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Assessing the impact of selection bias on
test decisions in trials with a
time-to-event outcome
Marcia Viviane Ruckbeil,a*† Ralf-Dieter Hilgersa and
Nicole Heussena,b

If past treatment assignments are unmasked, selection bias may arise even in randomized controlled trials. The
impact of such bias can be measured by considering the type I error probability. In case of a normally distributed
outcome, there already exists a model accounting for selection bias that permits calculating the corresponding
type I error probabilities. To model selection bias for trials with a time-to-event outcome, we introduce a new
biasing policy for exponentially distributed data. Using this biasing policy, we derive an exact formula to compute
type I error probabilities whenever an F-test is performed and no observations are censored. Two exemplary
settings, with and without random censoring, are considered in order to illustrate how our results can be applied
to compare distinct randomization procedures with respect to their performance in the presence of selection bias.
© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

When two treatments are compared in a clinical trial, various sources of bias such as a dissimilarity in
the composition of treatment groups can affect the study outcome. The error induced if patient cohorts
differ systematically with respect to their baseline covariates is referred to as selection bias [1], and it is
widely acknowledged that its presence is of great concern in any clinical trial. A necessary, yet not suffi-
cient, technique to protect against selection bias is the randomized allocation of patients to treatments [2].
This was evidenced by Berger who identified 30 randomized clinical trials that show signs of selection
bias [1]. Another equally necessary technique to prevent selection bias is the non-disclosure of upcom-
ing treatment allocations (allocation concealment). However, allocation concealment alone does not rule
out the possibility of selection bias because already, the disclosure of past treatment assignments poses
a risk with regard to the predictability of future allocations. Consequently, in order to truly rule out the
possibility of selection bias, it is also vital to conceal past treatment assignments, and the ICH E9 guide-
line therefore recommends to choose a double-blinded randomized study design [3]. However, blinding
may not always be feasible for all types of clinical trials; for example, for obvious reasons, surgical trials
are often conducted in an unblinded or single-blinded manner [2]. Moreover, even with regard to double-
blinded trials, there are serious doubts as to whether perfect blinding can be attained [4]. For example,
there is a chance that previous allocations might be identified by characteristic side effects, which hence
endangers allocation concealment. Following Berger’s notation, we will refer to this circumstance as
third-order selection bias [5].
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From a clinical perspective, this poses the challenge of measuring the strength of such bias if present.
One method that is recommended in the ICH E9 guideline is to study the impact on the test decision, for
example, p-value [3]. For normally distributed outcome data in a parallel group design, a corresponding
model was introduced by Proschan [6]. Particularly, he derived a formula to compute biased type I error
probabilities in the case when patients are assigned to treatments using the random allocation rule (RAR)
and the analysis is performed using a Z-test. This work was then continued by Kennes et al. [7], who
considered permuted block randomization and further extended the consideration to multi-center trials.
Relaxing the assumption of known variance in the Z-test setting, Langer [8] then investigated the distribu-
tion of a t-test in the presence of selection bias, leading to a doubly noncentral t-distribution. Incorporating
Langer’s findings, Uschner et al. [9] recently introduced a software tool enabling researchers to assess
the impact of selection and chronological bias for trials with a normally distributed outcome. However,
despite the extensive research for studies with a normal outcome, similar models are currently underde-
veloped for trials with a time-to-event outcome. The aim of the present investigation is to introduce a
new biasing policy to model selection bias for settings with an exponentially distributed time-to-event
outcome.

The paper is organized as follows: In the next section, we introduce our terminology and statistical
model. Within Section 3, we propose a new biasing policy to describe selection bias that can be applied
in the context of exponentially distributed time-to-event data. Based on this biasing policy, we estab-
lish a formula to compute rejection probabilities in the presence of third-order selection bias if an F-test
without censoring is performed (Section 4). Within Section 5, we analyze which factors affect the infla-
tion of type I error probability, emphasizing differences caused by the random allocation of patients as
well as the influence of censoring. Finally, we briefly discuss our limitations and comment on possible
generalizations (Section 6).

2. Preliminaries

We consider a parallel group trial with a time-to-event outcome where we investigate the equality of two
treatments that will be referred to as control (0) and experimental (1) treatments. Let the total sample size
of participating patients n be fixed. Defining the sample space by Ω = {0, 1}n, a randomization sequence
is an element t =

(
t1,… , tn

)
∈ Ω, where ti ∈ {0, 1} denotes the allocation of the ith patient to either

the control (ti = 0) or experimental group (ti = 1). Note that t is the realization of a random variable
T = (T1,… ,Tn), which takes values in {0, 1}n and contains full information on the allocation of patients.
The distribution of T is determined by the randomization procedure at hand. We suppose that all survival
times are independent and that the control and experimental groups are of sizes n0 and n1, respectively,
where n = n0 + n1 and n0, n1 ⩾ 1.

