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Abstract

Rationale: Methylation integrates factors present at birth and
modifiable across the lifespan that can influence pulmonary
function. Studies are limited in scope and replication.

Objectives: To conduct large-scale epigenome-wide meta-
analyses of blood DNA methylation and pulmonary function.

Methods: Twelve cohorts analyzed associations of methylation at
cytosine-phosphate-guanine probes (CpGs), using Illumina 450K
or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We
performed multiancestry epigenome-wide meta-analyses (total of
17,503 individuals; 14,761 European, 2,549 African, and 193
Hispanic/Latino ancestries) and interpreted results using
integrative epigenomics.

Measurements and Main Results: We identified 1,267 CpGs
(1,042 genes) differentially methylated (false discovery rate,
,0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240
novel and 73 also related to chronic obstructive pulmonary
disease (1,787 cases). We found 294 CpGs unique to European or

African ancestry and 395 CpGs unique to never or ever smokers.
The majority of significant CpGs correlated with nearby gene
expression in blood. Findings were enriched in key regulatory
elements for gene function, including accessible chromatin
elements, in both blood and lung. Sixty-nine implicated genes are
targets of investigational or approved drugs. One example novel
gene highlighted by integrative epigenomic and druggable
target analysis is TNFRSF4. Mendelian randomization and
colocalization analyses suggest that epigenome-wide association
study signals capture causal regulatory genomic loci.

Conclusions: We identified numerous novel loci differentially
methylated in relation to pulmonary function; few were detected
in large genome-wide association studies. Integrative analyses
highlight functional relevance and potential therapeutic targets.
This comprehensive discovery of potentially modifiable, novel
lung function loci expands knowledge gained from genetic
studies, providing insights into lung pathogenesis.
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Pulmonary function traits, including FEV1,
FVC, and their ratio (FEV1/FVC), assess the
physiologic state of the lungs and provide the
basis for diagnosing chronic obstructive
pulmonary disease (COPD). They predict

morbidity and mortality in the general
population after accounting for other risk
factors, even within the normal range (1, 2).
The mechanisms for these associations
remain largely unknown.

Adult pulmonary function reflects
environment and genetics. Various
exposures, most notably cigarette
smoking, reduce lung function. Large-scale
genome-wide association studies (GWASs)
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have implicated more than 300 loci (3, 4);
much of the variability remains unexplained.
Epigenetic DNAmodifications reflect
genetics and exposures over the life course
and can identify genes influencing
pulmonary function. Methylation is the most
studied epigenetic modification due to high-
throughput, reproducible platforms with
reasonable genome-wide coverage. Several
epigenome-wide association studies
(EWASs) using Illumina 27K (5), 450K
(6–8), and EPIC/850K (9) platforms have
identified pulmonary function–related
cytosine-phosphate-guanine probes (CpGs).
However, replication has been limited.
Most were studies in European ancestry
populations; no large-scale multiancestry
study has been published.

We performed a meta-analysis of
coordinated EWAS results from 16 separate
analyses from 12 cohorts (17,503 individuals,
including 14,761 European, 2,549 African,
and 193 Hispanic/Latino ancestries) to
identify CpGs differentially methylated in
relation to pulmonary function. To provide
insight into functional impacts, we evaluated
associations between identified CpGs and
nearby gene expression in paired blood
DNAmethylation and total blood RNA
transcriptome data. Using integrative
epigenomic methods, we assessed
enrichment of regulatory elements in our
blood findings across tissue types, including
lung. Mendelian randomization (MR) and
colocalization analyses were used to provide

further functional interpretation. For clinical
implications, we explored whether
implicated genes were targets of drugs
approved or under investigation. This large-
scale multiancestry study of blood DNA
methylation and pulmonary function
identified numerous loci not found in
GWASs, increasing our understanding of
mechanisms regulating pulmonary function.
Some preliminary results of this study were
previously reported in the form of an
abstract (10).

Methods

Further details regarding the methods are
provided in the online supplement. The
population included 17,503 adults (>40 yr
old) fromALHS (Agricultural Lung Health
Study), ARIC (Atherosclerosis Risk in
Communities Study), CHS (Cardiovascular
Health Study), FHS (FraminghamHeart
Study), GS (Generation Scotland), LifeLines,
LBC (Lothian Birth Cohort), MESA
(Multi-Ethnic Study of Atherosclerosis), RS
(Rotterdam Study), and TwinsUKwithin
the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE)
Consortium framework. Trained staff in
each studymeasured prebronchodilator
pulmonary function (FEV1 and FVC inml)
(11). Methylation was assessed in blood
drawn at the same visit at spirometry,
except for CHS, where the difference was
1 year. Ten studies used the Illumina
HumanMethylation450 (�480,000 CpGs),
and six used the newerMethylationEPIC
(�850,000 CpGs). Each cohort retained
autosomal CpGs after preprocessing and
filtering.

Association Analyses
Each study assessed effects of methylation on
spirometric traits after adjusting for age, age
squared, sex, height, height squared, weight
(for FVC only), smoking (never, former, or
current), pack-years, and estimated cell type
proportions (12) using robust linear
regression to help account for potential
heteroskedasticity and influential outliers. In
addition, studies adjusted for analytic batch,
ancestry principal components (calculated
from genome-wide genotypes), study site,
and selection factor or accounted for family
structure when appropriate. Cohorts with
more than one ancestry group performed
analyses separately by ancestry. We

combined study-specific results using
inverse variance–weighted fixed-effects
models (13, 14). We conducted two separate
EWASmeta-analyses (450K and EPIC-
unique), setting a genome-wide significance
threshold of false discovery rate (FDR)
,0.025 (0.05/2 meta-analyses) (15). Unless
otherwise noted, genome-wide significant
CpGs refer to those with FDR,0.025 from
either meta-analysis. We examined
differentially methylated regions using
DMRcate (16).

CpG Annotation and Filtering
We used Illumina (17, 18), Zhou and
colleagues (19), and Homer version 4.9.1
(20) (genome build GRCh37/hg19) for CpG
annotation. From CpGsmeeting genome-
wide significance in meta-analyses, we
removed those previously reported as
potentially problematic (19). Using leave-
one-out meta-analyses, we identified and
removed CpGs with associations driven by a
single study. Specifically, we did not consider
a CpG significant genome-wide when the
association did not meet at least nominal
significance (P , 0.05) in meta-analysis,
with consistent direction, after leaving out
one study. Remaining CpGs were subjected
to downstream analyses.

