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SUMMARY

Previous studies have revealed that, at the initial step of carcinogenesis, trans-
formed cells are often eliminated from epithelia via cell competition with the
surrounding normal cells. In this study, we performed cell competition-based
high-throughput screening for chemical compounds using cultured epithelial cells
and confocal microscopy. PLX4720 was identified as a hit compound that pro-
moted apical extrusion of RasV12-transformed cells surrounded by normal
epithelial cells. Knockdown/knockout of ZAK, a target of PLX4720, substantially
enhanced the apical elimination of RasV12 cells in vitro and in vivo. ZAK
negatively modulated the accumulation or activation of multiple cell competition
regulators. Moreover, PLX4720 treatment promoted apical elimination of
RasV12-transformed cells in vivo and suppressed the formation of potentially
precancerous tumors. This is the first report demonstrating that a cell competi-
tion-promoting chemical drug facilitates apical elimination of transformed cells
in vivo, providing a new dimension in cancer preventive medicine.

INTRODUCTION

Despite extensive efforts in chemotherapeutic research, cancers are often resistant to chemical drugs. In

addition, certain types of malignant tumors such as lung and pancreatic cancers are incurable even in

the early stage detection (Jemal et al., 2006; Siegel et al., 2018). Recent studies using next-generation

sequencing technology have revealed that, in our body, there are a number of abnormal lesions; although

they apparently look normal, they comprise focally accumulated transformed cells that harbor just one or

two oncogenic mutations (Martincorena et al., 2015, 2018). Hence, to overcome cancer, an alternative strat-

egy would be a preventive cure: prophylactically eradicating such potentially pre-cancerous lesions.

Our recent studies have demonstrated that, at the initial stage of carcinogenesis, normal and transformed

epithelial cells often compete with each other for survival: a phenomenon called cell competition (Mar-

uyama and Fujita, 2017). For instance, when oncoprotein Ras- or Src-transformed cells are surrounded

by normal epithelial cells, the transformed cells are extruded from the apical surface of the normal epithe-

lial monolayer (Hogan et al., 2009; Kajita et al., 2010). These apically extruded transformed cells will even-

tually be eliminated from epithelial tissues and expelled outside the body (Kon et al., 2017; Sasaki et al.,

2018), implying that this is a cancer preventive mechanism. During this cell competition process, normal

epithelial cells first recognize the presence of neighboring transformed cells (Hogan et al., 2009). Normal

cells then accumulate the cytoskeletal protein Filamin at the boundary with transformed cells, thereby

generating physical forces and actively eliminating transformed cells from epithelia: a mechanism called

epithelial defense against cancer (EDAC) (Kajita et al., 2014). On the other hand, the surrounded trans-

formed cells also react to normal cells and accumulate a set of cytoskeletal components (Kadeer et al.,

2017; Kasai et al., 2018; Ohoka et al., 2015; Saitoh et al., 2017). For example, Paxillin, Plectin, and Tubulin

form a complex and accumulate at the apical side of transformed cells (Kadeer et al., 2017; Kasai et al.,

2018). These three proteins mutually influence their non-cell-autonomous accumulation, which also plays

a crucial role in apical extrusion of RasV12-transformed cells.

To identify chemical compounds that promote cell competition between normal and transformed cells, we

have established a high-throughput screening platform based on epifluorescent microscopy and identified
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Rebeccamycin as one of the hit compounds (Yamauchi et al., 2015). Rebeccamycin and its derivatives pro-

mote apical extrusion of transformed cells in vitro. However, these chemical compounds could not be

applied to in vivo analyses because of their high cytotoxicity. In this study, we have newly established a

confocal microscopy-based screening system and identified several chemical compounds that promote

apical elimination of RasV12-transformed cells from epithelia in vitro and in vivo. This study will elicit future

interest to establish cancer-preventive therapy by targeting cell competition.

RESULTS

PLX4720 and Its Derivatives Promote Apical Elimination of RasV12-Transformed Cells

To identify chemical compounds that promote apical extrusion of RasV12-transformed cells, we have opti-

mized the previously established screening system (Yamauchi et al., 2015) by employing a confocal micro-

scopy-based high-throughput platform (Figure 1A). First, normal MDCK cells and MDCK-pTR GFP-RasV12

cells were mixed at a ratio of 10:1 and cultured in a collagen-coated 96-well plate until they formed an

epithelial monolayer. Then, the cells were incubated for 16 h with a small chemical compound, together

with tetracycline to induce expression of GFP-RasV12. In this study, we used a chemical compound library

consisting of various kinase inhibitors. Finally, apically extruded GFP-RasV12 cells were captured by

confocal microscopic analyses (Figure S1A). After the primary screening, we obtained PLX4720 as a hit com-

pound (Figure S1B). PLX4720 substantially enhanced apical extrusion of RasV12 cells that were surrounded

by normal cells (Figure S1B), but not increased apical elimination of RasV12 cells that were cultured alone

(Figure S1C). In addition, PLX4720 promoted apical extrusion in a dose-dependent manner (Figure 1B).

