
RESEARCH ARTICLE

LPDA: A new classification method based on

linear programming

Marı́a J. NuedaID*, Carmen Gandı́a, Mariola D. Molina

Mathematics Department, University of Alicante, Alicante, Spain

* mj.nueda@ua.es

Abstract

The search of separation hyperplanes is an efficient way to find rules with classification pur-

poses. This paper presents an alternative mathematical programming formulation to exist-

ing methods to find a discriminant hyperplane. The hyperplane H is found by minimizing the

sum of all the distances to the area assigned to the group each individual belongs to. It

results in a convex optimization problem for which we find an equivalent linear programming

problem. We demonstrate that H exists when the centroids of the two groups are not equal.

The method is effective dealing with low and high dimensional data where reduction of the

dimension is proposed to avoid overfitting problems. We show the performance of this

approach with different data sets and comparisons with other classifications methods. The

method is called LPDA and it is implemented in a R package available in https://github.com/

mjnueda/lpda.

Introduction

One of the main goals in many recent data analysis projects is the classification of samples or

individuals into predefined groups, according to the characteristics available. Several

approaches have been proposed to deal with this problem. Statistical methods, usually are

based in the evaluation of a scoring function that needs distributional assumptions as Fisher

Linear Discriminant Analysis (LDA) [1, 2] or Logistic Regression [3]. The high number of var-

iables and the diverse type of distributional assumptions are challenging topics that researchers

try to solve with non distributional approaches. Mathematical programming is a natural way

of dealing with the classification problem regardless of distributional assumptions. In this

sense, linear programming based methods look for a linear function that separates the classes

avoiding parameters estimations. Support Vector Machine (SVM) [4, 5] is the most popular

classification method based in hyperplanes, that can be extended to nonlinear separating func-

tions, as polynomial or radial kernel. In [6] we find a discussion of mathematical optimization

techniques proposed for SVM and [7] reviews and compares supervised classification methods

related to optimization. These publications and other as [8] demonstrate the exinting interest

of addressing the classification problem through mathematical programming. We can also

mention the Machine Learning approach, where we find alternative methods as Decision

Trees, CART or Random Forest, [9, 10] and Neural Networks approach [11]. This approach
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tries to find a stepwise rule that combines the best ranking variables in a training set also ignor-

ing distributional assumptions.

All these approaches could be considered complementary rather than competitive.

Machine learning approaches are useful in classification when dealing with high dimen-

sional data sets, but for interpreting variable influence it is preferable Logistic Regression or

LDA. SVM is an effective method in different situations. When dealing with small dimension

the flexibility of the separating function can help to find a perfect separation, however with

high dimensional data over-fitted problems can emerge and, as mentioned in [12], there is

not need of additional flexibility that give this models, being the linear function a good

option.

In this work we propose an efficient alternative to the available classification methods in R

without distributional assumptions. We formulate an optimization problem to find a discrimi-

nating hyperplane between two data sets that can be useful to classify new individuals. The

method has been extended also to the case with more than two groups making paiwise com-

parisons. In addition, to avoid overfiting problems due to noisy data or high dimensional data

sets, we consider Principal Components Analysis (PCA) to focus on the main sources of varia-

tion avoiding the noise. The method has been implemented in a R package named lpda avail-

able in github.

The paper is structured as follows. In the following section, the optimization problem is

proposed on the basis of the general two-group classification approach and the PCA solution

is presented. Then, it is described the evaluation strategy of the new technique: data and other

approaches against which it is intended to be compared. In the Results section this evaluation

is showed and finally, conclusions are presented in the last section.

Linear programming discriminant analysis method

The purpose of this section is to describe the problem we want to solve and to build the

linear problem which will allow us to find the solutions. First, we present the approach for

the case of two data sets and subsequently extend it to the case with more than two sets.

Finally, we propose a strategy to avoid overfitting in data sets with more variables than

individuals.

Model definition for two data sets

Let X ¼ fx1; :::; xn1
g and Y ¼ fy1; :::; yn2

g two sets whose elements are in Rp
, and

mt ¼ ðm1;m2; :::;mn1
Þ and wt ¼ ðw1;w2; :::;wn2

Þ the vectors whose components are the

weights of the elements of X and Y respectively, positive and such that
Pn1

i¼1

mi ¼
Pn2

j¼1

wj ¼ 1.

