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A B S T R A C T   

The most significant and renewable class of polymeric materials are extracellular exopoly-
saccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural 
makeup, EPSs play a variety of functions in a variety of industries, including the agricultural 
industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological 
significance. EPSs are typically utilized in high-value applications, and current research has 
focused heavily on them because of their biocompatibility, biodegradability, and compatibility 
with both people and the environment. Due to their high production costs, only a few microbial 
EPSs have been commercially successful. The emergence of financial barriers and the growing 
significance of microbial EPSs in industrial and medical biotechnology has increased interest in 
exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is 
expected to increase across a wide range of industries in the coming years. This review introduces 
some significant EPSs and their composites while concentrating on their biomedical uses.   

1. Introduction 

A wide variety of structural, useful, and profitable polysaccharides are produced by microbial cells (both Eukaryotic and Pro-
karyotic), which can be homopolymeric or heteropolymeric in makeup. Exopolysaccharides (EPSs) are the name given to these 
polymeric molecules [1,2]. Homopolymeric EPSs molecules are constructed of repeating units of a single monosaccharide, often 
glucose or fructose, as opposed to heteropolysaccharides, which are typically branched and consisting of repeating units of more than 
one monosaccharide, primarily glucose, fructose, galactose, etc., with various non-carbohydrate groups [3]. These homo-
polysaccharides and heteropolysaccharides have diverse industrial applications and health properties as indicated in Fig. 1. 
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Exopolysaccharides (EPSs), a biopolymer with important structural and functional properties, are released by various prokaryotic and 
eukaryotic microorganisms, including fungi and algae, in response to biotic and abiotic stresses and to survive in hostile settings [3–5]. 
Microbial EPSs are exciting in a range of industrial areas due to their exceptional material properties and less toxic, fully biode-
gradable, and biocompatible makeup. A promising template for the quick production of metallic nanoparticles has recently been found 
in microbial EPSs, and EPSs-mediated metal reduction techniques are emerging as straightforward, safe, and ecologically friendly 
green chemistry methods [6]. Microbial polymers were first used in the 1960s, and since then, their commercial utilization has 
increased significantly [7]. Microbial EPSs are crucial for cellular relationships, nutrition, and both micro- and macro environments. 
Organisms that produce EPSs do better in oligotrophic environments and can maintain nutrient concentrations below the minimum 
necessary in the absence of EPSs [8,9]. EPSs are complex, high-molecular-weight polymers composed of different types of sugar 
monomers. The biosynthesis of EPSs is typically carried out by a group of enzymes encoded by a set of genes within a biosynthetic gene 
cluster (BGC) in the genome of the producing microorganism [3,5]. The biosynthesis of EPSs is regulated by several factors, including 
environmental conditions, growth stage, and nutrient availability [10]. With the advent of synthetic biology, it has become possible to 
engineer microorganisms to produce specific EPSs with desired properties. This approach typically involves modifying the biosynthetic 
pathways of the microorganisms by introducing or deleting genes within the BGC or by controlling the expression of these genes using 
synthetic promoters [11]. The use of synthetic biology in EPSs production has several advantages over traditional methods. For 
example, it allows for the production of EPSs with tailored properties, such as improved solubility, increased stability, and enhanced 
functionality. It also enables the production of EPSs at scale, which is important for commercial applications [6]. 

In summary, the genetic basis for producing EPSs is critical for understanding the biosynthesis and regulation of these complex 
molecules. In the context of synthetic biology, the genetic basis for EPSs production is essential for the development of new and 

Fig. 1. Industrial applications and health properties of some homopolysaccharides and heteropolyssacharides.  
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improved EPSs with tailored properties and for the production of these molecules at scale [12,13]. Because of their interesting and 
seductive qualities, microbial polysaccharides are utilized as bio-absorbents, bio-flocculants, and drug delivery agents in the phar-
maceutical industries [14]. Polysaccharides are used in the green manufacturing of silver nanoparticles because they are more 
beneficial than synthetic polymers. The interaction of metal ions with the hydroxyl groups of EPSs has a significant impact on the form 
and size of a nanoparticle [15]. Their applications range from the laboratory through the clinical to tableting and include orthopedic 
surgery, tissue engineering, the implantation of medical devices and artificial organs, prostheses, dentistry, bone repair, and many 
other fields of medicine [16]. Table 1 shows various industrial applications of microbial EPSs [10,13,16–18,19,20,21,22]. 

Additionally, they facilitate the controlled slow release of drugs into the body, which is a therapeutic and pharmaceutical use [17, 
18]. As well as being used for disease treatment, they can also be used for skin rejuvenation and wound healing [23]. A number of these 
polysaccharides are commercially available industrial products, while others are still being developed several of the findings of recent 
research on these topics are discussed in the current review [24]. 

2. EPSs composites 

EPSs are abundant in natural sources, biodegradable, non-toxic, and biocompatible. It has been extensively researched how 
combining EPSs with natural and synthetic polymers affects the characteristics of such materials. Few EPSs and their composites were 
covered here [25]. 

