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A B S T R A C T

To date, shift workers represent between 15% and 25% of the modern day workforce. Work time poses a great
challenge to workers as it requires that they balance productivity and sleep time between shifts. As a result,
these workers experience chronic sleep deprivation with increased fatigue and drowsiness due to this sleep
deprivation. The impact of this kind of work on the immune system is not yet known. We conducted a literature
review with the aim of evaluating articles on this specific type of work's effects on sleep and immunity.

1. Introduction

Shift work is work done by an individual whose normal hours of
work are outside the traditional 9–5 p.m. work day [1]. It can involve
evening or night shifts, early morning shifts, and rotating shifts. It is
common in many professions, especially those involving essential
services, and today shift workers represent between 15% and 25% of
the global workforce [1–3].

The search for quality sleep has always been a challenge for shift
workers, because they must reverse their biological rhythms and
conduct activities at nighttime, a time when there is a greater
propensity for drowsiness. Furthermore, daytime rest subjects these
workers to greater alertness and light [5,6]. Therefore, they are often
chronically sleep deprived [7,8]. It is known, for example, that sleep
deprivation is associated with accidents at work [9], metabolic diseases
[10], and cardiovascular diseases [11,12]. Recent research has also
observed an association between sleep loss and viral infections [13–
15].

It is not fully understood how sleep contributes to efficient
immunological memory, interferes with the immune system, or pre-
disposes the body to infections [16]. The quiescent period of sleep can
serve, for example, to renew functions related to wakefulness and
processes affecting the immunological response to infections [17,18].

The deterioration of sleep in modern society, as observed among
shift workers, in turn, is associated with an increasing susceptibility to
the development of infectious diseases such as flu [13,15], airway
infections [14] and failure to control immunization against certain

diseases [19]. So, sleep debt/ sleep deficit can have a major economic
impact on public health policies and probably emerge as an important
regulator of the immune system [16].

We conducted a review to evaluate the articles on sleep, immunity
and this particular type of work, the so-called shift work.

2. Methods

Research on original articles and review articles about the subject
was carried out through PubMed. The general terms used in the search
were “sleep,” “immunity or immune system,” and “shift work or shift
workers.” The filters were original articles or review articles in English
on the adult population. The research was conducted through July
2016.

3. Sleep and immunity

For over 2000 years the relationship between sleep and immunity
has been the subject of discussion. Hippocrates, for example, men-
tioned the presence of sleepiness during the course of an acute
infection [18,20].

Today we know that the interaction between sleep and immunity is
established by anatomical and physiological bases [20]. Neurons, glial
cells, and immune cells share common intercellular signals, such as
hormones, neurotransmitters, cytokines and chemokines [21,22]. We
know, for instance, that all lymphoid tissue receives innervation
[23,24] and pro-inflammatory cytokines, such as IL-1β, TNF-α, and
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their receptors are expressed in specific brain regions and act in the
regulation of many physiological and behavioral processes (17), such as
the sleep-wake status [25–27].

At an experimental level, research regarding TNF-α and IL-1
indicates that these cytokines are also sleep regulators and exert this
effect regardless of their pyrogenic effect [28]. For example, adminis-
tration of IL-1 and TNF-α in vitro produces slow oscillations that
resemble NREM sleep in humans [28–30]. The perfusion of IL-1
reduces excitatory synaptic potentials in rat hippocampus, and the
application of TNF in the sensory cortex induces the increase in slow-
wave sleep in these animals [31,32]. IL-1 and serotonergic pathways
also interact with each other. 5-HT alters the expression of IL-1 mRNA
in brain regions, while IL-1 increases the secretion of 5-HT in the
hypothalamus, and a micro-injection of IL-1 in the dorsal raphe nuclei
induces sleep NREM [33,34]. So, it seems obvious that sleep can also
influence the immune response.

The role of sleep in modulating the human immune function has
been previously tested by observing the prolonged effects of sleep
deprivation on various immune parameters or their behavior in
diseases that naturally fragment sleep, such as insomnia, disorders of
the circadian rhythm and shift work [35–48].