Weights can be assigned depending on the importance of the individual in the sample. This

could be of interest if the individuals are collectives; for example: cities or universities; that can

be weighted by their size. If all the individuals are equally important, weights must be mi = 1/

n18i and wj = 1/n28j.
Definition 1. A hyperplane H inRp is an (p-1)-affine set and can be represented as

H ¼ fx 2 Rp
jatx ¼ bg, where b 2 R and a 2 Rp

, a 6¼ 0p, and they are unique up to a common
non-zero multiple.

Initially, we look for a hyperplane H that strictly separates X from Y (Fig 1). If such hyper-

plane does not exist, we focus on a hyperplane that minimizes a measure of the deviation of

this goal, called separation error.
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Proposition 1. X and Y are strictly separable if and only if there exists a hyperplane
H ¼ fx 2 Rnjatx ¼ bg such that the following system:

s ¼

atxi � bþ 1; i ¼ 1; . . . ; n1

atyj � b � 1; j ¼ 1; . . . ; n2

8
<

:
ð1Þ

is consistent. Such hyperplane is named separator hyperplane.

Proof.

If X and Y can be strictly separated, there exists c 2 Rp
, c 6¼ 0p and d 2 R such that:

ctxi > d; i ¼ 1; :::; n1

ctyj < d; j ¼ 1; :::; n2

ð2Þ

Let εi and δj the slacks of each constraint in (2):

εi ¼ ctxi � d > 0; i ¼ 1; :::; n1

dj ¼ d � ctyj > 0; j ¼ 1; :::; n2

Fig 1. The objective is finding H that separates X from Y.

https://doi.org/10.1371/journal.pone.0270403.g001
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and η≔min{εi, δj}. We can define

ðat; bÞ ¼ Z� 1ðct; dÞ; ð3Þ

where a 2 Rp
, a 6¼ 0p and b 2 R.

Multiplying both sides of (3) by ðxt
i ; � 1Þ

t
we have:

atxi � b ¼ Z� 1ðctxi � dÞ ¼ Z� 1εi � 1; i ¼ 1; . . . ; n1

Similarly, multiplying (3) by ðyt
j ; � 1Þ

t
we have:

atyj � b ¼ Z� 1ðctyj � dÞ ¼ � Z� 1dj � � 1; j ¼ 1; . . . ; n2

Therefore, the pair (a, b) is a solution of the system (1).

Conversely, if the system (1) has a solution (a, b), then H ¼ fx 2 Rpjatx ¼ bg verifies

atxi � bþ 1 > b; i ¼ 1; . . . ; n1

atyj � b � 1 < b; j ¼ 1; . . . ; n2

(

Moreover, a 6¼ 0p (otherwise, b + 1� 0� −1). Hence, H is a hyperplane separating strictly

X and Y.

Such hyperplane will be referred to as a separator hyperplane. This proposition leads us to

locate sets X and Y as it is showed in Fig 2, regarding the hyperplanes

H ¼ fx 2 Rpjatx ¼ bg;

Hþ1 ¼ fx 2 R
pjatx ¼ bþ 1g

Fig 2. Situation of X and Y related to H, H+1 and H−1.

https://doi.org/10.1371/journal.pone.0270403.g002
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and

H� 1 ¼ fx 2 R
p
jatx ¼ b � 1g:

On the other hand, if (1) is an inconsistient system, there exists some i 2 {1, . . ., n1} for

which b + 1 − at xi> 0 or j 2 {1, . . ., n2} for which at yj − b + 1> 0. Therefore, we can take the

following values as error measure of each element:

maxfbþ 1 � atxi; 0g; i ¼ 1; . . . ; n1

maxfatyj � bþ 1; 0g; j ¼ 1; . . . ; n2:

Adding all these measures weighted by mi and wj, respectively, we obtain the function f,
called separation error function:

f ða; bÞ :¼
Xn1

i¼1

mi maxfbþ 1 � atxi; 0g þ
Xn2

j¼1

wj maxf� bþ 1þ atyj; 0g: ð4Þ

The separation error function is a non-negative, convex and non-differenciable function

and the aim is to solve the problem

ðP1Þmin f ða; bÞ:

Proposition 2. σ is consistent if and only if v(P1) = 0. In such case, any optimal solution of P1

defines a separator hyperplane.