Without loss of generality, presume that the treatment is intended to prolong survival and that the sur-
vival times follow an exponential distribution. Denoting the random survival times by Y1,… , Yn, where
Yi is the random variable corresponding to the ith enrolled patient, yields

Yi ∼ Exp
(
𝜆0

(
1 − Ti

)
+ 𝜆1Ti

)
, for i = 1,… , n,

where 𝜆0, 𝜆1 > 0 denote the respective hazard rates. In order to decide whether one of the treatments is
superior with respect to prolonging survival, we consider the following two-sided hypotheses for Δ =
𝜆0∕𝜆1:

H0 ∶ Δ = 1 vs. H1 ∶ Δ ≠ 1. (1)

2.1. F-test without censoring

If no censoring takes place, the aforementioned hypotheses can be tested performing an F-test [10, 11].
The maximum likelihood estimators of 𝜆0 and 𝜆1 are then given by the inverse arithmetic means of the
respective samples. Hence, the following statistic is an estimator for Δ:

SF =
𝜆̂0

𝜆̂1

=
1∕n1

n∑
i=1

YiTi

1∕n0

n∑
i=1

Yi

(
1 − Ti

) =
Y1∕n1

Y0∕n0
, where Y1 =

n∑
i=1

YiTi and Y0 =
n∑

i=1

Yi

(
1 − Ti

)
, (2)

and with SF =
(
2𝜆1Y1∕n1

)
∕
(
2𝜆0Y0∕n0

)
if the null hypothesis holds. The random variables 2𝜆1Y1 and

2𝜆0Y0 are then chi-square distributed with 2n1 and 2n0 degrees of freedom, which further implies that SF
follows an F-distribution with 2n1 and 2n0 degrees of freedom. Thus, the two-sided null hypothesis is
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tested by comparing whether F2n1,2n0,𝛼∕2 ⩽ SF ⩽ F2n1,2n0,1−𝛼∕2, where F2n1,2n0,𝛾
denotes the 𝛾-quantile of

an F-distribution with 2n1 and 2n0 degrees of freedom.

2.2. F-test with censoring

Because the maximum likelihood estimators change in the presence of censoring, the aforementioned
statistic (2) has to be adjusted in the case of censored data. The statistic can easily be extended to the
case of type II censored data where the trial ends after a predetermined number of events have been
observed within both treatment groups. Provided that k0 and k1 events shall occur within the control and
experimental groups, respectively, the adjusted test statistic follows an F-distribution with 2k1 and 2k0
degrees of freedom [12]. If all patients enter the trial at the same date and the trial ends at a predetermined
time such that all patients having survived until then are censored, this is a special case of type I censoring
with one common censoring time. In that situation, the resulting statistic is approximately F-distributed
with 2K1 and 2K0 degrees of freedom, where K1 and K0 are the random number of events observed
within the groups. It has been pointed out that this approximation yields slightly increased type I error
probabilities, especially if the expected number of observed events is too small [13]. As we believe that
neither of the two censoring mechanisms listed previously frequently applies to clinical trials, we focus
on a random censoring mechanism.

We assume that the censoring mechanism can be modeled by a probability distribution that is inde-
pendent of the survival distribution. By defining the random censoring times as C1,… ,Cn, the possibly
censored event time for the ith enrolled patient is given by Zi ∶= min

{
Yi,Ci

}
. Under the null hypothesis

of no treatment effect, the following statistic then approximately follows an F-distribution with (2K1 +1)
and (2K0 + 1) degrees of freedom [12]:

S̃F =
(1 + 0.5∕K0)
(1 + 0.5∕K1)

⋅
𝜆̂0

𝜆̂1

=
(1 + 0.5∕K0)
(1 + 0.5∕K1)

⋅
Z1∕K1

Z0∕K0
, where Z1 =

n∑
i=1

ZiTi and Z0 =
n∑

i=1

Zi

(
1 − Ti

)
.

(3)

3. Biasing policy

In case of missing or imperfect blinding, the possibility of third-order selection bias should not be over-
looked [1]. This is due to the fact that knowledge of prior assignments will mostly contain information
on future allocations, eventually enabling those in charge of recruiting participants to predict the next
upcoming treatment. Let us consider a setting where the recruiting researcher favors the experimental
treatment. Now, if he or she anticipates that the next patient will be allocated to the experimental group,
this might unconsciously affect his or her decisiveness to enroll a terminally ill patient who meets all the
required entry criteria.