2.1. Xanthan 

Xanthan, an extracellular polysaccharide comprised of a homopolysaccharide D-glucose backbone and tri-saccharide side chains 
that have been modified with different levels of O-acetyl and pyruvic acid acetal, is produced by the bacteria Xanthomonas campestris 
[26]. Xanthan demonstrates notable emulsion stabilizing, particle suspension, and recoverable shear-thinning activity with high 
viscosities even at low concentrations. The culinary additive xanthan gum is used to make soft meals (ice cream, cheese). It is also used 
in the oil industry to enhance oil recovery. Xanthan can also be used to make water-based paints and dental pastes. Many sectors 
employ xanthan, including the creation of paints, cosmetics, pharmaceuticals, printing inks, cleaning up crude oil, and the manu-
facture of insecticides, detergents, and paints [27,28]. Dental pastes and water-based paints can also be created using xanthan. Many 
industries, such as the manufacturing of pesticides and detergents, the production of paints, the production of cosmetics and phar-
maceuticals, the production of printing inks, the recovery of crude oil, and the sector of food production also depend on microor-
ganisms for the synthesis of a variety of products [27,28]. The shear-thinning properties of xanthan are used by the paint industry 
because xanthan-containing paints are highly viscous at low shear rates and do not drip off the brush. Additionally, the solution’s use in 
drilling muds for oil wells acts as a lubricant for drilling equipment [29].  

• Alginate: Xanthan can be blended with alginate by encapsulation. Alginate (Alg), is a linear polysaccharide made of brown algae- 
derived 1 → 4 linked β-(d)-guluronic(G) and α-(l)-mannuronic (M) acids [30,31].  

• Chitosan: Gallic acid is made biochemically from the enzyme 3,4,5-trihydroxy benzoic acid. dihydro shikimate. It is prevalent in 
various plant species, particularly berries. foods such as cereals, tea, wine, citrus fruits, and plants that are found naturally in ester 
or salt as well as in free. The goal of microencapsulation is to preserve the compound’s bioactivity. Microencapsulation using the 
lyophilisation process in a polymer matrix preserved its biological activity and managed release [25]. 

2.2. Gellan 

Sphingomonas paucimobilis (formally known as Pseudomonas elodea), is used in the aerobic fermentation procedure to produce gellan 
gum, an extracellular polymer with exceptional physical and chemical properties. It is made up of 1,3-D-glucose, 1,4-D-glucuronic acid, 
1,4-D-glucose, and 1,4-L-rhamnose, four monosaccharide molecules [32]. Deacylation can transform native gellan gum from soft, 
elastic thermo-reversible gels to harder, more brittle gels with higher thermal stability [33]. Gellan gum is a bacterial polysaccharide 
with high commercial potential for food, pharmaceuticals, and, in particular, environmental bioremediation due to its excellent 

Table 1 
Industrial applications of microbial EPSs.  

EPSs Application Reference 

Xanthan Emulsion, stabilization, suspension agent in foods, Foam stabilizing agent in foods Crystal formation inhibitor in foods, for 
controlling viscosity in the oil drilling mud and inkjet printing 

[16,17] 

Bacterial 
cellulose 

Moisture retention during wound dressings, High acoustic diaphragms in sound reproduction [10] 

Hyaluronic acid Hydrating agent in cosmetics, pharmaceuticals. Replacement for synovial fluid and vitreous humour in biomedicine [13] 
Emulsan Emulsifier, vaccine adjuvant [18] 
Gellan Gelling agent in foods, Food coatings, Various Paper coating and water flocculent [22] 
Curdlan Used as a thickener, stabilizer and texturizer in the food industry [10] 
Pullulan In food science, pharmacy, health care, lithography, and many other fields [20,21] 
Xylose Used as a diabetic sweetener in food and beverage. [19]  
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rheological properties [34]. Gellan gum has also been reported to be useful in the bioremediation of contaminated soils and aquifers. 
This gum is utilized to improve viscosity, and stabilize, or modify temperature constancy. Additionally, despite its subpar efficiency, it 
can be employed to increase cell proliferation. interactions or covalently bonded mechanical characteristics. Surface engineering tests 
must be carried out in this situation, formerly to alter the polymer’s functional groups and enable an effective drug attachment. Due to 
its mucoadhesive qualities and ability to maintain cells at the site of implantation while promoting cell development, GG has been 
utilized extensively to make hydrogels for DDSs [33,35]. 

The capacity of GG to adhere, multiply, and differentiate cells on its surface makes it a polymer with great potential for tissue 
engineering. It also provides a passage between order and disorder that enables the creation of hydrogels using several methods that 
have distinct characteristics. Furthermore, GG is utilized to create particles and polyelectrolyte complexes that delay the release of 
drugs. Nevertheless, the majority of applications for GG include blends or composites due to their low mechanical resistance and high 
polyelectrolyte content. These characteristics preclude its use because it is the only polysaccharide in fibres and scaffolds [17,29]. 
Gellan gum is a high molecular weight polysaccharide produced by the bacterium Sphingomonas elodea. Its chemical structure consists 
of a linear tetrasaccharide repeating unit of two glucoses, one glucuronic acid, and one rhamnose, with acetyl and glyceryl groups 
attached to the glucose residues [29]. The acetyl and glyceryl substituents are responsible for the unique properties of gellan gum, such 
as its ability to form strong, elastic gels at low concentrations, its resistance to enzymatic degradation, and its ability to stabilize 
emulsions and suspensions. The acetyl groups also contribute to the solubility of gellan gum in hot water, allowing it to be easily 
dispersed in aqueous systems [27]. Gellan gum is widely used in the food, pharmaceutical, and biotechnology industries as a thickener, 
stabilizer, and gelling agent due to its unique properties. Its chemical composition and structure make it a versatile ingredient with a 
range of functional properties that can be tailored to suit specific applications [34]. 

2.3. Clavan 

Clavan, which is composed of tetrasaccharide repeating units of glucose, galactose, fucose, and pyruvic acid in the molar ratios of 
1:1:2:1, is one of the richest polymers in the uncommon sugar fucose. Clavibacter strains, particularly Clavibacter michiganensis, are 
responsible for its production [36]. The polysaccharide clavan, which contains L-fructose, may be used to treat rheumatoid arthritis, 
prevent the colonization of the lung by tumor cells, regulate the production of white blood cells, control the synthesis of antigens for 
the production of antibodies, and moisturize the skin in cosmeceuticals [37]. 