These studies have produced interesting results [36–41]. Some
studies have shown that acute deprivation (50–64 h) is associated with
a temporary increase in the activity of natural killer cells (NK), an
increasing count of T-CD4+ lymphocytes, CD8+, monocytes, granulo-
cytes and NK [36–38,41]. Other studies regarding partial sleep (early
night or late night) and chronic deprivation, which are more common
in clinical practice, have, however, shown different results with a
decrease in the activity of NK cells and the counts of CD 16 +, CD 56+,
CD 57+ and IL-2 levels [35,39,40,45]. We know that these lympho-
cytes, which participate in innate immunity, are important in the
defense against viruses, intracellular bacteria, as well as in response to
tumor cells [42–44].

In one study, Axelsson et al. [35], aiming to investigate partial sleep
deprivation for five days and the production of inflammatory cytokines
and the Th1/ Th2 balance among healthy subjects, noticed a transient
decrease of IL-2 and IL-2/ IL-4 ratio until the fifth day of sleep
deprivation.

Fondel et al. [45] conducted a study to evaluate the immune activity
in healthy subjects who slept fewer than seven hours (short sleepers),
compared to healthy subjects who slept seven to nine hours (normal
sleepers). They observed a 30% decrease in the activity of NK cells (p
0.01) and a 49% increase in the activity of T-lymphocytes stimulated by
PHA (phytohemagglutinin), independent of plasma cortisol levels.

Sakami et al. [46], in a study that evaluated the immune response in
insomniacs and the balance of effector response, observed a change in
the Th1/ Th2 immune response in favor of the Th2 response, with a
decrease in the secretion of IFN-γ and IFN-γ/IL-4 ratio in insomniacs.
They concluded that insomnia causes an alteration of the immune
function with a predominance of suppressive Th2 response.

Savarde et al. [48] compared a group of individuals with insomnia
to individuals considered to be good sleepers. They observed a
significant difference: a greater amount of TCD3+, TCD4+, and
TCD8+ lymphocytes and total lymphocytes in the group of good
sleepers compared with insomniacs.

Prather [14], in a recent study on 164 healthy subjects experimen-
tally exposed to rhinovirus, observed through pulse actigraphy that
those with fewer than six hours of sleep, before exposure, were four
times more likely to become sick ( < 5 h OR=4.50; 95%; 1.08–18.69
and 05–06 h OR=4.24, 95% 1.08–16.71) than those with more than
seven hours of sleep (OR=1). This remained significant even after the
adjustment for variables, such as smoking, sex, the title of neutralizing
antibodies, exercise and alcohol consumption.

The Nurses' Health Study-II [15] was a cohort study conducted
from 2001 to 2005 involving more than 56,000 healthy nurses.
Researchers found that reduced sleep ( < 5 h), as well as the poor

perception of sleep or excessive sleep ( > 9 h), presented a risk of 1.39
(95%; 1.06–1.82) and 1.38 (95%; 1.04–1.84) respectively, for the
development of pneumonia, even after the adjustment for variables,
such as age, body mass index, and smoking.

It was observed that apparent loss of sleep is associated with some
immune changes [35–41.45]. In acute deprivation there is a temporary
immune activation, although the clinical effects of these findings are
unknown. More research is needed to answer such questions [36–38].
In relation to partial and prolonged deprivation, the aforementioned
studies show an increased risk of infection in the airways, especially
from viruses [14,15]. The possible factors involved are impaired innate
immunity, expressed by the reduction of the activity of NK cells
(CD16+, CD56+, CD57+) and a decrease in Th1 effector cellular
response, which is important to the activation of TCD4+ lymphocytes
in favor of a more regulatory Th-2 response [35,39,40,45,46,48].

3.1. Circadian rhythm, immunity and immunological memory

Human circadian rhythm is controlled by the neurological master
clock, suprachiasmatic nucleus (SCN) and peripheral clocks present in
almost every cell, including the immune system cells [49–51]. SCN
thus allows all tissues and cells to anticipate and promptly respond to
environmental changes, such as light, temperature, and the risk of
exposure to pathogens in the environment [52]. It coordinates various
behavioral, physiological, and molecular functions.

Cells of the innate and adaptive immune system also show circadian
expression as a variation in the blood count or in the peripheral
lymphoid organs, as well as in lymphocytic proliferation and in blood
cytokine levels [36,53–56]. In humans, for example, it is already
known that there is a decrease in the T cell count preceding the
acrophase of morning cortisol in the blood, while an opposite effect has
been observed in the early evening period [53,55].