Based on Proschan’s biasing policy for normally distributed data [6], we define the following biasing
strategy: We assume that the recruiting researcher is aware of all past treatment assignments but has
no knowledge of future allocations and the randomization procedure at hand. We further assume that
he or she guesses the next upcoming treatment according to the convergence strategy by Blackwell and
Hodges [14] and that he or she is able to decline presenting participants until someone suiting his or her
guess presents for enrollment. More specifically, keeping count of previous assignments, let N0(i−1) and
N1(i − 1) denote the number of patients that have been assigned to the control and to the experimental
groups within the first i − 1 allocations, i = 1,… , n. It should be noted that N0(i − 1) and N1(i − 1) are
random variables that depend on the randomization sequence. Then the ith patient enrolled will have a
survival distribution of

Yi ∼ Exp
(
𝜆0𝜏i

(
1 − Ti

)
+ 𝜆1𝜏iTi

)
, for i = 1,… , n, (4)

where 𝜏i is given by the following:

𝜏i =
⎧⎪⎨⎪⎩

1∕𝛿 , if N0(i − 1) < N1(i − 1),
1 , if N0(i − 1) = N1(i − 1),
𝛿 , if N0(i − 1) > N1(i − 1),
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Table I. Composition of expected responses
within control and experimental groups.

Good Neutral Bad Total

Control n01 n02 n03 n0

Experimental n11 n12 n13 n1

with 𝛿 ∈ (0, 1) being the biasing factor. In accordance with the survival prolonging objective of the
treatments, we will furthermore refer to patients as either having a good (𝜏i = 1∕𝛿), neutral (𝜏i = 1), or
bad (𝜏i = 𝛿) expected response. Notice that if 𝛿 approaches 0, this resembles the case where patients with
bad expected response are about to experience an event within a short time, whereas patients with good
expected response will probably not. On the other hand, if 𝛿 is close to 1, this reflects the circumstance
when all patients are approximately comparable regarding their medical condition.

An obvious consequence of biasing policy (4) is that the survival distributions of our random sample
depend on the order in which patients are allocated, and hence on the randomization sequence at hand.
This can be seen by considering the minimal case of n = 2 patients, where the survival distribution of
the secondly enrolled patient depends on the firstly enrolled patient’s treatment affiliation. However, this
obstacle can be overcome by conditioning on the underlying realized randomization sequence t, which
contains full information on the distribution of our random sample Y1,… ,Yn. We will see that despite
knowing the survival distribution of each patient, for our purpose, it is sufficient to only know the number
of patients with good, neutral, and bad expected response within each treatment group as outlined in
Table I. Given the realized randomization sequence t, those can be computed directly.

4. Biased distribution of the F-statistic

We will derive the distribution of the F-statistic for a fixed randomization sequence t in a setting where
patients are enrolled in accordance with biasing policy (4). The conditional density function fSF ∣T=t can
then be computed applying results for the sum of independent gamma-distributed random variables. A
concise description of the derivation is given in Appendix A.1. We obtain that fSF ∣T=t(x) = 0 for x ⩽ 0 and

fSF ∣T=t(x) = C
∞∑

k=0

d1(k)xn1+k−1
∞∑

l=0

d0(l)
(
Δn0∕n1

)n0+l B(n1 + k, n0 + l)−1(
x + Δn0∕n1

)n1+k+n0+l
, for x > 0, (5)

where B(a, b) denotes the beta function, C = 𝛿2n01+2n11+n02+n12 , and

dj(k) =
1
k

k∑
i=1

(
nj1

(
1 − 𝛿2

)i + nj2 (1 − 𝛿)i
)

dj(k − i), dj(0) = 1, (6)

where j ∈ {0, 1}. It can furthermore be shown that the corresponding distribution function is given by
FSF ∣T=t(x) = 0 for x ⩽ 0 and

FSF ∣T=t(x) = C
∞∑

k=0

d1(k)
∞∑

l=0

d0(l)Δn0+l B(n1 + k, n0 + l)−1d(n1 + k, n0 + l, x), for x > 0, (7)

where

d(a+1, b, x) = 1
a + b

(
−

(
xn1∕n0

)a

(xn1∕n0 + Δ)a+b
+ a d(a, b, x)

)
, d(1, b, x) = 1

b

(
Δ−b −

(
xn1∕n0 + Δ

)−b
)
.

(8)
Equations (5) and (7) imply that the F-statistic is affected by the presence of selection bias because

of the density’s and distribution’s dependence on the biasing factor 𝛿. Thus, performing the regular F-
test in the presence of selection bias does not maintain the nominal significance level and power. Using
(7), however, allows computing the true, biased power or type I error probability. In case of a two-sided
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F-test, this is accomplished by computing the probability to observe a value at least as extreme as the
critical values from the unbiased test setting, that is,

P(reject the null hypothesis ∣ T = t) = FSF ∣T=t(F2n1,2n0,𝛼∕2) +
(
1 − FSF ∣T=t(F2n1,2n0,1−𝛼∕2)

)
,

where, again, F2n1,2n0,𝛾
denotes the 𝛾-quantile of an F-distribution with 2n1 and 2n0 degrees of freedom.