Functional Downstream Analyses
We tested for enrichment of genomic
features (CpG islands, shores, shelves,
promoters, and transcription factor [TF]
binding sites). Using the eFORGE integrative
epigenomics approach (21–23), we explored
whether our lung function–associated CpGs
were enriched in regulatory elements from
the Roadmap Epigenomics Consortium (24)
across more than 20 tissue types. To gain
further biological insights, we conducted
pathway analyses (25, 26).

Cis-expression quantitative trait
methylation analysis
We assessed whether our significant CpGs
associate with transcription of nearby genes
using paired whole-blood 450Kmethylation
and transcriptome data from FHS (27) and
the BIOS (Biobank-based Integrative Omics
Study) Consortium (28).

Methylation quantitative trait loci, MR,
and colocalization
To examine whether our significant CpGs
were methylation quantitative trait loci
(mQTLs), we used the Genetics of DNA

At a Glance Commentary

Scientific Knowledge on the
Subject: DNA methylation can
influence pulmonary function. Data
on blood DNA methylation and
pulmonary function are relatively
few with minimal replication.

What This Study Adds to the
Field: This large-scale multiancestry
study of epigenome-wide DNA
methylation and pulmonary function
identified many novel loci, mostly
not discovered by genetic studies.
Various integrative analyses enhance
the functional and clinical relevance
of our findings, including potential
therapeutic targets.
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Methylation Consortium (GoDMC)
database (29). To investigate causality, we
performedMR (30) and colocalization (31)
analyses.

Druggable targets
To explore clinical relevance, we searched for
approved or experimental drugs targeting
genes implicated in our meta-analyses using
the ChEMBL database (32).

COPD
We examined whether CpGs significantly
related to pulmonary function were
associated in our data with COPD, defined
using prebronchodilator spirometry: FEV1

,80% predicted (33) and FEV1/FVC,0.7.
Noncases had FEV1>80% predicted and
FEV1/FVC>0.7 (34, 35).

Replication and Validation
To replicate our findings, we looked up
our significant CpGs in recent EWASs of
lung function (6, 8). To validate previous
findings (5–9), we examined CpGs
reported as related to pulmonary function,
after multiple-testing correction and
smoking adjustment, in our meta-
analyses. We looked up CpGs related to
COPD in lung tissue (36) in our lung
function meta-analyses.

Additional Analyses
To assess whether methylation findings were
driven by genetic variants for lung function,
we examined our significant findings after
additional adjustment for polygenic risk scores
(4, 37) in ALHS. To address possible residual

confounding by smoking, we evaluated
whether our significant CpGs overlapped with
CpGs related to current smoking (38). We
also adjusted for cg05575921 (AHRR), a
biomarker of lifetime smoking (39), and two
additional biomarkers: cg13039251 (PDZD2)
and cg03636183 (F2RL3) (40, 41). We
conducted meta-analyses separately for never
smokers (n=8,830) and ever smokers
(n=8,673) to evaluate whether pulmonary
function–related methylation differs by
smoking. In separate meta-analyses by
European (n=14,761) and African ancestry
(n=2,549), we considered consistency across
ancestries and explored ancestry-specific
signals.

Results

We performed a meta-analysis of data from
17,503 participants (16 separate analyses from
12 cohorts; 12 European ancestry, 3 African
ancestry, and 1 Hispanic/Latino ancestry)
(Table 1; see study-level characteristics in
Tables E1–E3 in the online supplement). We
included up to 865,971 CpGs analyzed in at
least three studies: 473,215 (93% also on
EPIC) in the 450K EWAS meta-analysis and
392,756 in the EPIC-unique meta-analysis
(workflow in Figure 1).

Pulmonary Function–related CpGs
We identified 1,267 CpGs (1,042 genes)
significantly differentially methylated (FDR,
,0.025) in relation to pulmonary function
(Table E4), including 164 from EPIC-unique
meta-analyses and 85% associated with only

one trait (Table 2, Figure E1). Of the 1,042
implicated genes, 24% contained multiple
genome-wide significant CpGs. Tables 3–5
display the top 30 CpGs for each trait. Of
1,451 genome-wide significant associations
(FDR,,0.025) with any of the three traits
(Tables E5–E7), after removing 70 driven
by a single study, 165 met Bonferroni
correction (Table E8). We provide graphic
representation of EWASmeta-analysis
results: Miami (Figures 2 and E2) and QQ
plots (l values 1–1.3, supporting minimal
inflation; Figure E3). For significant CpGs,
we plotted leave-one-out meta-analysis
results (Figure E4), study-specific results
(forest plots in Figure E5), and distributions
(Figure E6). Using DMRcate (16), we
identified 2,806 differentially methylated
regions associated (FDR,,0.01) with
FEV1, FVC, or FEV1/FVC (Table E9);
�25% contained a genome-wide
significant CpGs.

Functional Impacts
Notably, in our significant findings, TF
binding sites and promoter regions (for
FEV1, the trait with the largest number of
findings) were enriched (Table E10),
supporting potential impacts on
transcription. Integrative epigenomic analyses
(eFORGE) for FEV1 highlighted enrichment
of DNase I hotspots in blood and lung
(Figure 3A). Enrichment in blood and fetal
lung were distinct signals (Figures 3B and
3C). FEV1-associated genetic variants also
show enrichment for lung DNase I hotspots
(Figure 3D) for a different set of loci when
compared with FEV1-associated CpGs (42).
Because DNase I hotspots represent broad
regions of accessible chromatin containing
various regulatory elements, these analyses
highlight functional implications.

Pathway Enrichment
Pathways relevant to pulmonary function
were enriched (FDR,,0.05) (Figure 4).
Several pathways overlapped across the traits,
including Wnt signaling, a key developmental
pathway involved in lung pathogenesis, and
inflammatory pathways such as
cytokine–cytokine receptor interaction.