2.4. Dextran and its composites 

Dextrans are glucans, which are glucose polymers and include 1 → 6 glycosidic connections. Additionally, certain dextran’s contain 
connections that are α 1 → 2, α 1 → 3 and a 1 → 4 Dextrans’ molecular dimensions are between 15,000 and 500,000 [38]. In the 
commercial manufacture of dextran, batches of mesenteroides are fermented using a culture media that includes sucrose, organic 
nitrogen, and organic phosphate. After crude dextran is produced, it is precipitated using alcohol and then subjected to acid hydrolysis 
[33,39,40].  

• Poly (vinylamine): A polyvinyl amine/bis (ethyl Vinylamine) ether) microgel (PVAM-BEVAME MG) is pH-neutral and has a high 
amine concentration. Composite made of poly (vinylamine) microgel and dextran was created by McCann et al. [41] hydrogels that 
include Dexox and MG particles (MG-Dexox gel). This polymer has a wide range of uses, including controlled drug delivery systems, 
membrane production, polymer recycling, and packaging. Studies on PVA’s physical gel-forming abilities, changes in crystallinity 
and swelling behaviour, and dissolving mechanisms have been conducted. PVA is bio inertness and has a wide range of medicinal 
applications, including synthetic vitreous, haemodialysis, Nano filtration, artificial pancreas, and implanted medical devices [42]. 
One promising application of PVAm is in drug delivery systems. PVAm can form stable complexes with negatively charged drugs, 
such as DNA, siRNA, and proteins, through electrostatic interactions. These complexes can protect the drugs from degradation and 
facilitate their delivery into target cells. For example, PVAm has been used to deliver siRNA to silence the expression of specific 
genes in cancer cells. PVAm has also been investigated as a coating material for biomedical implants, such as stents and catheters. 
The cationic nature of PVAm can promote cell adhesion and proliferation, leading to improved tissue integration and reduced 
inflammation [43,44].  

• Poly (ε-caprolactone): Dextran-Poly (ε -caprolactone) (Dex-PCL) copolymers can be used to successfully produce stable particles 
with a nanometric diameter using an emulsion/evaporation technique. The PCL was confined in the core, and the dextran layer was 
securely bonded to the nanoparticle surface. Drugs that are insoluble in water are stored in the hydrophobic core, which is typically 
made of a biodegradable polymer like poly(-caprolactone), improving their apparent solubility in water. This also provides a 
defence against deterioration in the case of labile medications [45]. According to Wei et al. [46], polycaprolactone is a desirable 
biomedical polymer because of its slow biodegradability, good biocompatibility, good drug permeability, and comparatively low 
production cost. PCL has been used in basic research and approved for use in some clinical settings, including drug delivery sys-
tems, tissue regeneration, and wound healing [46,47]. Hydrogels for biological applications are made using polycaprolactone and 
dextran. The poor mechanical performance of hydrogels has limited their use in biological applications to bone tissue engineering. 
The application of tough hydrogels with strong and elastic properties has garnered a lot of interest, but this has been constrained by 
their deterioration [48]. 
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2.5. Hyaluronic acid with its composites 

A linear polymer called hyaluronic acid (HA) has important biological, rheological, structural, and physiological activities. HA can 
be produced through bacterial fermentation using strains of Streptococcus sp. and Bacillus sp [49,50]. The production process typically 
involves the following steps in Fig. 2.  

• Seed culture preparation: The selected bacterial strain is cultured in a nutrient-rich medium until it reaches the desired cell density.  
• Fermentation: The seed culture is then transferred to a larger fermenter containing a medium optimized for HA production. The 

fermentation conditions, such as temperature, pH, and agitation, are carefully controlled to ensure optimal bacterial growth and 
HA production. Streptococcus zooepidemicus typically produced HA at a pH and temperature of 7.0 and 37 ◦C, respectively.  

• Harvesting: Once the fermentation is complete, the bacterial cells are harvested by centrifugation or filtration to separate the cells 
from the HA-containing broth.  

• Purification: The HA is then extracted from the broth using a combination of enzymatic and chemical treatments, followed by 
filtration and ion exchange chromatography. The purified HA can be further processed into various molecular weight fractions for 
specific applications.  

• Formulation: Finally, the purified HA is formulated into various products, such as dermal fillers, ophthalmic solutions, and joint 
injections [49]. Fig. 3 shows a schematic presentation of hyaluronic acid production using Streptococcus zooepidemicus [51]. 

It is believed to have characteristics that can have an impact. the treatment of cancer, angiogenesis, wound healing, cell motility, 
and cell adhesion, and has numerous uses in the cosmetic industry in artificial tears, and in the medical field as skin moisturizers 
Treatment for osteoarthritis as a substitute for eye fluid in ophthalmic surgery, joint lubricant, and adhesion prevention surgery on the 
abdomen, healing of wounds, and surface coating [52]. Hyaluronic acid (HA) is produced through bacterial fermentation, mainly by 
strains of Streptococcus sp. and Bacillus sp. The production process involves the use of a growth medium containing a carbon source (e. 
g., glucose), nitrogen source (e.g., yeast extract), and salts. The bacteria are cultured in the growth medium under controlled con-
ditions, such as pH and temperature, for several days. After fermentation, the HA is extracted and purified from the culture medium 
using various methods, such as filtration, centrifugation, and precipitation. Finally, the purified HA is formulated into various products 
for use in the medical, cosmetic, and pharmaceutical industries [49,51].  