It can further be noted that the biased distribution of the F-statistic is, like the unbiased distribution,
independent of the baseline hazard rates and only depends on the biasing factor 𝛿, as well as on the hazard
ratio Δ = 𝜆0∕𝜆1.

5. Impact on the test decision

We illustrate the impact of selection bias on the test decision in the event of no treatment effect, that is,
Δ = 1. Following the ICH E9 guideline recommendations, the evaluation of this impact should involve
consideration of the corresponding p-value [3]. With regard to clinical relevance, this can be accounted
for by studying the probability to observe a p-value less than the nominal significance level, which in case
of no treatment effect corresponds to the type I error probability. In an unbiased scenario, the type I error
probabilities of (2) and (3) correspond to the nominal significance level, either exactly if no censoring
occurs or approximately if random censoring takes place. Consequently, comparing the true, biased type
I error probabilities to the nominal significance level serves as a measure to assess the impact of selection
bias. We have shown that in the presence of selection bias without censoring, corresponding type I error
probabilities can be computed using (7); in a scenario with random censoring, type I error rates can be
obtained via simulation.

We begin by studying the dependency between type I error probability and the magnitude of the biasing
factor 𝛿, as well as the particular allocation sequence t. In the second part, we investigate how distinct
randomization procedures differ with respect to their susceptibility to selection bias in two exemplary
settings with and without random censoring. As bias poses a particular challenge in small population
trials [15], we also include an example of smaller sample size. The following computations were partly
performed using the randomizeR package [9].

5.1. Comparison of distinct biasing factors and randomization sequences

It follows directly from expressions (5) and (7) that the type I error probability depends on the magnitude
of the biasing factor 𝛿, as well as on the randomization sequence at hand. To illustrate this relation for
all possible allocation scenarios with final balance in group sizes, we consider the very small example
of n = 4 patients. The results are shown in Table II for varying biasing factors. As a decrease in biasing
factor reflects an increase in difference between patients with good and bad expected response, it is
plausible that the type I error probability increases if 𝛿 decreases. It can further be seen how the type I
error probability increases more rapidly the smaller 𝛿 becomes. Considering the distinct randomization
sequences, it becomes apparent that in the presence of selection bias, the allocation of patients has a large
impact on the type I error probability. For instance, for 𝛿 = 0.5, the error probability ranges from 5.98%
to 9.32%.

The set of randomization sequences shown in Table II corresponds to the set obtained when assigning
patients according to the well-known RAR. Figuratively speaking, this procedure can be implemented by
sampling without replacement from an urn, which contains two equally sized sets of marbles of distinct

Table II. Type I error probabilities for distinct randomization sequences with varying biasing factor.

Biasing factor 𝛿
Randomization sequence t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(1, 1, 0, 0) 0.2910 0.1498 0.0992 0.0760 0.0638 0.0571 0.0533 0.0512 0.0503
(1, 0, 1, 0) 0.5159 0.2726 0.1676 0.1150 0.0860 0.0691 0.0592 0.0536 0.0508
(0, 1, 1, 0) 0.5127 0.3035 0.1910 0.1286 0.0932 0.0727 0.0608 0.0542 0.0509
(1, 0, 0, 1) 0.5127 0.3035 0.1910 0.1286 0.0932 0.0727 0.0608 0.0542 0.0509
(0, 1, 0, 1) 0.5153 0.2726 0.1676 0.1150 0.0860 0.0691 0.0592 0.0536 0.0508
(0, 0, 1, 1) 0.1251 0.0938 0.0766 0.0663 0.0598 0.0555 0.0528 0.0511 0.0503

Setting: n = 4 patients and nominal significance level 𝛼 = 5%.
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color. The order in which the marbles are drawn then specifies the allocation sequence. Given the biasing
factor 𝛿, we have recently seen how we can assign a randomization sequence to its corresponding type
I error probability. A reasonable method of evaluating the performance of a randomization procedure
therefore consists in computing the expected type I error probability across all randomization sequences.
We illustrate this procedure based on our previous example for n = 4 patients, assuming participants are
allocated using the RAR (Table II). Because in the case of the RAR, all sequences are generated equally
likely, for example, with probability 1∕6 in the previous example, the expected type I error probability
simply corresponds to the arithmetic mean of the type I error probabilities of all sequences. For instance, if
the biasing factor 𝛿 can be quantified by 0.5, the expected type I error probability amounts to 8.03%. This
equality, however, does not generally apply to other randomization procedures where certain sequences
are more likely to occur [2]. In order to account for this, a general way to derive the expected type I error
probability is to compute the weighted mean with respect to the sequence probabilities.