Proof.

If X and Y can be strictly separated, there exists ð�a; �bÞ solution of σ. So, f ð�a; �bÞ ¼ 0 and

ð�a; �bÞ is an optimal solution of (P1).

Conversely, if ð�a; �bÞ is an optimal solution of (P1), each term in f will be equal to zero and

by Proposition 1, X and Y can be separated strictly. Moreover, �a 6¼ 0p because f ð0p;
�bÞ ¼ 2

and it can not be an optimal solution of (P1).

So, X and Y can be strictly separated if and only if v(P1) = 0. But, in any case, the objective

is translated in finding the solution ð�a; �bÞ to the problem (P1). We approach this task through

a linear problem equivalent to (P1), whose optimal solutions will define our discriminant

hyperplane, that is, the hyperplane that minimizes the separation error function.

Proposition 3. (P1) is equivalent to the problem

ðPÞ Min
Xn1

i¼1

miui þ
Xn2

j¼1

wjvj

s:t:

ui � � atxi þ bþ 1; i ¼ 1; . . . ; n1

ui � 0 i ¼ 1; . . . ; n1

vj � atyj � bþ 1; j ¼ 1; . . . ; n2

vj � 0 j ¼ 1; . . . ; n2

where the objective is finding (a, b), that define the hyperplane, with the support of the variables
ui and vj that identify potential errors to be minimized.
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Proof.

Since each of the functions to maximize in each operand in (4) is convex, we have

maxfbþ 1 � atxi; 0g ¼ minfui 2 Rþ j ui � bþ 1 � atxig

and

maxfatyj � bþ 1; 0g ¼ minfvj 2 Rþ j vj � atyj � bþ 1g

It allows us to reformulate our initial problem as the equivalent problem (P) in the follow-

ing sense [13]:

1. If ð�a; �bÞ is an optimal solution of (P1), then taking

�ui ¼ maxf� �atxi þ
�b þ 1; 0g; i ¼ 1; . . . ; n1

and

�vj ¼ maxf� �b þ 1þ �atyj; 0g; j ¼ 1; . . . ; n2;

then ð�a; �b; �u; �vÞ is an optimal solution of (P).

2. If ð�a; �b; �u; �vÞ is an optimal solution of (P), then �ui ¼ maxf�b þ 1 � �atxi; 0g; for i = 1, . . ., n1

and �vj ¼ maxf� �b þ 1þ �atyj; 0g; j ¼ 1; . . . ; n2; and ð�a; �bÞ is an optimal solution of (P1).

(P) is a solvable problem and every optimal solution will provide a discriminant hyperplane

that minimizes the separation error as long as a 6¼ 0p. We can state that if v(P) = 0, this situa-

tion is guaranteed by Proposition 2 but, if v(P) > 0, we need to add a very weak condition on

the data sets (in the sense that it will usually be verified), what we will prove in the following

proposition. Let us remember that in a linear problem, a necessary and sufficient condition for

�x to be an optimal solution is that the objective vector can be written as a non-negative linear

combination of the active constraints on �x.

Proposition 4 If v(P)> 0 and �x 6¼ �y, with �x ¼
Pn1

i¼1

mixi and �y ¼
Pn2

j¼1

wjyj there exist an opti-

mal solution of (P) that gives a discriminant hyperplane.

Proof.

Let us suppose that ð�a; �b; �u; �vÞ is an optimal solution of (P) with �a ¼ 0p. Then,

ui � bþ 1; for all i ¼ 1; . . . ; n1 ð5Þ

vj � 1 � b; for all j ¼ 1; . . . ; n2 ð6Þ

and all of them will be active (otherwise, the solution is no an optimal solution). So we can

consider �u ¼ ð�b þ 1Þ1n1
and �v ¼ ð1 � �bÞ1n2

, where 1n1
and 1n2

are vectors with all its elements

equal to 1 in Rn1 and Rn2 , respectively. Then,

vðPÞ ¼
Xn1

i¼1

mið
�b þ 1Þ þ

Xn2

j¼1

wjð1 �
�bÞ ¼ 2:

We will distinguish the different values of b in order to determine the active constraints in

each case and apply the condition that characterizes the optimality.
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(a). |b| 6¼ 1. Now, the unique active constraints are (5) and (6) and hence,