Correlation with Expression
Linking our significant CpGs on the 450K to
paired blood gene expression and 450K
methylation data (27, 28), 97% (of 1,103
CpGs available) had at least one transcript
within6250 kb. At FDR,0.05, 56% were
related to gene expression (Table E11), and

Table 1. Characteristics of Participating Studies (N=17,503 Participants)

Study Country
Methylation

array

Number of Participants by Ancestry

European African Hispanic/Latino

ALHS United States EPIC 2,268
ARIC United States 450K 787 2,261
CHS United States 450K 218 181
FHS United States 450K 3,205
GS Set 1 United Kingdom EPIC 1,700
GS Set 2 United Kingdom EPIC 2,954
LBC1921 United Kingdom 450K 435
LBC1936 United Kingdom 450K 905
LifeLines The Netherlands 450K 1,155
MESA United States EPIC 246 107 193
RS The Netherlands 450K 716
TwinsUK United Kingdom 450K 172
Total 14,761 2,549 193

Definition of abbreviations: ALHS=Agricultural Lung Health Study; ARIC=Atherosclerosis Risk
in Communities Study; CHS=Cardiovascular Health Study; FHS=Framingham Heart Study;
GS=Generation Scotland; LBC=Lothian Birth Cohort; MESA=Multi-Ethnic Study of
Atherosclerosis; RS=Rotterdam Study.
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at P , 0.05, 75% were related to gene
expression (Penrichment, 2.23 10216),
supporting functional impacts on gene
regulation.

mQTL, colocalization, and
MR analyses
Using GoDMC (29), 798 of our 1,103
significant CpGs had at least one mQTL. The

mQTLs for our EWAS findings were
associated with lung function more than
expected by chance: mQTLs for the FEV1-
related CpGs associated more strongly with

Study-level EWAS

Agricultural
Lung
Health
Study

Lothian Birth
Cohort
1921 & 1936

3 ancestries:
EA, AA, H/L

META-ANALYSES

450K

N participants
N CpGs analyzed
N CpGs with FDR<0.025

1,267 CpGs (1,042 genes) related to pulmonary function (FDR<0.025)

FOLLOW-UP ANALYSES

Cis-eQTM
analyses

599 CpGs related
to gene expression Enriched in blood

and fetal lung

REPLICATION & VALIDATION

One EA study (N~2,000)

1,267 CpGs 231 CpG-trait pairs 41 CpG-trait pairs

71% validated49% validated12% replicated
(FDR<0.05)

Five cross-sectional studies Two longitudinal studies

Tissue A Tissue B
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Figure 1. Overview of our epigenome-wide association study (EWAS) meta-analyses on pulmonary function. (A) Each study examined
associations between DNA methylation and pulmonary function. Participating studies were ALHS (Agricultural Lung Health Study), ARIC
(Atherosclerosis Risk in Communities), CHS (Cardiovascular Health Study), FHS (Framingham Heart Study), GS (Generation Scotland), LifeLines,
LBC (Lothian Birth Cohort), MESA (Multi-Ethnic Study of Atherosclerosis), RS (Rotterdam Study), and TwinsUK. Our EWAS meta-analyses
included datasets from three ancestries: European ancestry (EA), African ancestry (AA), and Hispanic/Latino ancestry (H/L). (B) Two separate
meta-analyses were conducted: 450K EWAS meta-analysis (17,503 individuals) and EPIC-unique EWAS meta-analysis (7,468 individuals).
(C) Functional follow-up analyses included cis-expression quantitative trait methylation (eQTM) analyses using paired blood methylation and
transcriptome data from FHS and the BIOS (Biobank-based Integrative Omics Study) Consortium, eFORGE DNase I hypersensitive site (DHS)
analysis using Roadmap Epigenomics data, pathway analyses using gene sets from Kyoto Encyclopedia of Genes and Genomes, druggable
targets analysis, and Mendelian randomization (MR) and colocalization analyses. (D) We replicated 12% of our significant findings in an EWAS
of pulmonary function (Nffi 2,000 EA participants) (false discovery rate [FDR], ,0.05); an additional 49% were significant at P,0.05. Previously
reported cytosine-phosphate-guanine probes (CpGs) were validated: 113 (49%) of 231 CpG–trait pairs from five cross-sectional studies and
29 (71%) of 41 CpG–trait pairs from the two longitudinal studies.
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FEV1 than other mQTLs (Penrichment =
7.13 1027; controlling for linkage
disequilibrium, minor allele frequency, and
removingMHC region) (Table E12).
Observed enrichment could reflect EWAS
findings capturing relevant regulatory
regions for the traits or potentially causal
effects of the CpGs. Using MR to investigate
causality, we found 78 significant
associations (FDR,,0.05) (Figure E7,
Table E13). Because lung function is
polygenic, these associations might reflect
distinct causal variants for the outcomes in
linkage disequilibrium with the mQTLs.

Table 2. Number of Cytosine-Phosphate-Guanine Probes Differentially Methylated
(False Discovery Rate ,0.025) in Relation to FEV1, FVC, and FEV1/FVC in
Multiancestry Meta-Analyses

Trait

450K and EPIC-Unique
Meta-Analyses
(N = 17,503)

450K
Meta-Analyses
(N = 17,503)

EPIC-Unique
Meta-Analyses
(n = 7,468)

FEV1 only 935 783 152
FVC only 47 46 1
FEV1/FVC only 101 98 3
Both FEV1 and FVC 168 160 8
Both FEV1 and FEV1/FVC 15 15 0
Both FVC and FEV1/FVC 1 1 0
Total 1,267 1,103 164

Table 3. Top 30 Cytosine-Phosphate-Guanine Probes Differentially Methylated (False Discovery Rate ,0.025) in Relation to
FEV1 in Multiancestry Meta-Analysis of Content on the 450K Array (16 Separate Analyses from 12 Cohorts; 17,503 Individuals)
or Unique to EPIC (6 Studies; 7,468 Individuals), Sorted by Chromosomal Position