5.2. Comparison of distinct randomization procedures

In practice, researchers have to decide on a randomization procedure as part of the study design at the
trial planning stage. Because of the disparate behavior of different allocation sequences (Table II), this
decision should involve studying distinct randomization procedures with respect to the impact of bias on
the test decision, especially if the possibility of selection bias cannot be ruled out. In the following, we
will demonstrate how distinct randomization procedures can be compared with regard to their behavior
in the presence of selection bias. Particularly, we will investigate the previously described RAR, as well
as the following three randomization procedures [2]:

• Big stick design (BSD(b)): Patients are randomly assigned by tossing a fair coin. If a maximum
tolerated imbalance b in group sizes is reached, the next patient is allocated deterministically to the
less frequently assigned treatment [16].
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Figure 1. Setting: n = 20 patients with biasing factor 𝛿 = 0.7, nominal significance level 𝛼 = 5%, and 10,000
sequences per design. BSD, big stick design; MP, maximal procedure; PBR, permuted block randomization; RAR,

random allocation rule.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 2656–2668

2661



M. V. RUCKBEIL, R.-D. HILGERS AND N. HEUSSEN

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

BSD(2) MP(2) PBR(4) RAR

Design

Ty
pe

 I 
er

ro
r 

pr
ob

ab
ili

ty

n = 100

Figure 2. Setting: n = 100 patients with biasing factor 𝛿 = 0.7, nominal significance level 𝛼 = 5%, and 10,000
sequences per design. BSD, big stick design; MP, maximal procedure; PBR, permuted block randomization; RAR,

random allocation rule.

• Maximal procedure (MP(b)): To account for imbalances during the allocation process, this procedure
uniformly chooses from the subset of sequences generated by RAR, which never exceed a maximum
tolerated imbalance b in group sizes throughout the entire allocation [4].

• Permuted block randomization (PBR(k)): Patients are assigned in blocks of length k, where within
each block, patients are allocated like in RAR. As a consequence, besides achieving final balance in
group sizes, the PBR design additionally forces balances after each block of k patients.

As an example, we investigate the behavior of those randomization procedures for n = 20 and n = 100
patients. For PBR, we consider blocks of length 4, and for BSD and MP, we choose a maximum tolerated
imbalance of 2. In both cases, we assume a biasing factor of 𝛿 = 0.7 and a nominal significance level
of 𝛼 = 5%. As the inclusion of all possibly generated randomization sequences does not scale nicely
for large sample sizes [2], we use Monte Carlo simulations with 10,000 sequences per design, instead of
considering the full set of randomization sequences. The type I error probabilities corresponding to those
two exemplary settings are depicted in Figures 1 and 2.

One striking feature is that apparently, none of the randomization sequences generated by any design
seems to maintain the nominal significance level of 5%. As expected, distinct randomization procedures
can be associated with distinct sets of type I error probabilities, because of being associated with distinct
randomization sequences. This is reflected by the shape of the box plots as well as by the mean type I error
probabilities. For example, for n = 20 patients, the mean type I error probability is 10.3% for PBR(4),
compared with only 7.26% for RAR. In addition, the corresponding boxes do not overlap. The differences
between the distinct randomization procedures become even more apparent for n = 100 patients. Here,
the mean type I error probabilities range from 8.24% for RAR to 31.65% for PBR(4). Also, the spread
of possible type I error probabilities increases, resulting in more outliers. Another observation is that
the type I error probabilities increase with increasing sample size, which has also been noted by Kennes
et al. for PBR only [7].
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Concerning our initial objective to compare distinct randomization procedures with regard to their
behavior in the presence of selection bias when an F-test is performed, we can conclude that some pro-
cedures are indeed less susceptible to selection bias than others. As an example, assume we are at the
trial planning stage of a time-to-event trial with n = 100 patients where it is reasonable to assume that no
censoring will take place and where the equality of the treatments will be investigated performing an F-
test. If in addition, the possibility of selection bias cannot entirely be ruled out, for example, if blinding
is at risk, this establishes the need to evaluate and compare possible randomization procedures in a way
as described previously. With regard to the four randomization procedures considered, we can conclude
that in the course of our exemplary study, the procedures BSD(2) and RAR are better suited to protect
against selection bias than PBR(4) or MP(2) as the expected type I error probability will be less inflated.

5.3. Comparison of distinct randomization procedures with random censoring

We have seen that the type I error probability inflates in the presence of selection bias if an F-test is
performed and no censoring occurs. In order to understand the effect of censoring on the elevation of type
I error probability, we will investigate the type I error rates of the previous randomization procedures in
two simulation settings assuming random censoring probabilities of c = 10% and c = 30%, respectively.
In particular, we assume an exponential censoring mechanism C1,… ,Cn ∼ Exp (𝜃) with 𝜃 such that the
probability for neutral patients to be censored is c. We consider a setting with n = 100 patients, biasing
factor 0.7, and nominal significance level of 5% where the equality of treatments is tested performing
an F-test with random censoring (3). The results are depicted in Figures 3 and 4. The mean type I error
probabilities of the approximate F-test without bias, that is, 𝛿 = 1, are approximately 5% (5.12% and
5.13%).