Previous reports have demonstrated that PLX4720 strongly inhibits the activity of both ZAK and the active

mutant of Raf (BRAF-V600E) but shows a much weaker inhibitory effect on wild-type Raf (Table S1) (Fabian

et al., 2005; Karaman et al., 2008; Vin et al., 2013). ZAK, also called MLTK (MLK-like mitogen-activated pro-

tein triple kinase), is a member of the serine-threonine kinase MAPKKK family and is involved in osmotic

stress response (Gotoh et al., 2001), but its role in cell competition has not been studied yet. We then found

that other structurally related, ZAK-inhibiting compounds Vemurafenib and Dabrafenib significantly

enhanced apical elimination of MDCK-pTR GFP-RasV12 cells from a monolayer of normal MDCK cells (Fig-

ures 1C–1E and Table S1). MDCK cells do not harbor V600E mutations in the BRAF gene locus. In addition,

an inhibitor of the BRAF downstream kinase MEK suppresses apical elimination of RasV12-transformed

cells (Hogan et al., 2009). Thus, it is plausible that the effect of these compounds on apical extrusion of

RasV12 cells is attributed to inhibition of ZAK, rather than that of Raf.

ZAK Is a Negative Regulator for Apical Extrusion of RasV12-Transformed Cells

These three compounds share a similar chemical structure (Figure 1C) that is, at least partly, involved in the

occupancy of the ATP pocket of the ZAK kinase domain (Mathea et al., 2016). Therefore, we tested a struc-

turally distinct ZAK inhibitor Sorafenib (Figure 2A) and found that addition of Sorafenib also substantially

promoted apical extrusion of RasV12 cells (Figure 2B) (Vin et al., 2014). These results suggest that ZAK plays

a negative role in the elimination of transformed cells. To validate a functional role of ZAK, we depleted

ZAK either in normal or RasV12-transformed cells using CRISPR-Cas9 technology and successfully gener-

ated homozygous ZAK-knockout cells, which possess 2 base-depletion (ZAK-KO1) or 17 base-insertion

(ZAK-KO2). ZAK knockout in normal cells did not affect the frequency of extrusion (Figures 2C and S2A).

In contrast, ZAK knockout in RasV12-transformed cells significantly enhanced apical extrusion (Figures

2D and S2B). Exogenous expression of wild-type (WT) ZAK rescued the phenotype but that of kinase-nega-

tive ZAK did not (Figures 2Dl, S2B, and S2C), suggesting a crucial role of ZAK kinase activity. Accordingly,

apical extrusion of ZAK-knockout RasV12 cells was not affected by PLX4720 (Figures 2E and S2D). These

results indicate that the kinase activity of ZAK in RasV12 cells negatively regulates apical extrusion. To

further investigate the prevalent role of ZAK in elimination of transformed cells, we examine the effect of

ZAK knockdown in vivo using the mouse cell competition model system (Villin-CreERT2; LSL-RasV12-

IRES-eGFP) (Figure 2F) (Kon et al., 2017). To induce ZAK knockdown in vivo, we used the iGT (intestine-spe-

cific gene transfer) system by which short interfering RNA (siRNA) can be introduced into mouse intestinal

epithelia using electroporation (Imajo et al., 2015). First, we conducted in vivo electroporation with control-

or ZAK-siRNA, and then a low dose of tamoxifen was administered to induce the expression of the RasV12

protein in amosaic manner within intestinal epithelia (Figure 2G) (Kon et al., 2017). The introduction of ZAK-

siRNA#1 diminished the expression of ZAK (Figures S2E and S2F) and significantly promoted apical elim-

ination of RasV12-expressing cells from the epithelium (Figures 2H and 2I). Collectively, these results

demonstrate that ZAK is a crucial negative regulator for apical extrusion of RasV12-transformed cells

from epithelia in vitro and in vivo.
2 iScience 23, 101327, July 24, 2020
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Figure 1. Cell Competition-Based High-Throughput Screening for Chemical Compounds Using Confocal

Microscopy

(A) A scheme of cell competition-based screening.

(B) The dose-dependent effect of PLX4720 on apical extrusion of RasV12-transformed cells.

(C) Chemical structure of PLX4720 and its derivative compounds.

(D and E) The effect of PLX4720 and its derivative compounds (1 mM) on apical extrusion of RasV12-transformed cells.

(B, D, and E) MDCK-pTR GFP-RasV12 cells were mixed with normal MDCK cells on collagen gels. Cells were cultured with

the indicated chemical compounds and fixed after 16 h incubation with tetracycline and stained with phalloidin (red) and

Hoechst (blue). (B and D) Quantification of apical extrusion of RasV12 cells. nS 100 cells for each experimental condition.

Data are mean G SD from three independent experiments. *p < 0.05, **p < 0.01 (Student’s t tests). (E) Representative XZ

images of normal and RasV12 cells. Scale bars: 10 mm.
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ZAK Negatively Modulates Cell Competition Regulators

At the interface between normal and RasV12-transformed cells, various non-cell autonomous changes

occur in both normal and transformed cells. For instance, in RasV12-transformed cells, the adaptor protein

Paxillin is accumulated, and the activity of Myosin-II is elevated (Hogan et al., 2009; Kasai et al., 2018). In
iScience 23, 101327, July 24, 2020 3
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Figure 2. ZAK Negatively Regulates Apical Extrusion of RasV12-Transformed Cells In Vitro and In Vivo

(A) The chemical structure of Sorafenib.

(B) Sorafenib, another ZAK inhibitor, promotes apical extrusion of RasV12-transformed cells. MDCK-pTR GFP-RasV12

cells were mixed with normal MDCK cells on collagen gels. The cells were fixed after 24 h incubation with tetracycline

together with DMSO, PLX4720, or Sorafenib (1 mM).