0p

0

m

w

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼
Xn1

i¼1

li

xi

� 1

Iin1

0n2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

þ
Xn2

j¼1

mj

� yj

1

0n1

Ijn2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð7Þ

where λi and μj belong to Rþ, for all i = 1, . . ., n1 and j = 1, . . ., n2; Iin1
and Ijn2

are the ith
and jth vectors of the canonical basis inRn1 and Rn2 , respectively. Then,

li ¼ mi; for all i ¼ 1; 2:::; n1;

mj ¼ wj; for all j ¼ 1; 2:::; n2

whereas

0p ¼
Xn1

i¼1

lixi þ
Xn2

j¼1

mjð� yjÞ ¼ �x � �y:

(b). b = 1. Now, in addition to (5) and (6), constraints

vj � 0; j ¼ 1; . . . ; n2

are active too. Hence,

0p

0

m

w

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼
Xn1

i¼1

li

xi

� 1

Iin1

0n2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

þ
Xn2

j¼1

mj

� yj

1

0n1

Ijn2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

þ
Xn2

j¼1

dj

0n

0

0n1

Ijn2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð8Þ

where λi, μj and δj belong to Rþ, for all i = 1, . . ., n1 and j = 1, . . ., n2. Hence,

li ¼ mi; for all i ¼ 1; 2:::; n1;

mj þ dj ¼ wj; for all j ¼ 1; 2:::; n2;

whereas

0 ¼
Xn1

i¼1

lið� 1Þ þ
Xn2

j¼1

mj ¼ � 1þ
Xn2

j¼1

mj;

which implies

Xn2

j¼1

mj ¼ 1:
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Then,

Xn2

j¼1

ðmj þ djÞ ¼ 1þ
Xn2

j¼1

dj ¼
Xn2

j¼1

wj ¼ 1;

and, consequently,

dj ¼ 0 and mj ¼ wj; for all j ¼ 1; � � � ; n2

And, as in the first case,

0p ¼
Xn1

i¼1

lixi þ
Xn2

j¼1

mjð� yjÞ ¼ �x � �y:

(c). b = −1. Reasoning as in the case (b), we arise the same conclusion.

Model definition for more than two data sets

In the case of more than two groups, we could proceed in two different ways:

1. Obtain the discriminant hyperplanes for each set with respect to the rest.

2. Obtain the discriminant hyperplanes that separate the given sets by pairs. In this case, if we

have k different sets, we would obtain
k
2

� �

equations corresponding to the discriminant

hyperplanes. For each group we will consider the subgroups of equations that separate it

from the rest.

In lpda package we have implemented the second option.

Overfitting problem

In nowadays it is very usual being involved in projects where the number of measured vari-

ables is much higher than the number of samples. In such cases, the high dimension allows sta-

tistical methods were succesfull separating groups. However, the hyperplane can overfit the

training data and as a result a bad evaluation in the data test is obtained. To avoid this problem

we propose obtaining the hyperplane from Principal Components (PCs) instead of the original

variables. In general, when managing large amounts of noisy but correlated data, data analysis

can greatly benefit from the application of dimensionality reduction methods, such as PCA,

which allows the identification of the main patterns of variability avoiding residual or non-

structural variation (examples in [14, 15]). Such approaches are effective in providing global

understanding of most relevant information that can help to detect the differences between the

studied groups.

PCA reduces the dimension of a set of individuals measured in a p-dimensional basis, tak-

ing advantage of the relationship between the variables. The method consists of projecting the

individuals on a subspace of dimension q< p extracting the major information. The solution

of this problem is the subspace defined by the q eigenvectors associated with the q higher

eigenvalues of the variance-covariance matrix of the data. The selected number of PCs, q, is

typically obtained on the basis of the percentage of the explained variability or by a cross-vali-

dation criterion. The PCA model corresponding to a data matrix X, of dimensions n × p, gives
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us the following decomposition:

X ¼ 1nm
t þ TPt þ E ð9Þ

where 1n is a size n column vector of ones, μt is a size p row vector containing estimates of de

average for each variable, scores of the individuals in each PC are collected in the matrix T, the

loadings (eigenvectors) are given by the matrix P and the residuals are collected in E.