In association with the circadian system, sleep is known to regulate
immune functions, although it is difficult to distinguish the respective
influence of these two regulatory systems [20].

Consistent studies show that especially during slow-wave sleep,
there is an increase of IL-12 by the pre-myeloid dendritic cells, which
are the main precursors of mature antigen-presenting cells (APCs).
Additionally, a reduction of IL-10 and IL-4 levels by monocytes is seen
during slow-wave sleep, thereby facilitating a Th1/ Th2 balance in
favor of the Th1 response [57,58]. It is known that the production of
IL-12 by APCs is essential for activation of Helper T cells [59]. This
pro-inflammatory sleep pattern during the early portion of the night is
then balanced by a Th2 response during the final portion of the night
when REM sleep prevails [57]. The induction of Th1 cells, the increase
of C3a and the migration of immune cells from the circulatory bed to
the secondary lymphoid organs during sleep would increase the
chances of interaction between the APCs and the naïve T cells and B
lymphocytes (immunological synapse), and these could be mechanisms
through which sleep would collaborate on a more efficient immunolo-
gical memory [36,57,60,61]. This interaction between sleep and
adaptive memory has been evaluated in recent studies and has proven
the abovementioned hypotheses [19,62].

Prather et al. [19], in a prospective study of 125 adults aimed to
evaluate the effect of sleep on the magnitude of the immune response to
a viral antigen (Hepatitis B virus). They observed that fewer than 6 h of
sleep per night, measured through a sleep diary and actigraphy, was
associated with a reduction of vaccine protection from the B virus, even
after three doses, including a catch-up vaccination in the sixth month.

Lange et al. [62], by comparing groups of healthy subjects who slept
after immunization with groups that remained awake immediately after
immunization for the Hepatitis A virus, observed that sleep in the first
group significantly doubled the number of specific Th1 cells, as well as
antibodies type IgG1 to the virus from the 8th to the 52nd week of
follow-up. They concluded that slow-wave sleep was responsible for
this adjuvant effect.
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3.2. Shift work

According to the International Classification of Sleep Disorders
(ICSD-3), shift work disorder is characterized by insomnia or sleepi-
ness that occurs in association with shift work [2]. Its diagnostic
criteria are shown below in Table 1. It is estimated that about 2–5% of
the US working population has this disorder [3,4].

The observed changes in shift work, such as continuous sleep
deprivation, stress and a change of the natural circadian pattern can
also influence the immune response among individuals [63–65].
However, there is a scarcity of studies on the subject with even more
conflicting results [66,67] and perhaps their heterogeneity, using
different populations and samples and types of shift work evaluated,
makes such conclusions difficult (Table 2).

Nakano et al. [63], in one of the first studies on the subject, followed
up (fixed and rotational) pink and grey-collar shift workers and
daytime shift workers demonstrated that these shift workers showed
a reduction in the mitogen proliferation of T lymphocytes to phytohe-
magglutinin-P (PHA) and concanavalin A, especially those working
fixed night shifts.

Moher et al. [64] in a cohort study involving more than 10,000
employees in 45 Dutch companies, showed that shift workers, espe-
cially those working the night shift, had a higher risk of infections, such
as colds, flu and gastroenteritis, compared to those working daytime
shifts (p < 0.05), even after adjusting for variables such as smoking,
exercise, and alcohol consumption (cold: OR 1.14; CI 0.88–1.46/
influenza OR 1.41; CI 1.07–1.87/gastroenteritis: OR 1.14; 0.84–1.59).

Nagai et al. [65] demonstrated that shift work is also associated
with depression of the innate immune response, exhibiting a decrease
in NK cell activity associated with an increase in fatigue compared to
day workers (p < 0.001). However, in two other studies conducted at
the same time [66,67], different results were observed.

In a recent consensus, the American Academy of Sleep Medicine
(AASM) warned that sleep deprivation is associated with a negative
impact on the overall health of the population [68] and that shift
workers are certainly some of the most affected [68,69].