Chromosomal
Position* CpG Probe

Regression
Coefficient SE P Value

Mean
Methylation† Gene Name‡ Meta-Analysis

1:2161049 cg05603985 7.828 1.168 2.1310211 0.252 SKI 450K
1:55353706 cg17901584 4.256 0.614 4.1310212 0.469 DHCR24 450K
1:109757585 cg03725309 7.625 1.062 7.0310213 0.138 SARS 450K
1:120255992 cg14476101 3.533 0.538 5.2310211 0.608 PHGDH 450K
1:145441552 cg19693031 4.441 0.661 1.8310211 0.729 TXNIP 450K
2:65225988 cg23831876 7.772 1.169 3.0310211 0.833 SLC1A4 450K
2:233284661 cg21566642 3.786 0.552 6.8310212 0.500 ECEL1P1§ 450K
3:101901234 cg12992827 5.112 0.793 1.2310210 0.702 ZPLD1§ 450K
3:185538892 cg24960291 4.853 0.727 2.4310211 0.597 IGF2BP2 450K
4:57947735 cg15696506 4.127 0.610 1.4310211 0.505 IGFBP7 450K
4:139162808 cg06690548 6.039 0.694 3.3310218 0.849 SLC7A11 450K
5:373378 cg05575921 5.051 0.581 3.6310218 0.815 AHRR 450K
5:159428643 cg18394552 24.348 0.657 3.7310211 0.597 TTC1|| 450K
6:166970252 cg17501210 4.626 0.687 1.7310211 0.704 RPS6KA2 450K
8:121597619 cg01198738 6.235 0.908 6.5310212 0.478 SNTB1 EPIC-unique
11:68607622 cg00574958 16.308 2.023 7.6310216 0.069 CPT1A 450K
11:68607737 cg17058475 9.571 1.307 2.5310213 0.081 CPT1A 450K
11:102189303 cg19120513 9.894 1.390 1.1310212 0.516 BIRC3 EPIC-unique
12:11898284 cg07986378 4.130 0.614 1.8310211 0.605 ETV6 450K
12:104853274 cg06647068 4.751 0.677 2.3310212 0.285 CHST11 450K
13:79968324 cg16969872 5.421 0.752 5.8310213 0.703 RBM26 450K
14:74227441 cg10919522 5.497 0.822 2.3310211 0.216 C14orf43 450K
16:75079000 cg08761535 8.906 1.358 5.4310211 0.793 ZNRF1 450K
17:76354621 cg18181703 6.180 0.704 1.7310218 0.454 SOCS3 450K
17:76354934 cg11047325 4.617 0.706 6.3310211 0.570 SOCS3 EPIC-unique
19:45252955 cg26470501 6.869 0.861 1.4310215 0.504 BCL3 450K
19:47287778 cg22304262 5.543 0.829 2.2310211 0.735 SLC1A5 450K
19:47287964 cg02711608 9.412 1251 5.2310214 0.173 SLC1A5 450K
22:31686097 cg08548559 4.534 0.681 2.9310211 0.210 PIK3IP1 450K
22:50327986 cg09349128 6.998 0.931 5.7310214 0.280 CITF22-49E9.3§ 450K

Definition of abbreviation: CpG=cytosine-phosphate-guanine probe.
Top 30 CpGs based on meta-analysis P values. Individual study results were obtained from robust linear regression with methylation as the
predictor and FEV1 as the outcome. Covariates included age, sex, height, age squared, height squared, smoking status (never, former, or
current), pack-years, and estimated cell type proportions. Study-specific covariates included study center, selection factor, ancestry principal
components, batch variables, and family structure when appropriate. Regression coefficients represent milliliter differences in FEV1 per 1%
difference in methylation. Table E5 contains complete results (false discovery rate, ,0.025).
*Genome build GRCh37/hg19.
†Weighted average methylation across participating studies at the specified CpG.
‡Gene names from the Illumina annotation (17, 18), Zhou and colleagues (19), or Homer version 4.9.1 (20).
§Gene names from Zhou and colleagues (19).
||Gene names (within 62 Mb) from Homer version 4.9.1 (20).
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When we tested this using genetic
colocalization at the mQTLs exhibiting a
strong methylation–outcome association,
46 of 78MR associations showed evidence
for colocalization (posterior probability.0.8
for the hypothesis of one shared genetic
variant for methylation and trait) (Figure E8,
Table E13).

Druggable targets
Among the 1,042 implicated genes, 261 had
bioactive molecules with druglike properties
in ChEMBL, including 69 with at least one
approved or candidate drug for respiratory
or other conditions. Sixty-one genes had not
been identified by GWAS of pulmonary
function (Table E14).

COPD associations
Of the 1,267 CpGs differentiallymethylated in
relation to pulmonary function, 73 associated
with COPD in our data (1,787 cases and
11,824 noncases) at FDR,0.05, and 323met
nominal significance (Penrichment, 2.23 10216)
(Table E15). Directionsmatched expectation:
CpGs positively associated with pulmonary
functionwere negatively associated with COPD
and vice versa.

Replication
In a published EWAS of lung function in
�2,000 European ancestry participants (8),
12% of our significant CpGs were associated
with any of the three traits (FDR,,0.05),
and an additional 49% were nominally

significant (Penrichment for both, 2.23 10216)
(Table E16). In a small Korean study (6), 14%
were related to any of the three traits (P, 0.05;
Penrichment, 2.23 10216) (Table E17).

Validating Published CpGs
Five cross-sectional studies (5–9) reported
134 CpGs associated with at least one
spirometric trait at genome-wide
significance. Of 231 CpG–trait associations
available, 36% met FDR,0.05 and had
directions of association consistent with
previous reports (Table E18). At nominal
P, 0.05, an additional 59 CpGs were
associated with any traits. Overall, we
validated 70% of previously reported CpGs
in our results (Penrichment, 2.23 10216).

Table 4. Top 30 Cytosine-Phosphate-Guanine Probes Differentially Methylated (False Discovery Rate ,0.025) in Relation to
FVC in Multiancestry Meta-Analysis of Content on the 450K Array (16 Separate Analyses from 12 Cohorts; 17,503 Individuals)
or Unique to EPIC (6 Studies; 7,468 Individuals), Sorted by Chromosomal Position