(C) Knockout of ZAK in normal cells does not affect the efficiency of apical extrusion. MDCK-pTR GFP-RasV12 cells were

mixed with normal MDCK ZAK-WT or -KO cells on collagen gels. The cells were fixed after 24 h incubation with

tetracycline, and apical extrusion was quantified.

(D) Knockout of ZAK in RasV12-transformed cells promotes apical extrusion. MDCK-pTR GFP-RasV12 ZAK-wild-type (WT),

ZAK-knockout (KO), ZAK-KO + HA-ZAK-WT, or ZAK-KO + HA-ZAK-kinase-negative (KN) cells were mixed with normal

MDCK cells on collagen gels. The cells were fixed after 24 h incubation with tetracycline, and apical extrusion was

quantified. (B–D) n S 100 cells for each experimental condition. Data are mean G SD from three independent

experiments. *p < 0.05, **p < 0.01, ns.: not significant (Student’s t tests).

(E) PLX4720 does not enhance the extrusion efficiency of ZAK-knockout RasV12 cells. MDCK-pTR GFP-RasV12 ZAK-wild-

type (WT) or ZAK-KO cells were mixed with normal MDCK cells on collagen gels. The cells were fixed after 24 h incubation
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Figure 2. Continued

with PLX4720 and tetracycline, and the frequency of apical extrusion was quantified. nS100 cells for each

experimental condition. Data are mean G SD from three independent experiments. *p < 0.05, ns.: not significant

(Student’s t tests).

(F)Strategy for the establishment of the cell competition mouse model using an intestine-specific Villin-CreERT2 system.

(G) Experimental design for short-term tamoxifen (TAM) administration on the small intestine after siRNA introduction by

electroporation-based intestinal gene transfer (iGT).

(H and I) Knockdown of ZAK promotes apical extrusion within intestinal epithelia. (H) Immunofluorescence images of

RasV12-transformed cells in the epithelium of the small intestine. The intestine tissue samples with Control-siRNA (siCtrl)

or ZAK-siRNA#1 (siZAK#1) were stained with anti-GFP (yellow) and anti-E-cadherin (gray) antibodies and Cy3 (magenta).

Scale bars: 20 mm. (I) Quantification of apical extrusion of RasV12 cells in the small intestine. siCtrl 345 transformed cells

from three mice; siZAK#1 280 transformed cells from three mice. ***p < 0.005 (chi-square test).
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addition, in normal cells, the cytoskeletal protein Filamin is accumulated at the boundary with transformed

cells (Kajita et al., 2014). Importantly, accumulation or activation of these molecules, in concert, positively

regulate apical extrusion of transformed cells. We thus investigated the effect of ZAK knockout in Ras-trans-

formed cells on these processes. We observed that ZAK knockout significantly promoted the accumulation

of Paxillin (Figures 3A and 3B). In addition, the level of phospho-Myosin light chain (phospho-MLC), which

reflects the activity of Myosin-II, increased in the ZAK-knockout transformed cells (Figures 3C and 3D).

Moreover, ZAK knockout promoted the accumulation of Filamin in normal cells at the interface with Ras-

transformed cells (Figures 3E and 3F). Consistently, addition of PLX4720 also facilitated the phosphoryla-

tion of MLC and the accumulation of Filamin (Figure S3). These findings suggest that ZAK negatively

modulates the cell competition regulators, thereby suppressing apical extrusion of transformed cells.

PLX4720 Treatment Promotes Apical Elimination of RasV12-Transformed Cells In Vivo

Finally, using the cell competition mouse model, we examined the effect of PLX4720 on elimination of trans-

formed cells in vivo. The oncogenic mutation in the Ras gene occurs at the initial stage of pancreatic cancer

and is involved in the formation of pancreatic intraepithelial neoplasia (PanIN), precancerous lesions in the

pancreas (Bardeesy and DePinho, 2002; Morris et al., 2010). Thus, we evaluated the extrusion efficiency within

the epithelia of pancreatic ducts. To monitor the fate of newly emerging RasV12-transformed cells in ductal

epithelia of the pancreas, we crossed LSL-RasV12-IRES-EGFPmice with cytokeratin 19 (CK19) (epithelial-specific

marker)-Cre-ERT2 mice (Figure 4A). According to the remaining level of PLX4720 in the pancreas after oral

administration (Figure S4), 300 mg/kg PLX4720 was administered twice per day (Figure 4B). As previously re-

ported (Sasaki et al., 2018), when PLX4720 was not administered, GFP-positive RasV12-expressing cells often re-

mainedwithin epithelia (Figures 4C and 4D). In contrast, after 5 days of PLX4720 administration, most of RasV12-

expressing cells were apically detached into the ductal lumen or absent within the pancreatic ducts (Figures 4C

and 4D). As a control, YFP-expressing cells just remained in the epithelia, and PLX4720 did not affect the rate of

YFP-positive cells in the pancreatic ducts (Figures 4E–4G). After 1 month of tamoxifen treatment, some remain-

ing RasV12 cells proliferated and formed a PanIN-like tumorous structure (Figures 4H and 4I). But, PLX4720

administration profoundly decreased the number of remaining RasV12-expressing cells (Figures 4I and 4J).

Collectively, these results demonstrate that PLX4720 treatment promotes apical elimination of RasV12-trans-

formed cells in vivo and suppresses the formation of potentially precancerous tumors.