Comparing Figures 2–4, it appears that the presence of censoring reduces the inflation of type I error
probability. This trend can be compared with the power loss due to censoring, as the presence of selection
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Figure 3. Setting: n = 100 patients with biasing factor 𝛿 = 0.7, censoring probability c = 10%, nominal signifi-
cance level 𝛼 = 5%, 10,000 sequences per design, and 100,000 repetitions per sequence. BSD, big stick design;

MP, maximal procedure; PBR, permuted block randomization; RAR, random allocation rule.
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Figure 4. Setting: n = 100 patients with biasing factor 𝛿 = 0.7, censoring probability c = 30%, nominal signifi-
cance level 𝛼 = 5%, 10,000 sequences per design, and 100,000 repetitions per sequence. BSD, big stick design;

MP, maximal procedure; PBR, permuted block randomization; RAR, random allocation rule.

bias impacts the survival distribution within the treatment groups. Thus, our exact analysis of type I error
probabilities can be considered as a worst-case scenario such that the impact of selection bias would only
reduce in the presence of censoring.

6. Sensitivity analysis

We believe that our results can serve as a good starting point for further considerations of selection bias
in trials with a time-to-event outcome, but we are also aware of the current limitations. In particular,
assuming an exponentially distributed outcome may seldom prove valid in clinical practice, which is why
future research should address extending our considerations to other important survival distributions such
as Weibull and Gamma distribution. We comment on this in the following in order to illustrate that this
is non-trivial and requires further study. In addition, we briefly discuss our choice of biasing policy with
respect to the biasing strategy considered.

6.1. Other distribution assumptions

Because both our biasing policy and test method are parametric, assuming another distribution implicates
the consideration of a different test method as well as the formulation of a new biasing policy. Parametric
methods to compare two Weibull distributions, respectively, Gamma distributions, are for example given
in [12,17–19]. We outline a possible extension of our biasing policy in the case where the equality of the
two scale parameters is tested under the assumption of equal shape parameters.

A natural extension of biasing policy (4) is to model the impact of bias in terms of a proportional
hazards model such that the medical condition of a patient acts as a multiplicative effect on the hazard
function. If we additionally require that, regardless of the medical condition, all survival times are based
on the same distribution assumption, for example, Weibull or Gamma, this extension is straightforward for

2664

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 2656–2668



M. V. RUCKBEIL, R.-D. HILGERS AND N. HEUSSEN

Weibull-distributed outcome only. Specifically, in the case of a Weibull-distributed outcome, the survival
times can be modeled as Weibull distributed with common shape parameter and scale parameter depend-
ing on the medical condition and treatment affiliation. In the case of Gamma distribution, however, both
requirements cannot be met simultaneously as the ratio of two hazard functions is not constant in time.
A slightly modified approach could consist in exploiting the asymptotic convergence of the hazard func-
tions [12] and in postulating proportional limiting hazard functions instead. The resulting survival times
can then be modeled as Gamma distributed, sharing the same shape parameter and with scale parameter
depending on the medical condition and treatment affiliation.

6.2. Other biasing strategies

As selection bias can occur in multiple ways, we believe that there are several approaches to model a
reasonable biasing strategy. Within this paper, we chose to formulate biasing policy (4) following the
assumptions by Blackwell and Hodges [14]. More specifically, we assumed that all prior assignments are
known to the recruiting investigator, that the recruiting investigator has no knowledge of the randomiza-
tion procedure at hand, and that the investigator chooses patients pursuant to the convergence strategy;
that is, in case of imbalance, he or she always expects that the next patient will be assigned to the hith-
erto less frequently assigned treatment. Changing the aforementioned assumptions results in a modified
biasing policy and thus affects the survival distribution assumptions and distribution of the test statis-
tic. The results of Section 5 therefore only prove valid for the aforementioned biasing policy and might
change if another biasing strategy is considered. For example, it is frequently assumed that the investi-
gator is aware of the randomization procedure used [4, 5, 20–23]. In this situation, the biasing strategy
can be modeled with regard to the probability that the next patient will be assigned to the experimental
treatment, varying from guessing all predictable allocations, that is, probability greater than 0.5, up to
biasing only deterministic allocations, that is, probability of 1. Especially, the comparison of different
procedures with regard to a biasing policy based on deterministic allocations instead of treatment imbal-
ance can yield very different results [20]. It has also been considered that in blinded trials or multi-center
trials, it could appear more realistic that blinding only fails partially, making only some previous alloca-
tions known to the investigator [4, 6]. Others have incorporated the possibility of failed biasing attempts
[21, 22] or of an adjusted biasing factor based on previous allocations [24].

