vein endothelial cells (HUVECs) were pur-
chased from Peking University Cancer Institute (Beijing,
China). Cells were cultured in RPMI-1640 culture
medium (Hyclone, UT, USA) containing 10% fetal bo-
vine serum (Hyclone, UT) in a 5% CO2 humidified cell
incubator (Thermo Fisher Scientific, Inc., USA) at 37 °C.
We treated 1 x 10° cells with 10 uM/L UA 2h prior to
1% cigarette smoke extract (CSE) [49] intervention. The
concentrations we used were according to the CCK8
cytotoxicity testing (Dojido, Japan).

Pathological materials

The left lungs were inflated and fixed using 4% phos-
phate- buffered formaldehyde (pH 7.40) at 25cmH20
pressure for 24 h. The musculi soleus muscles were fixed
using 10% formaldehyde for 24 h. Then lungs and mus-
culi soleus muscles embedded with paraffin. The
paraffin-embedded sections were used for histopatho-
logical examination. Right lung tissues were frozen in li-
quid nitrogen for 5 min before storing at — 80 °C.
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Histopathology

We used hematoxylin and eosin (HE) staining to observe
pathological changes to pulmonary airways and vessels.
We measured and compared mean thickness of the air-
ways and associated vessels in lung tissues. We observed
and compared the pathological changes of musculi so-
leus using HE staining. To evaluate bronchial and vascu-
lar wall thickness, four sections that did not include
cartilage but did include intact bronchial tracheal tran-
sections and concomitant vessels were randomly se-
lected. For all bronchial sections, the ratio of minimum
diameter to maximum diameter was>0.5. Image Pro
Plus 5.0 image analysis software (Media Cybernetics
company, Maryland, American) was used to measure
airway and vascular basement membrane perimeter
(Pbm), airway wall area (total wall area [Wat]) and vas-
cular wall area (total vascular area [Vat]). Wat/Pbm and
Vat/Pbm values were calculated for each trachea and as-
sociated vessel, and the average value was used to com-
pared airway and vascular wall thicknesses among
groups.

Masson staining

We used Masson staining to measure collagen depos-
ition around the airways and vessels. Paraffin sections
were dewaxed to water, then stained according to the
Masson staining kit instructions (Nanjing Jiancheng Bio-
technology, Nanjing, China). Areas of collagen depos-
ition around airways and vessels were compared using
the index wall area of collagen deposition (Wac)/Wat
and vascular area of collagen deposition (Vac)/Vat mea-
sured using Image Pro Plus 5.0 image analysis software.

AB-PAS staining

We used AB-PAS staining to count mucus-producing
cells surrounding the airway. Paraffin sections were
dewaxed to water, then stained according to the AB-PAS
staining kit instructions (Nanjing Jiancheng Biotechnol-
ogy, China).

Immunohistochemistry (IHC)

Briefly, paraffin embedded tissues cut into 4-pm thick
sections, and dewaxed, rehydrated. The slices were
treated with H202 in methanol to inhibit endogenous
peroxidase activity. Then antigen retrieval was per-
formed using a microwave and 10-mM citrate buffer,
pH6. Slices were incubated with anti-8-OHdG, anti-
cleaved caspase-3, anti-a-SMA, anti-TGF-B1, anti-p-
Smad2, and anti-S100A4 antibodies overnight with the
concentration of 1:500 at 4 °C. After washing, secondary
antibodies were incubated room temperature for 1h
using the concentration of 1:1000. Then incubation with
3,3’ -diaminobenzidine (DAB) and DAB Enhancer. One
horizon in each quadrant of each section was assessed.
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Relative expression was compared using relative inte-
grated optical density (IOD) surrounding the airway
(IOD/Wat) and vessel (IOD/Vat), as measured using IPP
5.0 software. [46]