The aplication of LPDA to the scores, or T matrix, will provide a classification hyperplane

that avoids the undesirable noise focussing in the signal of interest. For more details about the

PCA model and other projection techniques see [16].

The evaluation strategy

To evaluate the performance of LPDA we first consider a data set with few variables to graphi-

cally inspect the behaviour of the hyperplane compared to SVM. Second, we consider an exam-

ple of unbalanced and overlapping data between classes, with few variables but many

individuals. Here the interest is to evaluate LPDA against other popular techniques such as

SVM, LDA and Logistic Regression. Finally, we address a gene expression RNA-Seq data set,

as example from the bioinformatics field, to show results with high-dimensional data. In this

case, the method is compared with three classification techniques: SVM and two specific classi-

fication methods for RNA-Seq data. We describe the data and methods discussed below.

Data sets

Palmdates. A data set with scores of 21 palm dates including their respective Raman spec-

tra and the concentration of five compounds covering a wide range of concentrations: fibre,

glucose, fructose, sorbitol and myo-inositol. The first 11 dates are Spanish (from Elche, Ali-

cante) with no well-defined variety and the last 10 are from other countries and varieties,

mainly Arabian. The data set is available in lpda package including two data.frames: conc with

5 variables and spectra with 2050. In this paper we use only conc data.

Default. A simulated data set containing information on 10.000 customers of which only

333 are default. It is an example of unbalanced data. The aim here is to predict which custom-

ers will default on their credit card debt, the minority class. This data set is in ISLR package

[12].

Cervical cancer. A data set quantifying the expression of 714 microRNAs measured to 29

samples of tumor and 29 nontumor cervical tissue samples. This data set is available in Gene

Expression Omnibus (GEO) Datasets with access number GSE20592 [17] and we normalized

with Quantile normalizaton method described in [18].

Classification methods

SVM is a hyperplane-based classification method, as said in the introduction. This method

tries to find the hyperplane with the maximum margin that separates two classes, allowing

some errors in the training set to avoid overfitting [4, 5]. Although SVM can also perform a

non-linear classification, when dealing with so many variables there is no need of additional

flexibility that will give polynomial or radial kernel models. For this reason, in next section we

use linear classifiers, also called Support Vector Classifiers, for RNA-Seq example.

From the different packages avaible in R to apply SVM [19] we use the SVM implementa-

tion called e1071. The needed parameters in each application were computed with the crossva-

lidation proccess available in this package.

Logistic Regression considers a linear model where the response, a binary variable represent-

ing the class, is modelled with a logistic transformation. It is considered a specific case of
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Generalised Linear Models that are a generalization of classical Linear Models, which can

accommodate a wider class of distributions named as exponential family, providing great flexi-

bility for modeling different types of response variables. Normal, Poisson, Binomial and

Gamma are examples of this family of distributions. In Logistic Regression, Binomial distribu-

tion is considered to model the response. More details in [3].

LDA computes the probabilities of belonging to each of the groups according to the avail-

able variables using Bayes Theorem (posteriori probability) and Normal distribution. The pre-

dicted class will be the one whose posteriori probability is maximum [1, 2].

Poisson Discriminant Analysis (PDA) [20] and Negative Binomial Discriminant Analysis

(NBDA) [21] are specific methods for RNA-Seq samples classification. They can be considered

as an extension of the LDA because they are Bayes rule-based classifiers taking into account

the discrete count distribution inherent in these data.

Results

We begin this section with palmdates data set to show a comparison between LPDA and SVM
graphically. Then we show the results with Default data that is an unbalanced overlapped data

set with a high number of samples where the separation is not possible. Finally, we present the

application of LPDA and other methods to Cervical cancer RNA-Seq data.

Palmdates data

As SVM and LPDA are methods based in hyperplanes separation, it is worth taking a closer

look at this comparison. By comparing results of SVM and LPDA to different data sets we have

seen that working with a high number of variables or having clear differences between groups,

both methods are succesfull separating groups. However when having few variables or existing

overlaps between groups, we find some differences. As example we show pairwise variables

comparison of palmdates concentration data. We consider 4 variables: fibre, fructose, sorbitol

and myo-inositol, avoiding glucose because it is highly correlated with fructose and gives

repeated results. Fig 3 shows cases where both methods are successfull but the hyperplanes are

slight different and Fig 4 shows cases where LPDA gets less separation errors than SVM: only

one predicted error with LPDA in the third comparison meanwhile there are 1, 2 and 7 errors

respectively with SVM.