• Polyacrylic acid: There are two ways to functionalize native polysaccharides using grafting, "Grafting to" and "grafting from" are 
examples of grafting techniques. The salt of sodium in Grafting polymers such as polyacrylic acid (PAA) is used. Nakagawaa et al. 
[53] created a biocompatible calcium salt of HA grafted with PAA (HA-g-PAA).  

• Chitosan: Chitosan NPs are most successfully produced using ionotropic gelation. Pentasodium tripolyphosphate (TPP) is used in 
this method to ionically cross-link chitosan chains while cargo molecules are present. The ionotropic gelation technique involves 
dissolving chitosan in an acidic solution, often acetic acid, to produce positively charged chitosan molecules. TPP contains 
phosphate groups that can interact with the amine groups of chitosan, forming ionic crosslinks between the chitosan chains. This 
leads to the formation of chitosan nanoparticles. The addition of TPP to the chitosan solution results in the formation of chitosan- 
TPP complexes, which can entrap cargo molecules, such as drugs or proteins, during nanoparticle formation [54]. The cargo 
molecules are trapped within the chitosan-TPP complex, allowing them to be delivered to their target site. This method has several 
advantages, including the ability to encapsulate a wide range of cargo molecules, ease of scalability, and low cost. However, the 

Fig. 2. Hyaluronic acid production processes or steps.  
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method also has some limitations, such as batch-to-batch variability in particle size and low drug loading capacity. Overall, ion-
otropic gelation with TPP is a commonly used method for preparing chitosan nanoparticles for drug delivery applications [55]. The 
physicochemical characteristics of chitosan NPs were enhanced by adding HA [52,56].  

• Gelatin: Gelatin, a collagen product that has partially disintegrated, is thought to have a lower antigenicity than collagen. 
Furthermore, it includes amino acids and is more affordable than collagen. The amino acid sequences that can improve cell 
adhesion, like the RGD of collagen [57]. Therefore, to create 3-D models, gelatin has been combined with various natural or 
synthetic biomaterials. scaffolds created via a variety of techniques for diverse tissue engineering purposes [58,59]. Gelatin and 

Fig. 3. Schematic presentation of hyaluronic acid production using Streptococcus zooepidemicus.  

Table 2 
Exopolysaccharides LAB producers and their corresponding applications.  

S⋅N. Bacterial strain Source Applications Reference 

1 Leuconostoc mesenteroides Fermented 
sourdough 

Levan up-regulates anti-inflammatory cytokine IL-4 [13] 

2 Lactobacillus bulgaricus Bulgarian yoghurt EPS activated NK cells, with the contribution of INF-γ, IL-12, IL- 
18 cytokines via MyD88-driven signaling in mice 

[70] 

3 Lactobacillus plantarum Tunisian traditional 
fermented food 

EPS induced gene expression in immunity and antioxidant 
responses in fish 

[13] 

4 Lactobacillus helveticus LZ-R-5 Tibetan kefir In-vitro immunomodulatory activity [69] 
5 Lactobacillus plantarum H31 Pickled cabbage Reduce α-amylase activity and up-regulation of GLUT-4, AKT-2 

and AMPK gene expression in insulin-resistant HepG2 cells 
[65] 

6 Lactobacillus plantarum Chinese Paocai c-EPS significantly inhibited the proliferation of HepG-2, BGC- 
823, especially HT-29 tumor cells 

[13] 

7 Lactobacillus plantarum 86, Weisella confusa 
AI10, Pediococcus parvulus AI1, Weisella cibaria 
142 

Indian fermented 
foods 

Antibacterial activity E. coli [13] 

8 Lactobacillus plantarum LRCC5310 Kimchi In-vitro anti-viral activity against Rota virus induced diarrhea 
and regulates inflammatory response 

[71] 

9 Lactobacillus plantarum HY Sichuan pickle Antioxidant activity and α-amylase inhibitory activity [66] 
10 Leuconostoc citreum L3C1E7 Artisanal cheese Suppresses allergen-specific IgE synthesis and may alleviate 

Th2-mediated allergic symptoms 
[13] 

11 Lactobacillus plantarum JLK0142 Tofu Improvement of the intestinal immunoglobulin A(IgA) content 
and the serum levels of the cytokines, IL-2 and TNF-α 

[64,73] 

12 Lactobacillus paracasei M7 Human breast milk Antioxidant, anti-biofilm and hypocholesterolemic activity [68] 
13 Lactobacillus plantarum WLPL04 Breast milk Inhibits the adhesion of E. colianti O157:H7 to HT-29 cells, 

antitumor activity and anti-tumor activity against pathogens 
[13] 

14 Lactobacillus plantarum MTCC9510 Curd Antitumor activity and immunomodulatory activities [72] 
15 Lactobacillus gasseri Human vagina L-EPS of L. gasseri strains inhibit proliferation and induce 

apoptosis in HeLa cells in strain dependent manner 
[67] 

16 Enterococcus faecium WEFA23 Healthy infant’s feces Antioxidant activity and strong inhibition against the adhesion 
of Listeriamono cytogenes CMCC54007 on HT-29 cells 

[65]  
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HA, two biopolymers, could be used to create macropore-sized elastic cryogels. appropriate as scaffolding materials for adipose 
tissue engineering [58].  

• Collagen: The creation, maintenance, and repair of connective tissues depend heavily on collagen and the protection of organs and 
tissues. Productively, human-like collagen (HLC) is expressed by Escherichia coli recombinant strain BL21 [19]. To create HA/HLC 
hydrogels, cross-linked HA/HLC using 1, 4-butanedioldiglycidyl ether (BDDE) is recommended [25]. 