Chromosomal
Position* CpG Probe

Regression
Coefficient SE P Value

Mean
Methylation† Gene Name‡ Meta-Analysis

1:120255992 cg14476101 4.021 0.625 1.33 10210 0.608 PHGDH 450K
1:145441552 cg19693031 5.244 0.784 2.33 10211 0.729 TXNIP 450K
4:139162808 cg06690548 6.804 0.838 4.63 10216 0.849 SLC7A11 450K
6:36326677 cg03149958 5.440 0.953 1.13 1028 0.783 ETV7§ 450K
6:166970252 cg17501210 5.355 0.805 2.93 10211 0.704 RPS6KA2 450K
7:71800412 cg00277397 5.943 1.056 1.83 1028 0.739 CALN1 450K
8:103937374 cg19589396 5.074 0.854 2.83 1029 0.688 KB-1507C5.2;RPL5P24§ 450K
8:121597619 cg01198738 6.141 1.055 5.93 1029 0.478 SNTB1 EPIC-unique
8:134066590 cg17088014 5.510 0.978 1.83 1028 0.348 SLA;TG 450K
9:111885602 cg13661827 4.390 0.781 1.93 1028 0.429 TMEM245|| 450K
11:68607622 cg00574958 19.982 2.483 8.53 10216 0.069 CPT1A 450K
11:68607737 cg17058475 10.018 1.573 1.93 10210 0.081 CPT1A 450K
11:102189303 cg19120513 10.088 1.587 2.13 10210 0.516 BIRC3 EPIC-unique
12:104853274 cg06647068 4.343 0.773 2.03 1028 0.285 CHST11 450K
13:79968324 cg16969872 5.571 0.875 1.93 10210 0.703 RBM26 450K
15:40620444 cg04847110 8.201 1.440 1.23 1028 0.789 INAFM2|| 450K
15:59587546 cg24263283 6.125 1.053 6.03 1029 0.815 MYO1E 450K
15:64290807 cg07037944 8.433 1.502 2.03 1028 0.199 DAPK2 450K
15:91455407 cg11183227 25.691 0.996 1.13 1028 0.808 MAN2A2 450K
16:3030649 cg02386244 235.453 6.066 5.13 1029 0.019 PKMYT1 450K
16:30410051 cg00711896 27.818 1.338 5.23 1029 0.89 ZNF48 450K
16:75079000 cg08761535 9.763 1.613 1.43 1029 0.793 ZNRF1 450K
17:27333185 cg04614997 217.937 3.132 1.03 1028 0.03 SEZ6 450K
17:76354621 cg18181703 6.510 0.821 2.13 10215 0.454 SOCS3 450K
17:76354934 cg11047325 4.605 0.817 1.73 1028 0.57 SOCS3 EPIC-unique
18:47901430 cg16196758 210.705 1.831 5.03 1029 0.016 SKA1 450K
19:1423902 cg00994936 27.423 1.249 2.83 1029 0.831 DAZAP1 450K
19:45252955 cg26470501 6.801 0.998 9.33 10212 0.504 BCL3 450K
19:47287964 cg02711608 9.360 1.455 1.23 10210 0.173 SLC1A5 450K
22:50327986 cg09349128 6.838 1.072 1.83 10210 0.280 CITF22-49E9.3§ 450K

For definition of abbreviations, see Table 3.
Top 30 CpGs based on meta-analysis P values. Individual study results were obtained from robust linear regression with methylation as the
predictor and FVC as the outcome. Covariates included age, sex, height, age squared, height squared, weight, smoking status (never, former,
or current), pack-years, and estimated cell type proportions. Study-specific covariates included study center, selection factor, ancestry principal
components, batch variables, and family structure when appropriate. Regression coefficients represent milliliter differences in FVC per 1%
difference in methylation. Table E6 contains complete results (false discovery rate, ,0.025).
*Genome build GRCh37/hg19.
†Weighted average methylation across participating studies.
‡Gene names from the Illumina annotation (17, 18), Zhou and colleagues (19), or Homer version 4.9.1 (20).
§Gene names from Zhou and colleagues (19).
||Gene names (within 62 Mb) from Homer version 4.9.1 (20).
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For the remaining CpGs, there was another
CpG annotated to the same gene that
showed associations in our data (P,0.05)
(Table E19). In addition, of 535 CpGs
previously related to COPD in lung (36),
28% were associated with pulmonary
function at nominal significance
(Penrichment, 2.23 10216) (Table E20).
Given the sparse EWAS literature on
longitudinal decline in pulmonary function
(7, 8), we considered findings from one
study that did not adjust for smoking (8).
Of 31 CpGs (7, 8) available, 24 were
nominally associated with lung function in our
cross-sectional data (Penrichment, 2.23 10216)

(Table E21), including 10 showing genome-
wide significance.

Adjustment for Polygenic Risk Scores
To evaluate whether our methylation
findings reflect genetic susceptibility, in
ALHS, we also adjusted for a polygenic
risk score (4, 37) specific for each trait.
Each risk score was significantly related
to its trait (Table E22). Of our genome-
wide significant signals available in
ALHS, 54% had P, 0.05, and �95%
remained nominally significant after
adjustment for the risk score
(Table E23). Regression coefficients were

virtually unchanged by the adjustment
(Pearson correlation, 0.998), suggesting
that the EWAS meta-analysis results
provide information complementary to
genetics of pulmonary function.

Examination of Potential Residual
Confounding by Smoking
Overlap previously reported between
CpGs related to pulmonary function and
those related to cigarette smoking (8)
could reflect residual confounding
because smoking-related CpGs are strong
biomarkers that better capture lifetime
smoking history than questionnaire data

Table 5. Top 30 Cytosine-Phosphate-Guanine Probes Differentially Methylated (False Discovery Rate ,0.025) in Relation to
FEV1/FVC in Multiancestry Meta-Analysis of Content on the 450K Array (16 Separate Analyses from 12 Cohorts; 17,503
Individuals) or Unique to EPIC (6 Studies; 7,468 Individuals), Sorted by Chromosomal Position