DISCUSSION

Pancreatic cancer is one of the major causes of cancer-associated mortality, and the prognosis has remained

seriously poor. Themost commonmutations areKRAS, TP53, and SMAD4, none ofwhich are, however, currently

druggable targets (Kleeff et al., 2016). Therefore, a novel approach for early diagnosis and preventive treatment

at the curable stagewould be desired. In this study, we have identified chemical compounds that enhance apical

elimination of RasV12-transformed cells, a cancer preventive process. Especially, PLX4720 suppresses the forma-

tion of pre-cancerous tumors within the pancreatic ducts. The number of the apically delaminated RasV12 cells

decreases as time goes by after PLX4720 administration, suggesting that the apically detached cells would un-

dergo anoikis or be eradicated outside the body. Thus, PLX4720 treatment would contribute to a decreased risk

of carcinogenesis. This is the first report demonstrating that a cell competition-promoting chemical drug facil-

itates apical elimination of transformed cells in vivo.

Previous studies have demonstrated that PLX4720 strongly inhibits the activity of both ZAK and the active

mutant of Raf (BRAF-V600E) but not that of wild-type Raf (Fabian et al., 2005; Karaman et al., 2008; Vin et al.,

2013). Instead, PLX4720 can cause paradoxical activation of wild-type Raf (Hatzivassiliou et al., 2010;
iScience 23, 101327, July 24, 2020 5
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Figure 3. ZAK Negatively Modulates Cell Competition Regulators

(A–D) ZAK-KO promotes accumulation of Paxillin (A and B) or phosphorylation of light chain of Myosin-II (phospho-MLC)

in RasV12 cells surrounded by normal cells. MDCK-pTR GFP-RasV12 ZAK-wild-type (WT) or ZAK-knockout (KO) cells were

mixed with normal MDCK cells on collagen gels. The cells were fixed after 16 h incubation with tetracycline and stained

with anti-Paxillin (A and B) or phospho-MLC (C and D) antibody (magenta), Alexa-Fluor-647-phalloidin (gray), and Hoechst

(cyan). The positive rate of Paxillin staining was quantified. For phospho-MLC quantification, the fluorescence intensity at

the boundary between respective RasV12 cells and normal cells were expressed as fold change relative to the average

fluorescence intensity between the surrounding normal cells. n S 100 cells for each experimental condition. Data are

mean G SD from three independent experiments. *p < 0.05, **p < 0.01 (Student’s t tests).

(E and F) ZAK-KO in RasV12 cells promotes accumulation of Filamin in the neighboring normal cells. MDCK-pTR GFP-

RasV12 wild-type (WT) or ZAK-knockout (KO) cells were mixed with normal MDCK cells on collagen gels. The cells were

fixed after 16 h incubation with tetracycline and stained with anti-Filamin antibody (magenta) and Hoechst (cyan) (E). The

positive rate of Filamin accumulation in surrounding normal cells was quantified (F). n S 100 cells for each experimental

condition. Data are mean G SD from three independent experiments. *p < 0.05 (Student’s t tests).
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Poulikakos et al., 2010). Indeed, the slight activation of ERK is observed upon PLX4720 treatment in MDCK

cells (data not shown), implying that PLX4720 induces attenuation of ZAK activity as well as ERK activation,

which might promote apical elimination of transformed cells in an orchestrated fashion. Additionally, the

involvement of other kinases, the activity of which could be potentially inhibited by ZAK inhibitors, cannot
6 iScience 23, 101327, July 24, 2020
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Figure 4. PLX4720 Treatment Suppresses Apical Extrusion of RasV12-Transformed Cells from Pancreatic Ductal

Epithelia

(A and E) The cell competition mouse model using a CK19-CreERT2 system and control YFP mouse.

(B and H) Experimental designs for short-term (B) or long-term (H) Tamoxifen (TAM)-PLX4720 administration.

(C and I) Immunofluorescence images of RasV12-transformed cells in the epithelium of the pancreatic ducts upon short-

term (C) or long-term (I) vehicle or PLX4720 treatment. The tissue samples were stained with anti-GFP (green) and anti-E-

cadherin (gray) antibodies and Hoechst (blue). Scale bars: 20 mm.

(D) Quantification of apical extrusion of RasV12 cells for (C). Vehicle 86 cells from four mice; PLX4720 153 cells from five

mice. *p < 0.05 (chi-square test).

(F) Immunofluorescence images of YFP-expressing cells in the epithelium of the pancreatic ducts with or without PLX4720

treatment after low-dose TAM administration. The tissue samples were stained with anti-GFP (green) and anti-E-cadherin

(gray) antibodies and Hoechst (blue). Scale bars: 20 mm.

(G) Quantification of remaining YFP-expressing cells within epithelia for (F). Vehicle 196 cells from four mice; PLX4720 204

cells from four mice. Data are mean G SD from four independent mice. ns.: not significant (chi-square test).

(I and J) (J) Quantification of apical extrusion of RasV12 cells for (I). Vehicle 584 ducts from five mice; PLX4720 500 ducts

from four mice. *p < 0.05 (chi-square test).
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be ruled out (Karaman et al., 2008; Vin et al., 2013). However, a structurally distinct ZAK inhibitor Sorafenib

or ZAK knockout enhances apical extrusion, indicating that suppression of ZAK alone is sufficient to regu-

late this process. ZAK is a family member of MAPKKK (Gotoh et al., 2001), but its function remains enig-

matic. We demonstrate that ZAK is a novel key regulator for cell competition between normal and

RasV12-transformed cells. ZAK activity in RasV12 cells plays a negative role in their apical extrusion by

modulating the activity or localization of downstream cell competition regulators: Paxillin and Myosin-II

in RasV12 cells and filamin in normal cells. However, it remains to be uncovered what are the direct sub-

strate proteins of ZAK in this process. ZAK is reported to upregulate the activity of ERK, JNK, and p38

upon various stimuli such as inflammation and osmotic stress (Gotoh et al., 2001; Wong et al., 2013;

Yang et al., 2010). Further studies would be required to understand more detailed molecular mechanisms

of this ZAK-regulated cell extrusion.