Western blot analysis

Lung tissues, HBE cells and HUVEC cells lysates were pre-
pared. Briefly, tissues and cells were lysed in an ice-cold
lysis buffer (Roche Applied Science, Indianapolis, IN).
Samples were then homogenized for 15s at 4°C, 4-5
times. Cell lysates were centrifuged at 12,000xg for 30 min
at 4°C to remove cellular debris. Protein concentration
was determined using a BCA protein assay kit. Equal
amounts of protein (20-60 pg) were separated on 8—10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
gels and then transferred to PVDF membranes (Merck
Millipore, Darmstadt, Germany), blocked and incubated
with diluted primary antibodies overnight at 4 °C refriger-
ator. Blots were stripped and re-probed with anti-GAPDH
antibody to demonstrate equal loading. Incubated with sec-
ondary antibody, the chemiluminescent signal was de-
tected using the Super Enhanced Chemiluminescence Kit
(Bio-Rad Laboratories, Shanghai, China). Band density was
quantified using Quantity One software (Bio-Rad Labora-
tories, Shanghai, China). [46]

Statistical analysis

SPSS13.0 software and Graph Pad Prism 5.0 software
were used for statistical analysis. Kolmogorov Smirnov
and Shapiro tests were used to assess normality, and all
the data fit a Gaussian distribution. Data are presented
as Mean * Standard Deviation (SD). One-way analyses of
variance (ANOVAs) were used to compare differences
among groups. p < 0.05 was considerate to with statis-
tical difference.

Results

UA decreased musculi soleus atrophy in CS-induced
emphysema rats

We had 10 rats in each group at the beginning of the ex-
periment, but 2 rats in the CS group died during CS ex-
posure. The remaining 48 rats survived and were used in
subsequent experiments. Musculi soleus weights were
significantly reduced in the CS group, relative to the
Sham group, and 40 mg/kg body weight UA administra-
tion significantly attenuated this muscle mass loss. The
same trend was not observed for extensor digitorum
longus (Fig. 1A). Examination of HE stained sections
revealed marked muscle atrophy with characteristic
muscle cell crinkle, cell vacuolation, and structural
disorder in the musculi soleus of CS-induced emphy-
sema model rats, relative to the muscles of Sham rats.
In UA groups, musculi soleus atrophy related changes
such as muscle cell crinkle, vacuolation, muscle fiber
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Fig. 1 UA attenuate CS induced muscle atrophy in emphysema model rats. A Weights of musculi soleus and extensor digitorum longus. 40 mg/
kg body weight UA administration attenuated CS induced musculi soleus loss. *p < 0.05 vs. Sham; *p < 0.05 vs. CS. B Morphological changes of
musculi soleus. HE staining of musculi soleus showed muscle atrophy associate changes in CS, and these changes were alleviated by UA
intervention, especially in UA20 and UA40. Sham (a), CS (b), UATO0 (), UA20 (d), and UA40 (e). UA: ursolic acid; CS: cigarette smoke (group); UA10:
10 mg/kg body weight UA administration group; UA20: 20 mg/kg body weight UA administration group; UA40: 40 mg/kg body weight UA

disorder, and gap dilation were all improved in a con-
centration dependent manner. Mpyoarchitecture in
UA20 and UA40 groups were similar to that of the
Sham group (Fig. 1B).

UA alleviated airway-vessel remodeling in CS-induced
emphysema rat lungs

HE stained sections revealed that the airways and associ-
ated vessels of the emphysema rats underwent airway-
vessel remodeling, UA administration alleviated CS in-
duced airway and vessel remodeling. The pathology
changes observed in CS rats included proliferation and
exfoliation of airway epithelial cells, airway basement
membrane thickening, collagen deposition, airway con-
tracture, infiltration of inflammation cells around air-
ways, and vessel thickening. UA administration at all
three concentrations alleviated these changes (Fig. 2A).
We used airway and vessel thickness to quantify changes
associated with airway-vessel remodeling. Compared

with Sham group, the thickness of airways and accom-
panying vessels were remarkably increased with CS, and
UA administration alleviated these changes at all three
concentrations tested (Fig. 2B).