Exopolysaccharides have recently attracted interest from a variety of sectors, including agriculture (preservatives, bioherbicides, 
and microbicides), and health (medicine and pharmaceuticals, and cosmetics), all of which are important to human activities. 
Additionally, to surgeries, biopsies, diagnoses, and many other procedures, the medications also contain preventative and antibacterial 
treatments. As natural, non-toxic materials, EPSs are changing how people receive medical care around the world through a variety of 
means [60]. 

Exopolysaccharides are made by both bacteria and fungi, however, it is still unclear which produces EPS more effectively because 
fungi have greater structural and cellular complexity than bacteria. In the past, endophytic fungi and mushrooms have been widely 
employed as important sources of beneficial industrial exopolysaccharides [61]. Exopolysaccharides are obtained from sources 
including bacteria and archaea bacteria [62]. Dextran, xanthan, and gellan gum are the three exopolysaccharides that are frequently 
made by prokaryotes. Additionally, discovered to be effective EPS makers are thermophilic bacteria like Geobacillus sthermodeni-
trificans and Bacillus thermantarcticus. Exopolysaccharides in the form of surface biofilm from thermophilic and halophilic archaea, 
including Thermococcus, Sulfolobus, Archaeglobus fulgidus, and Thermococcus litoralis, respectively [63]. Myxobacteria primarily create 
polysaccharides for their ability to move, as well as for defence against phagotrophic and dehydration [13,64,65,66,67,68,69,70,71, 
72,73] Table 2. 

3. EPSs applications in the biomedical and health sector 

The pharmaceutical industry’s acceptance and use of EPSs have recently created a new possibility for researchers to make use of 
novel bacteria. EPSs can be changed by blending or combining natural and synthetic materials [23]. Lactic acid bacteria (LAB), a group 
of bacteria that produce lactic acid as a metabolic by-product, have been widely studied for their EPSs production abilities [20,74]. 
Numerous investigations have shown that LAB is capable of creating a variety of antimicrobial molecules, such as bacteriocins, 
diacetyl, organic acid, carbon dioxide, and certain other low-molecular-weight substances like reuterin, reutericyclin, and antifungal 
peptides [59]. In addition to these substances, EPSs produced by LAB have been well documented by numerous researchers for their 
capacity to display antagonistic effects versus pathogenic bacteria. Under in-vitro conditions, the Lactobacillus rhamnosus that produces 
EPSs and was isolated from human breast milk had high antibacterial activity against pathogenic Escherichia coli and Salmonella 
typhimurium [75,76]. Instead of preventing pathogenic bacteria from proliferating, EPSs from the probiotic bacterium Bifidobacterium 
longum inhibit cell division [21]. 

A few of the metabolites created by LAB are lactic acid, acetic acid, ethanol, flavourings, bacteriocins, and exopolysaccharides 
(EPSs). Both EPSs and LAB can play a part in the probiotic properties of fermented items, influencing the quality of the finished goods 

Fig. 4. Microbial EPSs and composites as scaffold in tissue engineering.  
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[77]. By adding to the texture, flavour, and perfume of fermented items, EPSs enhance food’s physicochemical properties while 
shielding the cell from external harm. Additionally, the addition of viscosity, structural enhancement, stabilizing effects, and 
water-binding qualities in fermented goods are all impacted by EPSs. The food industry uses EPSs as a commercial stabilizer due to 
these qualities. EPSs can be significant for human health in addition to their technological benefits. As an illustration, it was claimed 
that EPSs synthesized by LAB had antioxidant, anticancer, and anti-inflammatory properties [78]. As microorganisms grow, they 
release long-chain polysaccharides with or without branched sugar units. The production of EPSs can be divided into two types: 
homo-polysaccharides containing a single monosaccharide and heteropolysaccharides containing more than two monosaccharides 
[79]. Sugars such as glucose, galactose, and rhamnose make up the homopolysaccharide unit of EPSs. The best-known LAB-producing 
homopolysaccharides are Leuconostoc mesenteroides and Streptococcus mutans (Fig. 4). Lactococcus lactis, Streptococcus sobrinus Strep-
tococcus gordonii Streptococcus thermophilus, and Lactobacillus spp. viz. Lactococcus lactis, Lactobacillus casei, Lactobacillus helveticus, 
Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus rhamnosus and Lactobacillus kefiranofaciens are examples of 
heteropolysaccharide-producing LAB [64,22]. Metabolites produced by LAB are not only protective of cells against external factors, 
but they are also beneficial for human health. 

The production of EPS plays an important role in LAB’s antioxidant, immunomodulatory, and anticancer properties. Fig. 4 

Table 3 
Applications of EPS in health care.  

EPS Chemical structure Monomer 
composition 

Main producing 
microorganism 

Applications Reference 

Dextran Glucose Leuconostoc 
mesenteroides 

Expander of blood plasma 
(regulate wound shock) 

[18] 

Xanthan Glucose (2), 
mannose (2), 
acetate, 
pyruvate, 
glucuronic acid, 

Xanthomonas 
campestris 

Suspension stabilizer, 
Thickener agent in 
pharmaceutical creams and 
other suspensions Controlled 
release carrier 

[26] 

Alginate Mannuronic acid, 
acetate guluronic 
acid 

Azotobacter 
vinelandii, 
Pseudomonas 
aeruginosa 

Antacid (anti-reflux) stomach 
protectors, dental 
impressions, microspheres 
for drug delivery, and fibres 
in wound haemostatic 
dressing and bandage 

[30,31] 

Gellan Glucose, 
glucuronic acid, 
rhamnose, 
glycerate, acetate 

Sphingomonas 
paucimobilis 

Excipient in oral, ophthalmic, 
and nasal drug formulations, 
for controlled tablet 
disintegration. 