It is still unclear how sleep deprivation negatively affects the
immune function. However, sleep can bi-directionally influence the
two functions linked to the immune system: the hypothalamic-pitui-
tary-adrenal (HPA) axis [70–72] and the sympathetic nervous system
(SNS) [73] (see Fig. 1). One night of sleep deprivation, for example,
results in the activation of the HPA and elevation of plasma cortisol
[70–72]. For instance, we know that cortisol influences the immune
system by inducing a reduction of many genes that encode pro-
inflammatory cytokines [74,75] and that catecholamines can also
control the migration and activity of immune cells [76,77]. Moreover,
sleep loss, like the various types of sleep disorders, is associated with
the activation of inflammatory pathways, such as nuclear factor NF-κβ
in regions of the cortex and hippocampus [78,79] besides the secretion
of cytokines such as IL-1 and TNF-α [25,80,81]. This may lead to a

change of the acquired or innate immune response profile [24,35,39]
and perhaps justifies the emergence of certain inflammatory diseases
[82,83] and infections [13–15,19]. Recent research conducted by
Cuesta et al. [84] showed that under a night-oriented schedule,
cytokine release was partly altered in response to the change in the
sleep–wake cycle, similar to the one that probably occurs in shift
workers. However, more work must be carried out to confirm these
hypotheses. A model was created for a better general understanding
(Fig. 1).

4. Conclusion

Sleep is a vital behavioral state of living beings and probably a
modulator of the immune function. Both acute and chronic deprivation
are associated with immune changes. It is likely that shift workers show
an increased risk for viral infections because of a possible compromise
of the innate immune response and perhaps also of the immune
acquired response. There is a need for more quality studies also
evaluate the future risk for the onset of inflammatory or autoimmune
diseases among these workers. Future research including the different
subtypes of shift workers is necessary to answer many gaps in this
interesting theme.

Table 1
Diagnostic criteria of shift work disorder (A-D must be met)*.

A There is a report of insomnia and/or excessive sleepiness, accompanied by a
reduction of total sleep time, which is associated with a recurring work
schedule that overlaps the usual time for sleep

B The symptoms have been present and associated with the shift work
schedule for at least three months.

C Sleep log and actigraphy monitoring (whenever possible and preferably with
concurrent light exposure measurement) for at least 14 days (work and free
days) demonstrate a disturbed sleep and wake pattern.

D The sleep and/or wake disturbance are not better explained by another
current sleep disorder, medical or neurological disorder, mental disorder,
medication use, poor sleep hygiene, or substance use disorder.

* [2].

Table 2
Related articles.

Articles Type of study
and population

Age Sample (N)
and type of
work

Results

Nakano
et al.
[63]

Cross-sectional;
Pink and Grey-
collar workers

40/40 Group A-20
(fixed night
shift) / 19 d
shift

Reduction of the
proliferation of mitogen
T Cells in shift workers.
The effect was more
pronounced in fixed
night shift workers.

Group B-20
(rotational
shift)/20 d
shift

Mohren
et al.
[64]

3-year follow-up
of a Cohort Study

18−66 12140 d; three -
shifts; five -
shifts; irregular
shifts

Cold and flu were more
common in shift
workers than day
workers (p < 0.005);
cold: OR 1.14; CI 0.88–
1.46/influenza: OR
1.41; CI 1.07–1.87/
gastroenteritis: OR
1.14; 0.84–1.5

Nagai
et al.
[65]

Cross-sectional;
Health Care
Professionals

42 57 nurses (shift
work)

↓ ACTV. of NK cells; ↓
ACTV.CD 16+ and
CD56+ and ↑ CD 3+, CD
4+ in night workers
compared at two times
(day-shift/night-shift),
*p < 0.05. Fatigue was
associated with reduced
ACTV. of NK cells, p <
0.05.

Van Mark
et al.
[66]

Cross-sectional 36/40 225 (shift work) There was no statistical
difference between the
lymphocyte count, IL−6
and TNF-α levels
between the groups.

137 (day
work)

Copertaro
et al.
[67]

12-month follow-
up of a Cohort
Study; Health
Care
Professionals

35/40 96 (shift work) There was no statistical
difference between the
levels of IL−1β, IL−6,
IFN-γ, TNF and
cytotoxicity of NK cells
between the groups, at
baseline as well as in 12
months.

28 (day work)
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