Default data

Another advantage we have found in LPDA with respect other techniques in several data sets

is the good treatment of unbalanced data. These data is frequently encountered in biomedical

Fig 3. Examples where both methods are successfull but the hyperplanes are slight different.

https://doi.org/10.1371/journal.pone.0270403.g003

PLOS ONE LPDA: A new classification method based on linear programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0270403 July 7, 2022 10 / 13

https://doi.org/10.1371/journal.pone.0270403.g003
https://doi.org/10.1371/journal.pone.0270403


and bioinformatics studies, where the group it is desired to predict is much smaller than the

other one. General methods try to minimice the global error thus disadvantaging the minority

class. Specific techniques are emerging for dealing with this problem [22]. Weights mi and wj

considered by LPDA inside each group, mitigate this problem, meanwhile other techiques as

SVM need to specify additional arguments when this situation arrises [23].

Default data is an example of unbalanced data that illustrates the problem clearly because

only 0.3% of the data belongs to the group of interest (default class) that is desired to predict

with low error. Table 1 shows sensitivity, especificity and the clasification error obtained with

LPDA, weighted-SVM, Logistic Regression and LDA. We call weighted-SVM results of SVM
applied considering as weights for each class the inverse of their sizes. As the interest is the

good prediction in the default class, identified as the positive class, we must focuss in the sensi-

tivity or percentage of True Positives detected. We observe that LDA and Logistic Regression

give low sentitivity meanwhile LPDA gives a sensitivity very near the obtained with weighted-

SVM and higher specificity, thus less global error.

Cervical cancer RNAseq data

We applied LPDA, SVM, POlda and NBlda, to the cervical cancer data described before.

Firstly, all the data was considered to compute the number of classification errors as a training

set. None error was detected with LPDA and SVM. However, POlda and NBlda gave 3 and 4

classification error respectively, therefore, LPDA and SVM give a separate hiperplane mean-

while methods based in distributional assumptions do not.

We also evaluated the methods in test sets with a cross-validation strategy where the model

was obtained 1000 times in different training and test sets. Table 2 shows the classification

error rates average jointly to their confidence intervals. First, we notice the importance of the

dimension reduction (LPDA-PCA) in this case, and in general when dealing with high dimen-

sional data as RNA-Seq, which significantly reduces the error rate. We also observe that

Fig 4. Examples where LPDA gets less separation errors than SVM.

https://doi.org/10.1371/journal.pone.0270403.g004

Table 1. Sensitivity, specificity and classification error for default data.

Sensitivity Specificity Classification error

LPDA 0.9009 0.8646 0.1342

weighted-SVM 0.9039 0.8555 0.1429

Logistic 0.3153 0.2372 0.0267

LDA 0.2372 0.9977 0.0276

https://doi.org/10.1371/journal.pone.0270403.t001
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LPDA-PCA results are very similar to SVM and NBlda meanwhile LPDA without PCA results

are similar to the POlda approach.

Conclusions

In this work, we propose a classification method based in a linear programming problem that

is efficient in multiple scenarios. First, we show the basis of the method defining an optimiza-

tion problem from the idea of separating two data sets in Rp. Then we consider the aplication

of PCA when having overfitting problems due to high dimensional data and also usefull for

correlated data. The method has been applied to different data sets and compared with popular

techniques as SVM, Logistic Regression and LDA. One of these data sets is a real RNA-Seq

data for which we considered the comparison with specific methods developed for the specific

problematic of this type of data (NBlda and POlda).

Results show that LPDA is efficient in different situations. We have demonstrated its effec-

tiveness in unbalanced experiments where it is able to classify minority classes without adding

additional considerations. Moreover, its performance in high-dimensional data sets, such as

RNA-Seq data, is similar to the popular SVM and also to NBlda, developed specially for the

specific problematic of this type of data considering distributional hypothesis.

In this paper we have applied the method only in experiments where individuals are classi-

fied in two groups, but the method is extrapolated to three or more classes making pairwise

comparisons in the available R-package.

In conclusion, LPDA is an efficient classification method for general multivariate data.
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