[33–35] 

Pullulan Maltotriose Aureobasidium 
pullulans 

Tablet granulation and 
coating, binder. Oxygen 
impermeable film forming, 
non-animal capsules, oral, 
and wound healing products 

[18] 

Hyaluronic 
acid 

Glucuronic acid 
and N-acetyl- 
glucosamine 

Streptococcus 
equisimilis/ 
zooepidemicus; 
Bacillus subtilis 

Chronic, difficult wound 
healing; osteoarthritis 
treatment (intraarticular 
injection); eye surgery 
(vitreous substitution/ 
replacement) 

[18, 
51–53]  
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illustrates other potential health-promoting functions of EPS [80]. Free radical production in the body has a major negative impact on 
health. Free radicals harm proteins, RNA, and DNA. Since some of the procedures employed to stop it are artificial, there have been 
concerns about potential negative repercussions. It is crucial to use natural antioxidants like EPS to stop free radicals because of this. In 
the past, it was discovered that Lactobacillus plantarum JLAU103 could make EPSs and that the EPSs it produced had antioxidant 
activity from hurood cheese, a fermented food made in China [81,65]. EPSs production by probiotic bacteria also has several effects on 
probiotic action, such as colonization, immune modulation, and protection under harsh conditions in the gut [18,82,83]. 

Consumers’ recent preferences are pushing the food sector to create functional foods with functional ingredients. One of these 
essential components with intriguing functional roles is EPSs created by LAB. A vast variety of EPSs are produced by LAB, and these 
EPSs’ health-promoting properties are somehow connected to their fundamental structure [13,76,82]. Table 3 shows exopoly-
saccharides LAB producers and their corresponding applications. Therefore, more research is needed to find more EPSs structures in 
LAB and investigate their health-promoting properties, including immune modulation, antiviral, and antioxidant effects [13,61,64,65, 
80,81,67,68–70,84]. 

Phellinus linteus, Fusarium sp., Ganoderma lucidium, Pleurotus sp., and Inonotus obliquus are some examples of fungi that have been 
used extraction of exopolysaccharides [61,85,73]. Fungi, such as Aspergillus niger and Penicillium sp., create extracellular photopoly-
mers of glucose that are used in the food and cosmetic industries [86]. Some fungi glucans have linkage β (1,3; 1,6) and β (1,3) which 
makes them useful in anti-inflammatory, anti-tumor, and immunomodulation activities [59]. Dextran is a vector molecule that is made 
by the bacteria Streptococcus, Lactobacillus, Leuconostoc mesenteroides, Gluconobacter, and Xanthomonas campestris [21,87]. It helps to 
deliver drugs to the specific target for the action [17,88]. Exopolysaccharides are also observed to be used as a blood flow tonic, blood 
plasma extender, and anticholecterolics [22]. A placebo and nasal formulations are administered using gellan made from Pseudomonas 
elodea and Sphingomonas paucimobilis. Exopolysaccharides from Lactobacillus helveticus, Rhodotorula glutinins, Alteromonas infernus, and 
Leuconostoc paracasei have also been discovered to possess strong anticancer, antioxidant, antiviral, and anticoagulant effects [22]. 
Additionally, it has been discovered that exopolysaccharides can promote cell growth, operate as an anti-tumor agent, and cause 
favourable physiological reactions. EPS generated by Cordyceps sinensis Cs-HK1 also aids in immunomodulatory activities. From the 
Schizophyllum commune, schizophrillian contains anti-tumour and immune-stimulating properties. The schizophyllan that has been 
sulphur-modified has better potential as an anti-retroviral treatment for the Human Immunodeficiency Virus because the macro-
molecule strengthens the immune system’s defence against malignant cells [89]. In addition to being incredibly helpful in wound 
dressings for patients with burns and persistent skin ulcers, Acetobacter xylinum’s EPS (BioFill) is employed as an implantable material 
in plastic surgery [90,91]. 

The use of EPSs in a variety of biomedical applications, including drug delivery systems, scaffolds, and coating materials for 
medical and surgical sealants, is encouraged by their biocompatibility and functional qualities. EPSs may be employed in their natural 
form, cross-linked, or modified with different bioactive substances. EPSs have demonstrated strong biocompatibility, biodegradability, 
and mechanical strength as natural-based materials, which are advantageous for the development of biological scaffolds. For bone 
tissue creation, gellan hydrogels customized with hydroxyapatite have been created [92]. Hydroxyapatite was heated and combined 
with a low-acyl gellan solution. The gel was created, cooled to room temperature, and then freeze-dried to produce a spongy construct 
[93]. 

The gelatinous substance known as alginate is taken from the cell walls of bacteria or brown algae. There has been research on the 
viability of encapsulated human stem cells in alginate-chitosan hydrogels. The ability of an ALG-based hydrogel to stimulate the 
regeneration of the retinal pigment epithelium (RPE) was revealed in a study. Taurine, a neurotransmitter found in retinal tissue, was 
added to the scaffold to support RPE cell immune defense. In vitro, tests of the taurine-loaded ALG hydrogel on RPE cell migration and 
proliferation were encouraging. When implanted in naked mice, the scaffold also demonstrated good biocompatibility and biode-
gradability [94]. 