Chromosomal
Position* CpG Probe

Regression
Coefficient SE P Value

Mean
Methylation† Gene Name‡ Meta-Analysis

1:92947588 cg09935388 0.00045 0.00008 9.931029 0.726 GFI1 450K
2:8343710 cg23079012 0.00116 0.00019 1.731029 0.94 LINC00298;LINC00299§ 450K
2:70008161 cg05155595 0.00075 0.00013 1.631028 0.641 ANXA4 450K
2:233284661 cg21566642 0.00058 0.00009 1.2310211 0.5 ECEL1P1§ 450K
3:98251294 cg19859270 0.00171 0.00027 3.5310210 0.887 GPR15 450K
4:8174148 cg09390241 20.00059 0.00010 4.031029 0.667 ABLIM2|| 450K
4:109038130 cg12623364 0.00086 0.00015 1.331028 0.188 LEF1 450K
5:373378 cg05575921 0.00112 0.00009 9.1310235 0.815 AHRR 450K
5:393347 cg17287155 0.00120 0.00021 9.731029 0.885 AHRR 450K
5:393366 cg04551776 0.00096 0.00017 4.031028 0.771 AHRR 450K
5:150161299 cg14580211 0.00071 0.00012 4.031029 0.682 C5orf62 450K
6:30720203 cg24859433 0.00139 0.00024 6.631029 0.834 IER3|| 450K
6:167536184 cg05094429 20.00063 0.00012 1.031027 0.673 CCR6 450K
9:108005349 cg01692968 0.00052 0.00009 9.731029 0.323 SLC44A1|| 450K
9:134280803 cg14264316 0.00050 0.00009 1.731028 0.601 PRRC2B§ 450K
11:44626750 cg01199327 20.00064 0.00012 7.531028 0.842 CD82 450K
11:86510915 cg11660018 0.00070 0.00012 3.031029 0.518 PRSS23 450K
12:54677008 cg02583484 0.00072 0.00013 6.131028 0.295 HNRNPA1;HNRPA1L-2 450K
14:92979577 cg26829189 0.00102 0.00017 1.331029 0.542 RIN3 EPIC-unique
14:92981121 cg03345232 0.00059 0.00011 2.731028 0.578 RIN3 450K
14:92981227 cg12072028 0.00033 0.00006 1.131027 0.699 RIN3 450K
14:94547496 cg20554312 20.00568 0.00084 1.4310211 0.021 DDX24;IFI27L1 450K
15:45028270 cg10439456 0.00043 0.00008 5.531028 0.351 TRIM69 450K
16:8985593 cg08065963 20.00091 0.00016 2.031028 0.694 CARHSP1|| 450K
16:8985638 cg05946118 20.00095 0.00017 2.531028 0.708 CARHSP1|| 450K
17:80872461 cg10310700 20.00074 0.00014 1.031027 0.817 TBCD 450K
19:17000585 cg03636183 0.00076 0.00010 1.1310213 0.655 F2RL3 450K
20:5931325 cg20225569 0.00315 0.00057 4.231028 0.018 TRMT6;MCM8 EPIC-unique
21:43656587 cg06500161 0.00088 0.00016 2.331028 0.593 ABCG1 450K
22:30639979 cg23635663 20.00163 0.00022 3.9310213 0.908 LIF 450K

For definition of abbreviations, see Table 3.
Top 30 CpGs based on meta-analysis P values. Individual study results were obtained from robust linear regression with methylation as the
predictor and FEV1/FVC as the outcome. Covariates included age, sex, height, age squared, height squared, smoking status (never, former, or
current), pack-years, and estimated cell type proportions. Study-specific covariates included study center, selection factor, ancestry principal
components, batch variables, and family structure when appropriate. Methylation values were between 0 (unmethylated) and 1 (methylated).
Regression coefficients represent differences in FEV1/FVC ratio per 1% difference in methylation. Table E7 contains complete results (false
discovery rate, ,0.025).
*Genome build GRCh37/hg19.
†Weighted average methylation across participating studies.
‡Gene names from the Illumina annotation (17, 18), Zhou and colleagues (19), or Homer version 4.9.1 (20).
§Gene names from Zhou and colleagues (19).
||Gene names (within 62 Mb) from Homer version 4.9.1 (20).
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Figure 2. Visualization of 450K epigenome-wide association study meta-analysis results (N=17,503 participants). (A) Miami plot for FEV1,
with each dot representing the 2log10(P value) of a single cytosine-phosphate-guanine probe (CpG). Each plot has two panels: upper (P.Pos)
for association results with positive regression coefficients and lower (P.Neg) for association results with negative regression coefficients, with
2log10(P value) on the y-axis and 22 chromosomes on the x-axis. Horizontal lines depict P value cutoffs for statistical significance after multiple-
testing correction: Bonferroni and Benjamini-Hochberg false discovery rate (FDR). CpGs having uncorrected P. 0.05 were not displayed.
(B) Same for FVC. (C) Same for FEV1/FVC. JAK-STAT=Janus kinase/signal transducer and activator of transcription; MAPK=mitogen-activated
protein kinase.
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Figure 3. Integrative epigenomic analysis indicates potential effects on lung and blood and comparison with pulmonary function genome-wide
association study (GWAS) loci. (A) FEV1-related cytosine-phosphate-guanine probes (CpGs) (false discovery rate, ,0.025): eFORGE analysis
to quantify enrichment in DNase I hotspots. The x-axis represents tissue- and cell-type samples used in the analysis; the y-axis indicates
enrichment (2log10 P value). (B) eFORGE DNase I hotspot analysis limited to FEV1-related CpGs in the top blood component. (C) eFORGE
DNase I hotspot analysis limited to FEV1-related CpGs in the top fetal lung component. (D) FORGE2 DNase I hotspot analysis of FEV1-related
genetic variants from the GWAS catalog.
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(39, 43). Comparing our pulmonary
function–related CpGs with those related
to current smoking (FDR,,0.05) in a

large 450K EWAS meta-analysis (38), we
found substantial overlap (Tables E5–E7).
In ALHS, we confirmed that the majority

(61%) of these overlapping CpGs
remained at least nominally significant
after adjustment for lifetime smoking
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Figure 4. Heatmap of enriched pathways (false discovery rate [FDR], ,0.05) for FEV1, FVC, and FEV1/FVC using the methylGSA R package.
Significantly enriched (FDR, ,0.05) pathways for at least one of the three traits are shown. The color spectrum is based on the P values
corrected for multiple testing using Benjamini-Hochberg FDR. Darker shading indicates higher level of statistical significance. The heatmap
was created in R version 3.6.1, using ComplexHeatmap package version 2.7.10. JAK-STAT= Janus kinase/signal transducer and activator of
transcription; MAPK=mitogen-activated protein kinase.
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biomarkers: AHRR cg05575921, PDZD2
cg13039251, and F2RL3 cg03636183
(39–41) (Table E24). Adjustment
attenuated the magnitude of 71% of
associations.