Effects of UA on collagen deposition around airways and
vessels caused by CS exposure

Masson staining showed that blue-dyed collagen de-
position areas were significantly increased in airway
and accompanying vessel walls of CS rats, compared
with those in the Sham rats. Blue-dyed areas around
airways and accompanying vessels were reduced sig-
nificantly by all doses of UA administered (Fig. 2C).
We used blue-stained areas in airway or vessels di-
vided by the total areas of airway or vessels to com-
pare the relative extent of collagen deposition.
Proportion of collagen deposition areas to total airway
or vessel areas are increased significantly in CS group
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Fig. 2 (See legend on next page.)
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Fig. 2 UA alleviate airway-vessel remodeling in emphysema model rats. A HE staining of lung sections showed that UA administration reduced the
airway-vessel remodeling associated changes in CS-induced emphysema rats. Sham (a), CS (b), UAT0 (c), UA20 (d), and UA40 (e). B Airway thickness
(Wat/Pbm: pm?/um) and vascular thickness (Vat/Pbm: um?®/um). *p < 0,01 vs. Sham; *p < 005, **p < 0.01 vs. CS. € Masson staining of lung sections
showed that UA alleviated collagen deposition in tissue surrounding airways and accompanying vessels in lungs of emphysema rats. Sham (a), CS (b),
UA10 (), UA20 (d), and UA40 (e). D Collagen deposition in areas surrounding airways (Wac/Wat: umz/pmz) and vessels (Vac/Vat: pmz/umz), Wp <001
vs. Sham; *p < 0.05, **p < 0.01 vs. CS. E PAS staining of lung sections showed that UA alleviated mucus secretion cell expression around airways in
lungs of emphysema rats. Pink arrows show goblet cells. Black arrow shows mucous gland near the major airway. UA: ursolic acid; CS: cigarette smoke
(group); UA10: 10 mg/kg body weight ursolic acid administration group; UA20: 20 mg/kg body weight ursolic acid administration group; UA40: 40 mg/
kg body weight ursolic acid administration group; Pbm: airway or vessel basement membrane perimeter; Wat: airway wall area; Vat: vascular wall area;

Wac: wall area of collagen deposition; Vac: vascular area of collagen deposition

compared with Sham. UA administration reduced the
proportion of collagen deposition around airways and
accompanying vessels (Fig. 2D).

Effects of UA on airway mucus secretion cell expression
caused by CS exposure

We used AB-PAS staining to assess mucus secreting cell
expression surrounding the airways. Many large blue-
dyed goblet cells were present in the epithelial layer in
the airways of CS rats compared with Shams. UA de-
creased the size and number of goblet cells in epithelial
layer of CS rats. We also noted metaplasia of large blue-
dyed mucous glands in the large airway in the CS group
(Fig. 2E).

Effects of UA on airway and vessel smooth muscle cell
proliferation caused by CS exposure

To investigate smooth muscle cell proliferation, fibro-
blast to myofibroblast differentiation, EMT, and
EndMT, we examined a-SMA expression in the area
surrounding the airways and accompanying vessels
using IHC. a-SMA expression around airways and ves-
sels were significantly increased in the CS group com-
pared with the Sham group, especially in the epithelial
and endothelial layers. UA decreased a-SMA expression
in the area surrounding airways and vessels, particularly
in the epithelial and endothelial layers, at each dose of
UA (Fig. 3A). The percentage of a-SMA staining areas
per airway or vessel areas were significantly increased
in CS rats compared with Sham rats, but UA adminis-
tration decreased the percent of a-SMA staining area at
all doses (Fig. 3B).

Effects of UA on EMT, EndMT in airways and
accompanying vessels caused by CS exposure

We used S100A4 expression to assess EMT and EndMT
around airways and vessels. IHC analyses showed that
S100A4 expression surrounding airways and accompany-
ing vessels was significantly increased in the CS group
compared with the Sham group. This increase was sup-
pressed by UA, especially in the epithelial and endothe-
lial layers (Fig. 3C). The percentage of S100A4 staining

areas per airway or vessel areas were significantly in-
creased in CS rats compared with Sham rats, and UA
administration reversed this effect at all doses (Fig. 3D).

Effects of UA on oxidant stress and cell apoptosis around
airways and vessels caused by CS exposure

We used 8-OHdG and cleaved-caspase3 expressions to
assess cell apoptosis around airways and vessels. [HC ana-
lyses showed that 8-OHdG and cleaved-caspase3 expres-
sion surrounding airways and vessels was significantly
increased in the CS group compared with the Sham
group. This increase was suppressed by UA, particularly
in the epithelial and endothelial layers (Fig. 3E, G). The
IOD/area values are consistent with the results above (Fig.
3F, H).