A previous study using a cell competition mouse model has revealed that obesity and obesity-induced

chronic inflammation diminish apical elimination of RasV12-transformed cells in the small intestine and

pancreas (Sasaki et al., 2018). These environmental conditions affect apical elimination of transformed cells,

leading to the formation of precancerous lesions. In addition, inflammation can induce ZAK-mediated acti-

vation of JNK and p38 (Wong et al., 2013). Given that the inflammation suppresses apical extrusion (Sasaki

et al., 2018) and activates the ZAK-JNK/p38 pathway, it is plausible that obesity-induced inflammation sup-

presses elimination of transformed cells, at least partly, through modulation of the ZAK-JNK/p38 pathway.

It will be tested whether the PLX4720 treatment can promote the extrusion of the remaining RasV12-trans-

formed cells under these environmental conditions.

A recent study demonstrates that cell competition can occur during the process of carcinogenesis in human

(Madan et al., 2019). Moreover, several lines of studies have revealed that there are a number of focally

colonized transformed cells in our bodies and that these precancerous lesions progressively accumulate

with age. Hence, this study would shed light on those clinically unexplored lesions and provide a new

dimension in cancer preventive medicine. Further elucidation of cell competition mechanisms would

pave a way to cancer prophylactic treatment.

Limitations of the Study

Our study has some limitations. First, it remains to be uncovered what the direct substrate proteins of ZAK

are. Second, to promote accumulation of Myosin-II, the substrate of ZAK should regulate Myosin-II accu-

mulation. In this case, the substrate needs to be identified. In addition, it is also a possibility that direct

regulation of Myosin-II by ZAK contributes to promoting stiffness of RasV12 cells by accumulation of

Myosin-II at the boundary. Last, it is required that PanIN-like structure is related to tumorigenesis and

the PLX is further analyzed in-depth using tumor growth in the xenograft model.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Takeshi Maruyama (tmaru@aoni.waseda.jp).
8 iScience 23, 101327, July 24, 2020

mailto:tmaru@aoni.waseda.jp


ll
OPEN ACCESS

iScience
Article
Materials Availability

Materials generated in this study are available from the corresponding author on requests.

Data and Code Availability

The original dataset generated during this study will be publicly available.

Data: https://doi.org/10.17632/m296vz4d9d.1.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101327.
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Figure S1. The establishment of a high-throughput screening platform using confocal microscopy, 
related to Figure 1 (A) MDCK cells were mixed with MDCK-pTR GFP-RasV12 cells and seeded into a 
collagen-coated 96-well plate. The mixed cells were incubated until a monolayer was formed. Then, the 
culture medium was exchanged for new medium containing 10 μg/ml tetracycline, followed by incubation 
for 16 h. Cells were fixed and stained with Hoechst 33342 and Alexa555-Phalloidin. The images of cells 
were captured using a confocal imaging analyzer, and GFP-fluorescent and Bright field images were 
acquired. The GFP-positive cells were selected by GFP intensities as shown in red in the panel 
‘Analysed-Fluoro-intensity’. The uneven surface area was independently analysed using a 65536-gradient 
step bright-field and shown as light green in the panel ‘Analysed-Uneven Suface’. Double positive cells are 
extracted as white spots as shown in the panel ‘Analysed-Extrusion’ and defined as apically extruded 
RasV12 cells. (B) The validation assay showing the effect of 10 μM PLX4720 on apical extrusion of 
RasV12 cells. Data are mean ± SD from three independent experiments. ***P<0.005 (Student’s t-tests). (C) 
PLX4720 did not affect the RasV12-transformed cells in the condition of RasV12 alone. Data are mean ± 
SD from three independent experiments.
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Figure S2. Supplementary figures for Figure 2
ZAK-knockout in RasV12-transformed cells promotes apical extrusion (A) Representative XZ 
images for Figure 2c. Phalloidin and Hoechst staining are shown in grey and blue, respectively. 
Scale bars: 10 μm. (B) MDCK-pTR GFP-RasV12 ZAK-wild-type (WT) cells or ZAK-KO cells 
constitutively expressing HA-ZAKα-WT or -KN were mixed with normal MDCK cells on collagen 
gels. The cells were fixed after 24 h incubation with tetracycline and stained with 
Alexa-Fluor-568-phalloidin (red) and Hoechst (blue). (C) Establishment of MDCK-pTR GFP-RasV12 
ZAK-KO cells stably expressing wild-type (WT) or kinase-negative (KN) ZAK. Expression of 
exogenous ZAK proteins was examined by western blotting using anti-HA antibody. (D) 
Representative XZ images for the Figure 2d. (C and D) Scale bars: 10 μm. 
Knockdown of ZAK in the mouse intestinal epithelium using iGT (E) ZAK-knockdown efficiency 
of mouse embryonic fibroblasts (MEFs). MEFs were transfected with Control-siRNA (siCtrl), 
ZAK-siRNA#1 (siZAK#1) or ZAK-siRNA#2 (siZAK#2). After 48 h, the transfected MEFs were 
subjected to qPCR. Data are mean ± SD from two independent experiments. (F) 
Immunofluorescence images of ZAK in the epithelium of the small intestine after iGT. The tissue 
samples were stained with anti-ZAK (magenta) antibody and Hoechst (cyan). Scale bars: 20 μm. 