3.1. EPS and composites in drug delivery systems 

EPSs also offer qualities that make them useful for the biomedical sector. They are very hydrophilic and typically form pseudo 
plastic solutions in water, in addition to having biocompatible and biodegradable qualities. Due to their favourable rheological 
properties, they are suitable for industries like food and cosmetics where viscosity can be crucial [95]. The potential of exopoly-
saccharides for Medical and healthcare applications has been examined in several articles. Alginate blend has been cross-linked with 
various divalent cations to create hydrogels that can be used to make scaffolds and deliver medicines in the form of beads. The 
molecules, chains, etc. that make up a gel are linked together in a fluid medium by electrostatic interactions, crosslinking, or 
macroscopic entanglements. The term "hydrogel" refers to three-dimensional polymeric networks that have enormous water or bio-
logical fluid absorption capacities [31]. Cross linkers and the provision of experimental conditions for the generation of physical chain 
entanglements are two ways to create gels. Alginate, a copolymer made up of -d-mannuronic and -l-guluronic acids, is derived from the 
bacterium Azotobacter vinelandii and has a molecular weight range of (0.5–1.5) 106 Da. Because of their comparable structures, 
alginate from bacteria and alginate from Seawood has similar qualities. Due to an increase in its G-length chain, microbial alginate is a 
stiffer polymer, which is the primary distinction [43]. Alginate has a variety of uses, including wound dressing, encapsulating sub-
stances, and boosting water solubility. Alginate beads have been widely employed for many applications because of their gelation, 
which is caused by crosslinking with divalent cations (Ca2+ or Ba2+) [96]. Exopolysaccharide-Coated Nanoparticles Nanomaterials 
have a high surface area to volume ratio, making them more reactive and useful in all applications than other types of materials. Using 
a DDS in nanoparticle form, disease therapy is one of the key applications of nanotechnology. Typically, nanoparticles for DDSs are 
made up of an outside "shell" material made of EPS and an inner "core" material with active chemicals (Fig. 5). These can be categorized 
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based on the material used for the core or shell (e.g. organic-inorganic, inorganic-inorganic, etc.) or based on the characteristics of the 
shell or core [97]. However, there are situations when the medicine adheres to the carrier’s surface using electrostatic charges. co-
valent bonds or interactions. Surface engineering tests must be carried out in this situation. formerly to alter the polymer’s functional 
groups and enable an effective drug attachment [96]. 

3.2. Use of EPSs in cosmetics 

EPSs produced by microorganisms are biocompatible and non-toxic, which expands their use in the beauty sector. The hydrophilic 
EPSs have a great capacity to hold water, which aids in keeping skin compositions moist [98]. Dextran is a well-known EPSs made from 
glucose polymer. Leuconostoc mesenteriodes and Streptococcus mutans are two examples of the Leuconostocaceae family of microor-
ganisms from which dextran is derived [99]. Dextran is used in the cosmetics industry as a skin brightening and smoothing agent 
because it helps to improve skin firmness, encourages brightness, and minimizes wrinkles. Dextran are utilized as an anti-inflammatory 
because it increases blood flow and increases the production of nitric oxide (NO) in human epidermal keratinocyte cells [38,98]. 

Alginate EPS, which can hold onto water, was discovered to be produced by Azotobacter vinelandii and Pseudomonas aeruginosa 
[100]. Alginate is used in skin and cosmetic formulations as a thickening agent, gelling agent, and excipient. The complex hetero-
polymer EPS xanthan is produced by Xanthomonas campestris [101]. Xanthan is utilized in skin formulations to aid in skin-smoothing 
and moisturizing since it also has thickening qualities and helps in gelling. Additionally, it has been discovered to help reduce 
trans-epidermal water loss in keratinocyte cells. It is also helpful in skin formulations as an emulsifier and foaming agent [102]. A 
glycosaminoglycan (GAG) called hyaluronic acid (HA) is made up of the amino acids -4-glucuronic acid (GlcUA) and -3-N-acetyl-
glucosamine (GlcNAc) [98]. In skin lotions, serums, and cosmetic surgery, HA is utilized as a dermal filler. Because of its ability to 
retain moisture, sodium hyaluronate is used as an active ingredient in these products, which also helps to improve skin firmness and 
elasticity [50]. The skin’s melanin pigment provides its colour and serves to shield it from UV light’s damaging effects as well as to stop 
the development of cancer. Hyperpigmentation, or the darkening of the skin, is caused by melanocyte overproduction. As people age, 
melanocyte management, control, and distribution become erratic, giving the skin the appearance of dark, discoloured areas [103]. 
Tyrosinase is a crucial enzyme in the production of melanin, and by decreasing it, hyperpigmentation can be effectively minimized. 
Phlorotannin and 7-phloroeckol, two chemicals produced by the marine brown seaweed Ecklonia cava, can block the action of 
tyrosinase, hence lowering melanogenesis and being employed as a potential skin-lightning agent [104]. Astaxanthin, which belongs 
to the carotenoid family and is produced by Haematococcus pluvialis, has been reported to have similar effects [105]. 

3.3. Use of EPSs in the food industry 

Whether it is in its natural state or has been processed, food has always been a vital component of human existence. In the 