Effects of UA on TGF-31/Smad2.3 pathway and IGF1
expression caused by CS exposure

IHC analysis further showed markedly upregulated
TGEF-B1 expression in airways and accompanying ves-
sels, while in UA groups, TGF-PB1 expression was down-
regulated in all of the UA groups, especially in the
epithelial and endothelial layers (Fig. 4A). These 10D/
area values are consistent with the results above (Fig.
4B). Western blot analysis of TGF-f1, p-Smad2, p-
Smad3, Smad2, Smad3, a-SMA, and IGF1 expression
showed that the activated forms of TGF-B1, p-Smad3,
and a-SMA were upregulated in rat lung in the CS
group compared with the Sham group. In the UA
groups, active forms expression of TGF-f1, p-Smad3,
and a-SMA was down-regulated. IGF1 expression was
down-regulated in the CS group compared with the
Sham group. UA administration upregulated IGF1 ex-
pression in rat lung (Fig. 4C and D). Contrary to expec-
tations, the p-Smad2 expression seemed to be down-
regulated in the CS group but upregulated in the UA
groups. Thus, we used IHC to assess p-smad2 expres-
sion around airways and accompanying vessels. It re-
vealed markedly upregulated p-Smad2 expression in
airways and accompanying vessels, but not pulmonary
parenchyma regions, downregulated p-Smad2 expression
in airways and accompanying vessels after UA treatment,
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Fig. 3 UA alleviate oxidant stress and cell apoptosis in airways and
associated vessels, attenuated EMT/EndMT in CS-induced emphysema
rats. A IHC staining of lung sections showed that UA reduced a-SMA
expression in airways and vessels in emphysema rat lung, especially in
the epithelial and endothelial layers. Sham (a), CS (b), UA10 (c), UA20
(d), and UA40 (e). B IHC IOD of a-SMA expression in airways and
vessels. IOD/Wat: /um? and I0D/Vat: /um? data are shown. “p < 0.05
Hp <001 vs. Sham; *p < 0.05, **p < 001 vs. CS. € IHC staining of lung
sections showed that UA reduced ST00A4 expression in airway and
vessel, especially in the epithelial and endothelial layers. Sham (a), CS
B The -SMA exprssion on thesirway The a:SMA expression on the vessel (b), UA10 (0), UA20 (d), and UA40 (e). D IHC IOD of S100A4 expression

"1 in airways and vessels. IOD/Wat: /um? and I0D/Vat: /um? data are
shown. *p < 0.05, *p <001 vs. Sham; *p < 0.05, **p < 0.01 vs. CS. E IHC
staining of lung sections showed that UA reduced 8-OHdG expression
in airways and accompanying vessels in emphysema rat lungs,
especially in the epithelial and endothelial layers. Sham (a), CS (b),
UA10 (c), UA20 (d), and UA40 (e). F IHC IOD of 8-OHdG expression in
airways and vessels. [OD/Wat: /um? and I0D/Vat: /um? data are shown.
<005, "p <001 vs. Sham; *p < 0.05, **p < 001 vs. CS. G IHC
staining of lung sections showed that UA reduced cleaved-caspase3
expression in airways and accompanying vessels in emphysema rat
lungs, especially in the epithelial and endothelial layers. Sham (a), CS
(b), UAT0 (0), UA20 (d), and UA40 (e). H IHC IOD of cleaved-caspase3
expression in airways and vessels. IOD/Wat: /um? and I0D/Vat: /um?
data are shown. "p <001 vs. Sham; *p < 005, **p < 001 vs. CS. UA:
ursolic acid; CS: cigarette smoke (group); UA10: 10 mg/kg body weight
UA administration group; UA20: 20 mg/kg body weight UA
administration group; UA40: 40 mg/kg body weight UA administration;
Pbm: airway or vessel basement membrane perimeter; Wat: airway wall
area; Vat: vascular wall area; IHC: immunohistochemistry; I0D: integral
optical density
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which is inconsistent with the IOD results (Fig. 4E and
F).