E F

siC
trl

siZ
AK#1

 

siZ
AK#2

 

siCtrl siZAK#1 siCtrl
Ab (-) Ab (+) Ab (+)

Hoechst (Cyan) / ZAK (magenta)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

fo
ld

 



Figure S3. Supplementary figures for Figure 3
(A and B) PLX4720 promotes phosphorylation of light chain of Myosin-II (phospho-MLC) in RasV12 
cells surrounded by normal cells. MDCK-pTR GFP-RasV12 cells were mixed with normal MDCK cells 
on collagen gels. The cells were fixed after 16 h incubation with PLX4720 (1 μM) and tetracycline, and 
stained with anti-phospho-MLC antibody (magenta), Alexa-Fluor-647-phalloidin (gray) and Hoechst 
(cyan). For phospho-MLC quantification, the fluorescence intensity at the boundary between respective 
RasV12 cells and normal cells were expressed as fold change relative to the average fluorescence 
intesity between the surrounding normal cells. n ≧ 100 cells for each experimental condition. Data are 
mean ± SD from three independent experiments. *P < 0.05  (Student’s t-tests). (C and D) PLX 
treatment promotes accumulation of Filamin in the neighboring normal cells. MDCK-pTR GFP-RasV12 
cells were mixed with normal MDCK cells on collagen gels. The cells were fixed by methanol after 16 h 
incubation with PLX4720 (1 μM) and tetracycline, and stained with anti-Filamin antibody (magenta) and 
Hoechst (cyan). The positive rate of Filamin accumulation in surrounding normal cells was quantified. n 
≧ 100 cells for each experimental condition. Data are mean ± SD from three independent experiments. 
**P < 0.01 (Student’s t-tests).
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Figure S4. Confirmation of PLX4720-remaining levels, related to Figure 4  (A and B) The 
remaining PLX4720 in Plasma and Pancreas. The indicated amount of PLX4720 was administered. 
At the indicated time points after administration, the blood and pancreas were collected. Then, the 
remaining amounts of PLX4720 in these collected samples were analyzed by mass spectrometry. 



Observed (nM) Range (nM) Observed (nM) Range (nM) Observed (nM) Range (nM) Observed (nM) Range (nM)

PLX4720 9.47#18, 41#31 10-40 #32, 330#31, 530#33 300-500 #32, 32.4#18, 65#33 30-70

Vemurafenib 4.03#33, 23#18,  20 1-20 100#20 100 31#34, 65#18, 20 30-70

Dabrafenib 22#20 20 5.2#35, 36 5 0.8#35, 36 1

Sorafenib 22#37, 6.3#20 1-20 540#20, 37 540 260#16 260 520#16, 37 520

ZAK BRAFwt BRAF V600E ABL1

Table S1. The reported IC50 values of individual chemical drugs against the indicated kinases, related to Figure 1
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Name 5' to 3' sequence
canis sgZAK1#1_QC_primer_Fw GGAAAGGACGAAACACCGATTATGAGATGTCGTCTCTGTTTTAGAGCTAGAAATAGC
canis sgZAK1#1_QC_primer_Rv GCTATTTCTAGCTCTAAAACAGAGACGACATCTCATAATCGGTGTTTCGTCCTTTCC
canis ZAK_geno-primer_exon1_Fw-1 GCCTTGCTTTCCTTTCTCCT
canis ZAK_geno-primer_exon1_Rv-1 TGTGACCTCTGACTCGGTTG
CK19-CreERT2 Fw AATCGCCAGGAATTGACCAATGGGG
CK19-CreERT2 Rv CGCCCGTACCCCCAAAGGAAGACAT
DNMT1-CAG-loxP-STOP-loxP-HRasV12-IRES-eGFP Fw CACTGTGGAATCTCGGCAGG
DNMT1-CAG-loxP-STOP-loxP-HRasV12-IRES-eGFP Rv GCAATATGGTGGAAAATAAC
siRNA ZAK #1
siRNA ZAK #2
mouse ZAKα qPCR_primer_Fw1 acaccaagcatcaacccttc
mouse ZAKα qPCR_primer_Rv1 gtttctggacagcccatactg
mouse Actin qPCR_primer_Fw1 aaggccaaccgtgaaaagat
mouse Actin qPCR_primer_Rv1 gtggtacgaccagaggcatac

Genotyping primer

siRNA sequence

qPCR primer

Site-directed 
mutagenesis primer

GCUGCCUUCCUUUGAGAUUTT
GCUGGACUAAAGUGGAAUATT

Table S2. The sequences of primers and siRNAs used in this study, related to Figure 2, 3 and 4



TRANSPARENT METHODS 

(EXPERIMENTAL MODEL AND SUBJECT DETAILS) 
 

Experimental Animals 

All animal experiments were conducted under the guidelines by the Animal 

Care Committee of Hokkaido University. The animal protocols were reviewed 

and approved by the Hokkaido University Animal Care Committee (approval 

number 12-0116). We used 6-10 weeks-old C57BL/6 mice for mating. 