Associations by Smoking Status
Separate meta-analyses by smoking
identified 196 differential methylation signals
in never smokers and 465 in ever smokers
(FDR,,0.025) (Tables E25 and E26). In

both smoking groups, 66% of signals were
unique, defined as having genome-wide
significance (FDR,,0.025) in one group but
not reaching nominal significance (P. 0.05)
in the other. For 92% of these unique signals,
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Figure 5. Pulmonary function–associated differentially methylated cytosine-phosphate-guanine probes (CpGs). (A) TNFRSF4 gene browser
shot displaying (in order, starting from the top): genomic coordinates, gene locations, GTEx RNA sequencing–based gene expression across
different organs, H3K27ac peaks for seven ENCODE cell lines, ENCODE chromatin state segmentations and chromatin accessibility data, and
coordinates for pulmonary function–associated CpGs cg21815220, cg16252905, and cg17084044. Both cg16252905 and cg17084044 are also
located in DNase I hotspots in the eFORGE catalog. These data indicate that these three CpGs overlap with an immune enhancer near the
promoter of TNFRSF4, a gene expressed in lung and immune tissue, and an enhancer and DNase I hypersensitive site from ENCODE, which
were detected in immune cell samples. These three CpGs are also located within 1.5 kb of an H3K27ac peak and the transcription start site of
HSP90AA1. This browser shot was generated using the University of California, Santa Cruz Genomics Institute genome browser (https://genome.
ucsc.edu/) on human genome build hg19. (B) Forest plots for pulmonary function–associated CpGs cg21815220, cg16252905, and cg17084044
(linked to the genomic coordinates of these CpGs in A) indicating meta-analysis b-values and SEs across pulmonary function traits: FEV1, FVC,
and their ratio (FEV1/FVC). Studies incorporated in the meta-analysis include ALHS (Agricultural Lung Health Study), ARIC (Atherosclerosis Risk
in Communities) study, CHS (Cardiovascular Health Study), FHS (Framingham Heart Study), GS (Generation Scotland), LifeLines, LBC (Lothian
Birth Cohort), MESA (Multi-Ethnic Study of Atherosclerosis), RS (Rotterdam Study), and TwinsUK.
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effect estimates were different between never
and ever smokers at P, 0.05. Miami, QQ,
and leave-one-out meta-analyses and forest
plots for smoking-stratified meta-analyses
are shown in Figures E9–E12. Enriched
pathways in smoking-stratified analyses
(Figure E13) were similar to those overall; for
FEV1/FVC, some pathways were enriched
only for never smoker findings (Figure 4).
We explored potential confounding by
underreported smoking and secondhand
smoke exposure by also adjusting the 129
associations unique to never smokers for
AHRR cg0557592 in ALHS. Approximately
50% showed nominal significance (P, 0.05);
all but two remained significant after the
adjustment (Table E27). Effect sizes were
highly correlated (Pearson correlation, 0.99;
P, 2.23 10216), indicating minimal impact
of unreported smoking on findings in never
smokers.

Associations across Ancestries
Ancestry-specific analyses identified 564
differently methylated CpGs in European
ancestry (Table E28) and 29 differentially
methylated CpGs (Table E29) in the
smaller African ancestry dataset. Figures
E14–E17 contain ancestry-specific Miami,
QQ, and leave-one-out meta-analyses and
forest plots. Effect estimates from results
in European ancestry were correlated with
African ancestry results (Pearson
correlation, 0.59; P, 2.23 10216); 31% of
available associations reached at least
nominal significance in African
ancestry–specific analyses. However, only
four African ancestry findings had
P, 0.05 and matching direction in
Europeans, suggesting the remainder to be
unique to African ancestry.

Discussion

To our knowledge, this is the first large-
scale multiancestry study examining
associations between blood DNA
methylation and pulmonary function. We
identified numerous novel CpGs
differentially methylated in relation to
pulmonary function. We found evidence of
replication in European and Asian ancestry
studies (6, 8). We also validated findings
from published studies that mostly had not
been replicated. Our cross-sectional findings
overlapped with limited published data on
lung function decline. Our large-scale study

enabled identification of pulmonary
function–related methylation signals unique
to smoking status, an important influence
on pulmonary function. Although most
signals were consistent across ancestries, we
also identified signals potentially unique to
individuals of African ancestry. Many CpGs
correlated with nearby gene expression and
were enriched for key regulatory elements
in both immune cells and lung, providing
functional biologic relevance of our findings
further supported by MR and colocalization
analyses. Implicated genes include targets of
approved or investigational drugs, providing
potential clinical implications.

GWASs have identified.300 genetic
loci for pulmonary function (3, 4). Our
EWAS loci are largely distinct. Only 3% of
genes we implicated were reported in the
largest lung function GWAS (Table E30) (4).
Adjustment for polygenic risk scores (4, 37)
for pulmonary function made little change to
our results, supporting the independence of
our findings fromGWAS signals.

Loci identified in cross-sectional
GWASs in adults primarily reflect
maximally attained lung growth and are
skewed toward developmental genes. In
contrast to genetic variants, epigenetic
alterations occur throughout life in response
to numerous factors impacting pulmonary
function, including environmental exposures
such as smoking (38), diet (44), and air
pollution (45), and endogenous influences,
including systemic inflammation (46) and
adiposity (47). Thus, differentially
methylated genes identified by EWASs
complement findings from genetic studies to
identify targets potentially modifiable by
lifestyle or new therapeutic interventions.

Whether EWAS findings are causal for
lung function is a key question but difficult
to answer. We employedMR to address this.
MR requires genetic instruments related to
both lung function and our EWAS CpGs.
Given the novelty of most loci compared
with GWASs, MR has limited ability to
interrogate our findings. Nonetheless, MR
analysis of all the methylation–trait pairs
with genetic instruments available revealed
46 CpGs that share a genetic factor with lung
function, consistent with a causal effect of
methylation on lung function. However,
caution is required because these could
reflect violation of MR pleiotropy
assumptions, and few of the 46 CpGs had the
multiple genetic instruments required to test
this. Regardless, without inferring causality,

the shared genetic variation could reflect
methylation and lung function being
common consequences of regulatory impacts
of the genetic variants, such as influencing
TF binding. Analyses showing that,
compared with other mQTLs, mQTLs for
our EWAS CpGs are substantially enriched
for association with lung function in GWAS
support a functional role for the genomic
regions uncovered by the EWAS. Along with
the finding in ALHS that adjustment for
genetic risk scores for lung function do not
alter associations, the MR analyses suggest
that our EWAS findings do not reflect
reverse causation (i.e., lung function
influencing methylation).

Druggable target analysis enhances the
clinical relevance of our findings. Several
drugs identified via ChEMBL have
epigenetically relevant mechanisms. For
example, mocetinostat and fimepinostat,
both in phase II trials, have activity against
several histone deacetylase enzymes (48, 49).
Notably, three candidate drugs were
annotated to tumor necrosis factor receptor
superfamily member 4 (TNFRSF4; also
known asOX40), including the monoclonal
antibody telazorlimab, a TNFRSF4
antagonist currently in phase II trials for
atopic eczema.