P, Effects of UA on TGF-31/Smad2.3 pathway molecules

= : expression in HBE and HUVEC cells after CSE
administration

Western blot analysis showed upregulated expression of
activated forms of TGF-f1, p-Smad2, p-Smad3, and
S100A4 in HBEs and HUVECs after CSE administration
compared with vehicle control cells, that could be atten-
uated by UA treatment. CSE administration downregu-
lated IGF1 expression in HBE cells, UA alleviated the
IGF1 down-regulation (Fig. 5A-D).
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Discussion
The present study showed that UA treatment alleviated
EMT, EndMT, airway-vessel remodeling, and muscle
atrophy-associated lesions in a rat model of CS-induced
emphysema. We further demonstrated that UA exerts its
effects through mechanisms that involve upregulation of
IGF-1 and inhibition of the TGF-f1/Smad2,3 pathway.
Similar to EMT, of which it is a special type, EndMT
refers to the process of under-stimulated endothelial
cells taking on a mesenchymal cell phenotype. EndMT is
characterized by decreased cellular connectivity, reduced
expression of endothelial markers (e.g, CD31 and
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Fig. 4 UA intervention alleviate TGF-31/smad2.3 pathway molecules
expression in airways and accompanying vessels of emphysema rats.
A HC staining of lung sections showed that UA reduced TGF-31
expression in tissue surrounding airways and vessels in rat lungs. Sham
(@), CS (b), UA10 (c), UA20 (d), and UA40 (e). B IHC IOD of TGF-31
expression in airways and vessels. IOD/Wat and I0D/Vat: /um? data are
shown. *p <0071 vs. Sham; *p < 0.05, **p <001 vs. CS. € Western blot
analysis of TGF-B1/Smad2.3 pathway molecules and IGF1 expression in
the lungs of emphysema rats. D Western blot I0D of TGF-31/Smad2.3
- ¢ pathway molecules and IGF expression in lungs. p < 005 vs. Sham;
B *p <005, **p <001 vs. CS. E IHC staining of lung sections showed that

ASELslatcEpceslox alray TGF-p 1 rehitire expression n vessel UA reduced p-Smad?2 expression in tissue surrounding airways and
200 100 #

vessels in rat lungs. Sham (a), CS (b), UA10 (c), UA20 (d), and UA40 (e).

F IHC IOD of p-Smad2 expression in airways and vessels. [OD/Wat and
IOD/Vat: /um? data are shown. *p <001 vs. Sham; *p < 0.05, **p < 001
vs. CS. UA: ursolic acid; CS: cigarette smoke (group); UA10: 10 mg/kg
body weight UA administration group; UA20: 20 mg/kg body weight UA
administration group; UA40: 40 mg/kg body weight UA administration;
Pbm: airway or vessel basement membrane perimeter; Wat: airway wall
area; Vat: vascular wall area; IHC: immunohistochemistry; IOD: integral
optical density
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cadherin), increased expression of mesenchymal markers
(e.g., a-SMA and vimentin), and signs of cellular inva-
sion and migration. Recent observations of upregulated
expression of SI00A4 in the vascular walls of COPD pa-
tients suggest that EndMT may be involved in COPD
pulmonary vascular remodeling [16, 17], though the
mechanism underlying these changes is unclear.

We found in this study, 3 months of CS exposure in-
duced significant airway-vascular remodeling in rat
£ lungs. Pathological manifestations included increased
thickness of the airways and accompanying vessels, as
well as collagen deposition in these areas. Remodeling
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EndMT.

3 months of CS exposure also increased TGF-f1 ex-
pression in airway and vessel walls as well as whole lung
of rats, and its downstream p-Smad3 expression. How-
ever, western blot analyses showed decreased p-Smad2
expression in whole lung of rats, contrasting with previ-
ous findings [50]. We sought to explain this discrepancy.