Fig. 5. Use of EPSs in nanoparticle mediated drug delivery system.  
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manufacturing, processing, and preservation of food, EPSs are helpful. In dairy products and fermented foods like milk, curd, sour 
cream, yoghurt, cheese, and buttermilk, EPSs from lactic acid bacteria like Lactococcus lactis, Leuconostoc mesenteroides, Streptococcus 
thermophilus, Bifidobacterium bifidum, and Pediococcus acidilactici is helpful. It is also used to improve the flavor, taste, texture, and shelf 
life of fermented foods [36,22]. Dextran enhances viscosity and speeds up the crystallization of sugar in confections, whereas xanthan 
and emulsan (Pseudomonas fluorescens) are used in different food sectors as stabilizers, emulsifiers, suspensors, and thickening agents, 
respectively. The fungus Aureobasidium pullulans produce pullulan, which is utilized in the food industry as a viscosity stabilizer and 
thickening [90]. Most of the uses of EPSs in the food sector are summarized in Fig. 1. EPSs are utilized, in particular, to improve the 
rheology of foods that have undergone fermentation. EPSs are regarded as a natural texturizer and a superior substitute for various 
synthetic or novel biopolymers used in food as a gelling agent, as well as for thickening and suspending food [106]. The primary 
microbial exopolysaccharides, including dextran, pullulan, xanthan, gellan, scleroglucan, and curdlan, have enormous industrial uses 
for food preparation. The study talks about the unique physical characteristics of EPSs that primarily define their use in the food 
industry and the health advantages of EPSs [1,10,60]. For several years, bakeries can use the EPS produced. Dextran was formerly 
added to sourdough because of its ability to thicken. Nowadays, EPS is used more frequently in the bakery sector, particularly when 
making gluten-free goods. The only method of treatment for celiac disease is a gluten-free diet. With a hereditary predisposition, the 
chronic autoimmune condition known as celiac disease largely causes small intestinal inflammation and malabsorption [107]. The sole 
remedy is a gluten-free diet. It is quite difficult to make bread gluten-free because gluten is a fundamental component of bread’s 
structure and quality. Low water absorption, altered crumb properties, lower bread volume, and poor stability characterize gluten-free 
products [108–110]. 

The advantageous impact of bread’s EPSs can connect to other dough ingredients to build networks that hold water together. 
Because of the enhanced structure, volume, and rheology of wheat bread, crumb softness has increased, staling rates have decreased, 
and shelf life has increased [111]. The dextran produced by Weissella confusa is said to enhance the quality of whole-grain pearl millet 
bread dough by boosting bread-specific volume, lowering the staling rate and moisture loss, enhancing crumb firmness, and reducing 
crumb hardness [112]. Additionally, it was shown that Weissella confusa Ck15’s dextran increased the viscosity of chickpea sourdough 
[113]. The meat products’ quality attributes were altered by the EPSs created in labs, which also increased the spreadability of the 
uncooked sausages with less fat. It has been noted that EPSs are employed in a variety of meat matrices, including cooked ham, rebuilt 
ham, raw fermented sausages, and raw fermented sausages with reduced fat. The texture of meat products is improved by the EPSs 
created [114]. Exopolysaccharides produced by lactic acid bacteria are found in beverages that resemble yogurt made from plants [22, 
115]. The demand for diet-free alternatives has surged due to people’s growing interest in veganism. Making products with 
consumer-acceptable taste and texture is thus a significant task. As the EPSs enhance the texture and taste qualities and lengthen the 
shelf life of the plant-derived goods, they are utilized to produce fermented foods made from plants, such as yogurt-like beverages and 
cheese substitutes [70,116,117]. Weissella confusa, a producer of EPSs, and a Lactiplantibacillus plantarum strain have been reported to 
produce fermented beverages using quinoa. A viable method for substituting additional hydrocolloids in plant-based yogurt substitutes 
is fermentation with EPSs [29,108,118]. Yogurt made from EPS starter culture has higher sensory qualities, a high apparent viscosity, 
and a low amount of syneresis. Dextran is used in the production of ice cream as a stabilizer and viscosifier. Ice cream’s physical, 
chemical, and rheological characteristics were shown to have improved [22,90,119]. 

4. Conclusion 

Microbial exopolysaccharides (EPSs) have been extensively investigated for their potential biomedical and pharmaceutical ap-
plications due to their unique physicochemical and biological properties. EPSs are high molecular weight polysaccharides produced by 
microorganisms that are secreted into the extracellular environment. Exopolysaccharides are a varied group of biodegradable poly-
saccharides with diverse biological and biochemical properties. They are compatible with the environment, biomes, and humans. It is 
good knowing that these polysaccharides are formed under stress by bacteria, algae, fungi, mammals, and plants. It has been observed 
that these bio-polysaccharides derived from different biogenetic resources are of great usage for living beings and thus these variable 
bioactive, inexpensive bio surfactants, bio emulsifiers, and exopolysaccharides are industrially produced for biotechnological, phar-
macological, industrial and medical applications. These EPSs are effective against osmotic stress, desiccation, phagocytosis, cell 
recognition, phage attack, hazardous substances, and antibiotics. The industries of cosmetics, pharmaceuticals, and food can all benefit 
from the use of EPSs. Thus, it can be concluded that EPSs are observed as non-toxic and natural products, and also their different 
activities are useful for further research can be done to extract more and more useful exopolysaccharides from microbes. Advances in 
fermentation technology and genetic engineering are expected to increase EPSs production and reduce costs, making them more 
accessible for biomedical and pharmaceutical applications. The future of microbial EPSs in the biomedical and pharmaceutical in-
dustries looks promising, with the potential for the development of new therapies and treatments that can improve human health. EPSs 
have shown potential in cancer therapy due to their ability to stimulate the immune system, inhibit tumor growth, and enhance the 
efficacy of chemotherapy drugs. They can be used as delivery vehicles for gene therapy due to their ability to encapsulate and protect 
DNA from degradation. EPSs have been shown to have antibacterial properties and can potentially be used as alternative antibacterial 
agents to combat antibiotic resistance. EPSs have anti-inflammatory properties and can potentially be used as a natural alternative to 
synthetic anti-inflammatory drugs. Apart from these they also can be used in treating neurological disorders such as Alzheimer’s and 
Parkinson’s disease due to their ability to cross the blood-brain barrier and reduce neuroinflammation. Overall, the future uses of 
microbial EPSs in medicines look promising, with significant potential for developing new therapies and treatments that can improve 
human health. 
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