7. Discussion

For some time, researchers have been demanding that the choice of randomization method should be
made with respect to relevant criteria [4]. However, in practice, this is seldom implemented because of
the prominent use of block randomization [4]. As Berger et al. point out, this predominant use of block
randomization usually does not follow any scientifically sound advise but has evolved by virtue of its easy
implementation and the lack of willingness to contemplate other randomization procedures. We therefore
support their commitment to create awareness for the existence of other randomization procedures. Above
all, we want to emphasize the direct influence of the randomization design on the outcome of the trial, in
terms of test decision, so as to stress the importance of evaluating multiple options.

The biasing policy introduced for exponentially distributed data and our theoretical derivation of the
biased distribution of the F-statistic without censoring are a first step towards permitting such consider-
ations for trials with a time-to-event outcome. Performing a simulation study with and without random
censoring, we were able to illustrate that the possible impact of selection bias already depends on the
randomization procedure used, because of its dependence on the randomization sequence at hand. This
confirms our call for weighing different randomization procedures at the trial planning stage, as well as
careful consideration of possible selection bias. We furthermore wish to emphasize that, based on our
model assumptions, the impact of selection bias apparently reduces in the presence of random censoring
as the inflation of type I error probability decreases. Consequently, our theoretical results for the case of
no censoring can be used for worst-case analysis.

Of course, the scope of the previously considered exemplary settings is limited. First of all, we
restricted our comparison to only four exemplary randomization designs, whereas a comprehensive anal-
ysis should certainly include more randomization methods in terms of different procedures or parameters.
Above all, however, the process of choosing an appropriate randomization method should always incor-
porate several criteria in line with the existing requirements of the particular study. For example, it is
widely recognized that randomization procedures that are less susceptible to selection bias usually per-
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form worse in terms of chronological bias [1, 20]. Our findings can therefore only be applied to assess
randomization procedures with regard to their behavior in the presence of selection bias and are not meant
to serve as a general assessment criteria. In order to fully understand the nature and influence of selection
bias on test decisions, further research in the field of trials with a time-to-event outcome must strive to
also incorporate the consideration of other forms of bias such as chronological bias.

With regard to the biasing policy presented within this paper, a point of criticism might include deter-
mining the magnitude of the biasing factor 𝛿. In practice, the exact magnitude of 𝛿 will be unknown at the
trial planning stage, and setting an appropriate magnitude will certainly depend on the particular study.
One reasonable method to overcome this might be to estimate 𝛿 based on clinical experience similar to
the estimation of the effect size and conduct a sensitivity analysis for distinct values of 𝛿. In case of no
prior knowledge, a first approach might be to set the magnitude in dependence of the estimated effect size
as performed by Tamm et al. [22]. A further concern regarding 𝛿 might be that for some purposes, it will
be more suitable to model the biasing factor as a random instead of a fixed effect. In that case, the bias-
ing policy can be adapted such that the biasing factor is a random variable whose probability distribution
depends on previous allocations [22]. However, these investigations are out of the scope of the present
paper and topic of future research. Regarding our limitation to the exponential model, we must admit
that assuming exponentially distributed data may seldom be a valid distribution assumption. However,
this simplification is often used to provide a general idea of the data or to allow a comparison with other
more complex model assumptions [25,26]. Overall, we therefore feel that our model is a promising start-
ing point for further elaboration and might serve as a suitable reference model to get a first impression of
the impact of selection bias in time-to-event studies. In Section 6, we outlined possible generalizations
to other distribution assumptions such as Weibull and Gamma distribution, explaining why those gen-
eralizations were not made within the scope of the present paper and will require a closer inspection in
the future. Also, in order to handle more frequently encountered settings, future research must address
extending our initial contemplations to other test statistics such as the log rank test.

Overall, we both aim at extending our theoretical results to more general models as well as making our
findings available to the community. In particular, we are seeking to include our results in the recently
developed software tool by Uschner et al. [9], which provides a comprehensive tool to investigate bias
in parallel group trials with a normally distributed outcome but does not yet address the unmet need of
studying the impact of bias in trials with a time-to-event outcome. In the long term, we also wish to
provide a method to correct for selection bias [23,27,28], that is, which allows to draw valid conclusions
despite the presence of bias. The presence of third-order selection bias in completed studies can, for
example, be detected using the Berger–Exner test [28] or graph [1].