F oy e o cxpression i vesse In a previous study of Smad? activation in the lung tis-
5 “ gosf ¥ sues of COPD patients, Lepparanta and colleagues found
H X o y = reduced Smad2 activation in alveoli and increased
g* = s S0z = Smad2 activation in thickened bronchial tissues. Down-
e 2 s Y S T P regulation of p-Smad2 expression in emphysema rat
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lungs may due to imbalanced expression of Smad2 in
pulmonary parenchyma and airway-vessels [51]. Our
IHC analysis of p-Smad2 expression in airways and ves-
sels showed upregulation of p-Smad2 in airway and
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Fig. 5 UA alleviated CSE-induced TGF-B1/Smad2.3 pathway proteins
and S100A4 expression in HBEs and HUVECs in vitro. A Western blot
analyses showed UA attenuated CSE-induced TGF-31/Smad2.3
pathway protein and S100A4 expression in HBEs. B 10D of TGF-31/
smad2.3 pathway, IGF1, and S100A4 expression in HBEs"p < 0.05 vs.
Sham; *p < 0.05 vs. CSE. C Western blot analyses showed that UA
alleviated CSE-induced TGF-31/Smad2.3 and S100A4 protein
expression in HUVECs. D 10D of TGF-31/Smad2.3 pathway proteins
and S100A4 expression in HUVECs. *p < 0.05 vs. Sham; *p < 0.05 vs.
CSE. UA: ursolic acid; CSE: cigarette smoke extract (group); HBE:
Human Bronchial Epithelial cells; HUVEC: Human Umbilical Vein
Endothelial Cells; IOD: integral optical density.

vessel walls of CS-induced emphysema model rats. We
also observed higher levels of TGF-B1/Smad2,3 pathway
constituents and increased S100A4 expression in CSE-
exposed HBEs and HUVECs.

UA, a compound that comprises three terpenoids
found in plants, has a wide range of effects, which may
inhibit the occurrence and development of COPD. Previ-
ously, we found that UA administration significantly al-
leviated body weight loss, oxidative stress, and cell
apoptosis in lung tissue of CS induced emphysema rats.
UA exerted its effects through the unfolded protein re-
sponse (UPR) PERK and Nrf2 pathways [46]. We also
found previously that IRE1 pathway, but not ATF6 path-
way, signaling was upregulated this model. In this study,
we found that UA alleviated EMT, EndMT, airway-vessel
remodeling, and muscular atrophy in the same model,
and that it does so partly through TGF-/Smad2.3 and
IGF-1 signaling pathways. These results suggest that UA
could exert dual effects in rats with CS-induced
emphysema.

The UPR of endoplasmic reticulum stress (ERS) has
been described involving in EMT in other disease pro-
cesses [52—55]. It is not yet known whether a similar ac-
tivation of the UPR occurs during EMT of airway and
alveolar epithelial cells in COPD. Recently, Liang and
colleagues proposed that ERS induced by advanced oxi-
dation protein products may be involved in glomerular
endothelial cell EndMT, leading to the development of
diabetic nephropathy [56]. Meanwhile, Ying and col-
leagues proposed that ERS-induced EndMT may occur
through the Src pathway in HUVECs [57]. It remains to
be established whether activation of the unfolded protein
response plays a role in EMT/EndMT during COPD-
associated airway-vessel remodeling, and if so, which
pathways are most critical. Furthermore, it will be of
interest to determine whether UA treatments that allevi-
ate airway-vessel remodeling affect the unfolded protein
response in association with endoplasmic reticulum
stress.

However, our findings are insufficient to identify the
exact mechanism underlying the effects of UA on CS-
induced airway-vessel remodeling. The nature of the link



Lin et al. BMC Pulmonary Medicine (2019) 19:103

between EndMT and COPD has yet to be clarified [16,
17]. These observations are important and warrant fur-
ther studies.

Conclusion

Adding to our previous study showing that UA can alle-
viate CS-induced emphysema in rats via attenuation of
oxidative stress and cell apoptosis, here we show that
UA can also alleviate CS-induced EMT, EndMT, airway-
vessel remodeling, and muscle atrophy. As a compound
that occurs naturally in plants, and has already been
used for clinical trials in solid tumors, UA offers much
promise as an intervention for the pathogenesis, symp-
toms, and complications of COPD.
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