Integrative epigenomics identifying
enrichment of DNase I hotspots across blood
and lung highlights that our findings in
blood can inform key epigenomic
mechanisms in the lung. Analyses of TF
binding motifs identified some expressed in
immune tissue. Some of our significant CpGs
reside near or within genes that play an
important role in inflammation and
immunity in the lung. One example is
TNFRSF4, a gene targeted by several
candidate drugs, expressed in both immune
and lung tissue. Annotation for chromatin
states shows overlap of lung
function–associated CpGs cg21815220,
cg16252905, and cg17084044 with an
ENCODE immune cell “strong enhancer”
located proximal to the transcription start
site of TNFRSF4 (Figure 5), and these CpGs
also overlap with an immune cell–specific
DNase I hypersensitive site. In eFORGE,
both cg16252905 and cg17084044 reside
in DNase I hotspots (22). In addition,
cg21815220 and cg17084044 localize to the
same TFmotif for hypermethylated in cancer
1 (HIC1), an important epigenetically
regulated gene (Figure E18). This motif is in
an active enhancer proximal to TNFRSF4
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that contains cg16252905. Finding
differential DNAmethylation in a regulatory
element proximal to a lung- and blood-
specific gene hints at a putative causal role in
lung function for TNFRSF4, a gene not
previously reported in GWAS of pulmonary
function that has a role in lung-associated
inflammation and immunity (50).
Mechanistically, TNFRSF4 expression is
thought to sustain lung tissue inflammation
(50), and TNFRSF4 blockade in experimental
models improves respiratory function (50).
Further research is needed to confirm our
findings, which constitute the first reported
epidemiological association between
TNFRSF4 and lung function.

Substantial overlap between our
pulmonary function–related findings and
those for COPD in our data show that
examination of quantitative traits in
population-based studies reveals relationships
relevant to clinical outcomes such as COPD.
Furthermore, we validated COPD-related
CpGs identified in the lung (36), indicating
that bloodmethylation can reflect signals in
target tissue. Our results could be applied in
future studies with large numbers of COPD
cases to examine whether a lung function
methylation score predicts that outcome.

Many CpGs associated with pulmonary
function in this study and another (8) also
associate with smoking (38). This led to
speculation regarding whether they mediate
effects of smoking on lung function (8).
However, many of these overlapping CpGs
are strong biomarkers of smoking that
capture lifetime smoking better than pack-
years from questionnaires (38, 43). One
CpG (AHRR cg05575921) so strongly
captures exposure that it is patented as a
biomarker of lifetime smoking for insurance
applications (39). Attempts to identify
whether differential methylation at a given
CpG that is a strong smoking biomarker
mediates the biologic effects of smoking on
lung function will likely produce false-
positive evidence for mediation (43, 51).
An alternative explanation for overlap of
CpGs related to both smoking and lung
function is residual confounding by lifetime
smoking when adjusting for exposure using
questionnaire data. We attempted to
address residual confounding by adjusting
for three CpGs, strong biomarkers of
lifetime smoking, in one of our larger

studies (ALHS), and found some
attenuation of effect estimates after
adjustment. Although some biologic
mediation of the effect of smoking on lung
function by methylation biomarkers of
smoking, such as AHRR cg05575921, is
possible, our results are consistent with
some residual confounding. To address
possible residual confounding by
quantitative smoking history in another
way, we examined associations in lifelong
never smokers. Signals unique to never
smokers are less likely due to uncontrolled
confounding. However, understanding
whether CpGs that are strong biomarkers of
smoking are truly involved in the
pathogenesis of smoking-related
impairment in lung function will require
deciphering the fundamental mechanisms
whereby smoking alters methylation at
specific sites.

This study has limitations. Assessing
methylation in blood limits inference to
other tissue types. Our data are cross-
sectional. However, a high proportion of
CpGs identified in previous longitudinal
studies (7, 8) associate with lung function in
our data, suggesting that cross-sectional
meta-analyses can shed light onmethylation
predictors of decline. Individuals with
European ancestry, mainly from the United
States, the United Kingdom, or Northern
Europe, compose 84% of our population,
limiting detection of ancestry-specific signals.
Because only one study had Hispanic/Latino
participants, most analyses focused on
European and African ancestry, limiting
generalizability to other populations.
Most cohorts had few individuals under 40,
so we excluded this potentially interesting
group. Using more widely available
prebronchodilator spirometry to classify
COPD is another limitation. However, this
approach has been taken in previous large-
scale genomic meta-analyses (3, 4). Like
researchers in those genomic studies, we
used the actual spirometric values adjusted
for factors used in prediction equations.
Although this does not allow effects of height
and age to differ by sex, values were highly
correlated with percent predicted values
using Global Lung Function Initiative
equations (ALHS Spearman correlation, 0.97;
P, 2.23 10216 for both FEV1 and FVC).
We did not perform analyses by sex.

Sex-specific analyses would be of interest in
future studies with larger sample sizes
required for reliable interaction testing (52).

Our study has several key strengths.
This is the largest multiancestry study of
DNAmethylation and pulmonary function
to date, including studies of African ancestry,
Hispanic/Latino ancestry, and European
ancestry populations. The multiancestry
design provided evidence for ancestry-
specific signals. Our large sample size
enabled determination of signals unique to
ever and never smokers. Results from the
EPIC array identified CpGs and genes
unique to this more comprehensive
platform.We confirmed our findings were
independent of polygenic risk of reduced
lung function. Correlation of our findings
with gene expression, integrative
epigenomics approaches identifying key
regulatory elements enriched in both blood
and lung, andMR and colocalization
analyses support a functional role for the
genomic regions we uncovered in EWAS.
Analyses of druggable targets highlighted
potential clinical utility.

In conclusion, our large-scale study
comprehensively identified epigenome-
wide differential methylation in blood
related to pulmonary function. It extends
the current literature by including newer
DNA methylation arrays, different
ancestry populations, greatly increased
sample size, implementation of state-of-
the-art in silico integrative epigenomics
methods, MR and colocalization, and
analysis of druggable targets. We
identified many novel genes related to
lung function. These are potentially
modifiable targets for development of
preventive and therapeutic strategies. In
addition, the results can be leveraged for
development of epigenomic risk scores for
predictive biomarkers of lung disease.
These findings provide new insights into
the pathogenesis of lung function
impairment and respiratory disease.�
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