Appendix

A.1. Derivation of the biased distribution

Given the realized randomization sequence t, we can compute the number of patients with good, neutral,
and bad expected response within each treatment group (Table I) as a result of the biasing policy (4). The
F-statistic consequently can be decomposed into three sums within numerator and denominator, where
each sum comprises all patients sharing the same expected response within one study group, that is,

SF =
Y1∕n1

Y0∕n0
= Δn0∕n1

𝜆1Y1

𝜆0Y0
such that 𝜆jYj = Ynj1

+ Ynj2
+ Ynj3

, for j ∈ {0, 1},

where Ynj1
∼ Erl (𝛿, nj1), Ynj2

∼ Erl (1, nj2), and Ynj3
∼ Erl (1∕𝛿, nj3). Recall that conditional upon t,

the random variables Y1,… ,Yn are mutually independent, and hence, the same applies to Yn01
,… ,Yn13

.
The problem to derive the distribution of 𝜆jYj can generally be described as the problem to derive the
distribution of a sum of k independent random variables Z1,… ,Zk, where Zi ∼ Erl (𝛽i, 𝛼i) follows an
Erlang distribution such that

fZi
(t) =

{
𝛽
𝛼i
i

Γ(𝛼i)
t𝛼i−1e−t𝛽i for all t > 0,

0 for all t ⩽ 0,
(A.1)
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with 𝛼i ∈ N and 𝛽i > 0. The problem to derive the distribution of such a sum for the case that 𝛽i ≠ 𝛽j
for i ≠ j has been addressed by several authors. We studied the approaches presented by Mathai [29],
Kordecki and Jasiulewicz [30], Akkouchi [31], and Moschopoulos [32]. Because we found that for our
purposes, Moschopoulos’s formula appears to perform best with regard to run time and numerical stability
of the evaluation, we will only present the resulting biased distribution corresponding to his approach.

In particular, using Moschopoulos’s formula yields the following conditional density distribution
function for 𝜆jYj:

f𝜆jYj∣T=t(x) = 𝛿2nj1+nj2

∞∑
k=0

𝛿−nj−kdj(k)xnj+k−1e−x∕𝛿, for x > 0 and 0 elsewhere, (A.2)

where dj is defined in (6) and j ∈ {0, 1}. Given those two densities, we can compute the conditional
density of the ratio Y ∶=

(
𝜆1Y1

)
∕
(
𝜆0Y0

)
using the following identity [33]:

fY∣T=t(x) = ∫
∞

−∞
yf𝜆1Y1∣T=t(xy)f𝜆0Y0∣T=t(y) dy, for x ∈ R.

Inserting (A.2), we obtain that for C = 𝛿2n01+2n11+n02+n12 and x > 0,

fY∣T=t(x) = ∫
∞

0
C

∞∑
k=0

d1(k)xn1+k−1

Γ(n1 + k)

∞∑
l=0

d0(l)𝛿−n1−k−n0−l

Γ(n0 + l)
yn1+k+n0+l−1e−y∕𝛿(x+1)dy

= C
∞∑

k=0

d1(k)xn1+k−1

Γ(n1 + k)

∞∑
l=0

d0(l)𝛿−n1−k−n0−l

Γ(n0 + l) ∫
∞

0
yn1+k+n0+l−1e−y∕𝛿(x+1)dy,

where the last equality follows from the monotone convergence theorem. Straightforward calculations
then yield that the conditional density can be expressed as fY∣T=t(x) = 0, for x ⩽ 0, and

fY∣T=t(x) = C
∞∑

k=0

d1(k)xn1+k−1
∞∑

l=0

d0(l) B(n1 + k, n0 + l)−1

(x + 1)n1+k+n0+l
, for x > 0. (A.3)

Again, using the monotone convergence theorem, we further find that the corresponding distribution
function is given by FY∣T=t(x) = 0 for x ⩽ 0, and

FY∣T=t(x) = ∫
x

0
C

∞∑
k=0

d1(k)yn1+k−1
∞∑

l=0

d0(l) B(n1 + k, n0 + l)−1

(y + 1)n1+k+n0+l
dy

= C
∞∑

k=0

d1(k)
∞∑

l=0

d0(l) B(n1 + k, n0 + l)−1 ∫
x

0

yn1+k−1

(y + 1)n1+k+n0+l
dy

= C
∞∑

k=0

d1(k)
∞∑

l=0

d0(l) B(n1 + k, n0 + l)−1d̃(n1 + k, n0 + l, x), for x > 0,

(A.4)

where

d̃(a + 1, b, x) = 1
a + b

(
− xa

(x + 1)a+b
+ a d̃(a, b, x)

)
, d̃(1, b, x) = 1

b

(
1 − (x + 1)−b

)
.

The conditional distribution of SF can then easily be derived from (A.3) and (A.4), as for all x ∈ R:

FSF ∣T=t(x) = P(SF ⩽ x ∣ T = t) = FY∣T=t

(
n1x∕(n0Δ)

)
and fSF ∣T=t(x) = n1∕(n0Δ)fY∣T=t

(
n1x∕(n0Δ)

)
.
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