Cytokeratin19 (CK19)-CreERT2 mice (Means et al., 2008) were crossed with 

DNMT1-CAG-loxP-STOP-loxP-HRasV12-IRES-eGFP mice (Kon et al., 2017) to 

create CK19-RasV12-GFP mice. Mice heterozygous for each transgene were 

used for experiments. 

Cell Lines 

MDCK and MDCK-pTR GFP-RasV12 cells were cultured as previously 

described (Hogan et al., 2009). 

  



METHOD DETAILS 

Cell competition-based high-throughput screening for chemical 

compounds using confocal microscopy 

For the confocal microscopy-based primary screening, 5×103 MDCK-pTR GFP-

RasV12 cells were mixed with 4.5×104 MDCK cells and seeded into a collagen-

coated 96-well plate. The mixed cells were incubated at 37°C for 24 h until a 

monolayer was formed. Then, the culture medium was exchanged for new 

medium containing 10 µg ml-1 tetracycline and 10 µM each small chemical 

compound (Kinase inhibitor library I, SIGMA-ALDRICH), followed by further 

incubation for 16 h. Finally, cells were washed with PBS, fixed in 4% 

paraformaldehyde (PFA) /PBS, and stained with Hoechst 33342 and Alexa555-

Phalloidin. The images of cells were captured by using a confocal imaging 

analyzer, IN CELL Analyzer 6000 (GE Healthcare). To evaluate the extrusion 

levels of GFP-RasV12 cells, the extruded GFP-positive cells from a cell 

monolayer were analyzed using a 65536-gradient step bright-field, and GFP-

positive extruded cells were shown as white spots.  

Antibodies and Materials 



Chicken anti-GFP (ab13970) and rabbit anti-ZAK (ab65249) antibodies were 

purchased from Abcam. Rat anti-E-cadherin (131900) antibody was from Life 

Technologies. Anti-Paxillin (sc-5574) antibody was from Santa Cruz 

Biotechnology. Rabbit anti-phospho-MLC 2 (Thr18/Ser19; 3674) antibody was 

from Cell Signaling Technology. Mouse anti-Filamin (F6682) antibody was from 

Sigma-Aldrich. Mouse anti-Actin (MAB1501R) and mouse anti-HA (05-904) 

antibodies were from Merck Millipore. Alexa-Fluor-568- and -647-conjugated 

secondary antibodies were from ThermoFisher Scientific. Hoechst 33342 (Life 

Technologies) was used at a dilution of 1:5,000. For immunofluorescence, the 

primary antibodies described above were diluted in PBS containing 1% BSA at 

1:100, except anti-Paxillin antibody at 1:50. All secondary antibodies were used 

at 1:200. Alexa-Fluor-568- and -647-conjugated Phalloidin (Life Technologies) 

were used at 1.0 U ml-1. PLX4720, Vemurafenib, Dabrafenib, and Sorafenib 

were purchased by Chemscene LLC. DMSO (Sigma-Aldrich) was added as a 

control.  

Cell Culture 

MDCK and MDCK-pTR GFP-RasV12 cells were cultured as previously 

described (Hogan et al., 2009). To induce the expression of GFP-RasV12, the 



tetracycline-inducible MDCK-pTR GFP-RasV12 cell lines were treated with 2 µg 

ml-1 tetracycline (Sigma-Aldrich). For the inhibitor treatment, the indicated 

inhibitors were added together with tetracycline, and cells were then cultured for 

16 h or 24 h. For immunofluorescence, cells were seeded onto Type-I collagen-

mounted coverslips as described below in the section of immunofluorescence.  

CRISPR/Cas9-mediated generation of ZAK-knockout cells 

Guide sequences of ZAK single-guide RNA (sgRNA) targeting canis ZAK were 

designed on exons 1 as described previously (Hsu et al., 2013). ZAK sgRNA 

sequences (ZAK sgRNA, 5’-ATTATGAGATGTCGTCTCT-3’) were introduced 

into the pCDH-QC-sgRNA control (sgControl) vector (Maruyama et al., 2015) 

using primers listed in Table S2. First, MDCK cells were infected with lentivirus 

carrying pCW-Cas9 as described (Maruyama et al., 2015) and were cultured in 

the 500 ng ml−1 puromycin-containing medium. The tetracycline-inducible 

MDCK-Cas9 cells were transfected with the pCDH-QC-ZAK sgRNA (sgZAK) by 

nucleofection, followed by selection in medium containing 200 µg ml−1 

hygromycin. The antibiotics-selected crude Cas9-sgControl or sgZAK MDCK 

cells were lysed with quick extraction buffer (Epicentre), and the lysates were 

subjected to PCR. The PCR amplicons were digested with Surveyor enzyme 



(Integrated DNA Technologies). The crude cells were subjected to limiting 

dilution, and indels on the ZAK first exon in isolated monoclone were analyzed 

by direct sequencing using primers listed in Table S2. ZAK-KO cell lines which 

possess 2 base-homozygous depletion (KO1) or 17 base-homozygous insertion 

(KO2) were obtained. To generate ZAK-deleted cells carrying tetracycline-

inducible GFP-RasV12, pPB-TRE3 GFP-RasV12 was introduced into the ZAK-

deleted cells by nucleofection and antibiotic selection (Blasticidin, 5 µg ml-1). In 

addition to the ZAK-KO MDCK-pTRE3G GFP-RasV12 cells, we generated ZAK-

WT MDCK-pTRE3G GFP-RasV12 cells as a control cell line. To constitutively 

express HA-ZAK-WT or HA-ZAK-KN, MDCK-pTRE3G GFP-RasV12 ZAK-KO1 

cells were transfected with PB-HA-ZAKa-WT or -KN and subjected to antibiotics 

selection (G418, 800 µg ml-1).  

Immunofluorescence 

For immunohistochemical examinations of the small intestine and pancreas, the 

mice were perfused with 1% PFA (Sigma-Aldrich), and the isolated tissues were 

fixed with 4% PFA in PBS for 24 h and embedded in FSC 22 Clear Frozen 

Section Compound (Leica Biosystems). Then, 10-µm-thick frozen sections were 

cut on a cryostat. The sections were blocked with Block-Ace (DS Pharma 



Biomedical) and 0.1% Triton X-100 in PBS. Primary or secondary antibodies 

were incubated for 2 h or 1 h respectively at ambient temperature. All primary 

antibodies were used at 1:1,000, and all secondary antibodies were at 1:500 

except for ZAK antibody (1:100). For immunofluorescence of cultured cells, 

MDCK-pTR GFP-RasV12 cells were mixed with MDCK cells at a ratio of 1:50 

and cultured on the collagen matrix as previously described (Hogan et al., 

2009). The mixture of cells was incubated for 8-12 h until they formed a 

monolayer, followed by tetracycline treatment for 24 h. Cells were fixed with 4% 

PFA in PBS and permeabilized with 0.5% Triton X-100 in PBS, except for 

Filamin immunofluorescence for which cells were fixed in methanol at -20°C for 

2.5 min as shown in Figures 3E and S3C, followed by blocking with 1% BSA in 

PBS. Alexa-Fluor-568- or -647-conjugated Phalloidin was incubated for 1 h at 

ambient temperature. Immunofluorescence images of mouse tissues and 

cultured cells were acquired using the Olympus FV1000 system and Olympus 

FV10-ASW software. Paxillin, ppMLC and Filamin-stained images were 

quantified with the ImageJ software. 

In vivo mouse model and PLX treatment 



All animal experiments were conducted under the guidelines by the Animal 

Care Committee of Hokkaido University. The animal protocols were reviewed 

and approved by the Hokkaido University Animal Care Committee (approval 

number 12-0116). We used 6-10 week-old C57BL/6 mice for mating. 

Cytokeratin19 (CK19)-CreERT2 mice (Means et al., 2008) were crossed with 

DNMT1-CAG-loxP-STOP-loxP-HRasV12-IRES-eGFP mice (Kon et al., 2017) to 

create CK19-RasV12-GFP mice. Male and female mice heterozygous for each 

transgene were used for experiments. For PCR genotyping of mice, the 

sequence information of the used primers is shown in Table S2. Mice were age-

matched and given a single intraperitoneal injection of 0.5 mg of tamoxifen 

(TAM) in corn oil (Sigma-Aldrich) per 20 g of body weight for the induction of 

RasV12 expression, and then sacrificed at Day 6 or Day 30 after Cre activation. 

To examine the effect of PLX4720, the mice were pretreated with an oral 

beverage of 300 mg l-1 PLX4720 at the post 1 day after TAM injection. 

In vivo electroporation 

The iGT (intestine-specific gene transfer) using HVJ-E (haemagglutinating virus 

of Japan envelope) was modified and performed as follows (Imajo et al., 2015; 

Kon et al., 2017). Briefly, 3-5 cm regions of the small intestine drawn out from 



the peritoneal cavity were tied with nylon string. 300 µl of the mucus removing 

solution (20 mM DTT and 0.05% Tween-20 in PBS) was injected into the 

intestinal lumen for 15 min, removed and incubated with the same solution for 

10 min. After washing with PBS three times by pipetting, 300 µl of Opti-MEM 

(Thermo Fisher Scientific) containing Cy3-labelled siRNA was injected, and the 

tied part of intestine was sandwiched with electro-nodes (NEPAGENE; 

CUY650P5) for electroporation (condition: Voltage; 40 V, Pulse; 30 ms, Interval; 

50 ms, 3 times, reduction; 10%). The sequences of ZAK-siRNA are listed in 

Table S2. 0.5 mg of TAM was injected into the peritoneal cavity when the wound 

was sutured. The mice were euthanized for analysis after 5 days of iGT.  

Reverse Transcription and Quantitative PCR Analysis 

Total RNA was extracted from isolated cell samples using Sepazol (Nacalai 

Tesque) and chloroform, precipitated with 2-propanol and washed with 75% 

(vol/vol) ethanol. RNA samples were incubated with DNase I (Invitrogen) to 

remove contaminating genomic DNA and then reverse-transcribed into cDNA 

(Superscript III reverse transcriptase, VIRO cDNA Synthesis Kit; Invitrogen). 

Quantitative PCR analysis was performed using LightCycler 480 II (Roche) with 



FastStart Essential DNA Probes Master (Roche). Primer sequences are shown 

in the Table S2. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Two-tailed Student’s t-tests or Chi-squared tests were used to determine P-

values for statistical analyses. For quantification of the apical extrusion 

frequency, more than 100 transformed cells are subject to the apical extrusion 

analysis in each sample. For quantification of the immunofluorescence intensity, 

at least 30 transformed cells were analyzed using the ImageJ software for each 

experimental condition. 
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