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Carbon Acidity in Enzyme Active
Sites
Michael D. Toney*

Department of Chemistry, University of California, Davis, Davis, CA, United States

The pKa values for substrates acting as carbon acids (i.e., C-H deprotonation reactions)

in several enzyme active sites are presented. The information needed to calculate them

includes the pKa of the active site acid/base catalyst and the equilibrium constant for

the deprotonation step. Carbon acidity is obtained from the relation pKeq = pKr
a–pK

p
a

= 1pKa for a proton transfer reaction. Five enzymatic free energy profiles (FEPs) were

calculated to obtain the equilibrium constants for proton transfer from carbon in the active

site, and six additional proton transfer equilibrium constants were extracted from data

available in the literature, allowing substrate C-H pKas to be calculated for 11 enzymes.

Active site-bound substrate C-H pKa values range from 5.6 for ketosteroid isomerase

to 16 for proline racemase. Compared to values in water, enzymes lower substrate C-H

pKas by up to 23 units, corresponding to 31 kcal/mol of carbanion stabilization energy.

Calculation of Marcus intrinsic barriers (1G‡

0) for pairs of non-enzymatic/enzymatic

reactions shows significant reductions in 1G‡

0 for cofactor-independent enzymes, while

pyridoxal phosphate dependent enzymes appear to increase 1G‡

0 to a small extent as a

consequence of carbanion resonance stabilization. The large increases in carbon acidity

found here are central to the large rate enhancements observed in enzymes that catalyze

carbon deprotonation.

Keywords: carbon acid, enzyme, pyridoxal phosphate, PKA, general acid/base catalysis, marcus theory,

carbanion stability

Mechanistic enzymologists have made great strides over the past decades in deciphering the
fundamental principles of enzyme catalysis. Nevertheless, a quantitative accounting of the
contributions to rate enhancement has not yet been achieved (Machleder et al., 2010; Wolfenden,
2011; Herschlag and Natarajan, 2013; Richard, 2013; Warshel and Bora, 2016). One of the most
fundamental catalytic mechanisms available to enzymes is general acid/base catalysis by amino acid
side chains in active sites (Jencks, 1987; Richard, 1998; Frey and Hegeman, 2007). Deprotonation of
carbon acids (C-H bonds of substrates) is an especially important and difficult reaction requiring
base catalysis (Richard and Amyes, 2001; Richard, 2012). Enzymologists have measured the pKa

values of many active site catalytic residues through pH-rate profiles (Cook and Cleland, 2007), and
these can frequently be assigned to specific residues in combination with additional information,
but substrate C-H pKa values have remained elusive.

Many enzymatic reactions involve deprotonation of carbon as a central step in the catalytic
mechanism, yet there are no examples in the literature where the pKa of a substrate C-H has
been established experimentally. The closest example known to this author is that of uridine
monophosphate bound to orotidine monophosphate decarboxylase (Amyes et al., 2008). In that
work, the authors estimated the pKa of the product (≤22) by isotope exchange kinetics, which
generates via deprotonation the same vinyl carbanion resulting from decarboxylation. It is generally
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appreciated that enzymes must substantially lower pKas
of carbon acids at active sites to achieve observed rate
enhancements (Gerlt et al., 1991; Gerlt and Gassman, 1992,
1993a,b; Richard et al., 2014). A full understanding of the
thermodynamics, including the pKa values for both the general
acid/base catalyst and the substrate C-H bond is needed to
account quantitatively for enzyme catalysis.

Here, a recently introduced method for free energy profile
(FEP) determination (Toney, 2013) is applied to five enzymes,
employing experimental data reported in the literature. The
FEPs allow calculation of proton transfer equilibrium constants
in active sites. Additionally, literature FEPs and spectroscopic
information are used to calculate proton transfer equilibrium
constants for six additional enzymes. Combining proton transfer
equilibrium constants with pKas for catalytic active site residues
allows one to solve for active site-bound substrate C-H pKas,
which are in the range∼6 to∼16 for the enzymes discussed here.

METHODS

Here, FEP determination involves optimizing the
agreement between several calculated and observed experimental
measurements simultaneously. The freely available biochemical
simulation and analysis software COPASI was used for all
optimizations (Hoops et al., 2006; Mendes et al., 2009). The
procedure used here does not involve time-consuming numerical
integration of differential rate equations. Instead, the adjustable
parameters (rate constants) are altered by the chosen algorithm
and the new parameters are used to calculated a new value
of the target function (see below) (Toney, 2013). This is
much less computationally demanding than fitting to primary
kinetic data via numerical integration, allowing essentially
exhaustive exploration of parameter space. Global optimization
algorithms fall into four main categories: random, deterministic,
stochastic (e.g., simulated annealing), and heuristic (e.g., genetic
algorithms, swarm algorithms) (Moles et al., 2003). COPASI
implements examples of all these categories. The COPASI input
files used here for FEP determinations are included in the
Supplementary Material.

A critical step to defining enzymatic FEPs by global
optimization is the specification of the target function to
be minimized. A sum-of-squared absolute values of residuals
between calculated and experimental values, divided by the
experimental value, was used. Equation (1) shows the target
function used for alanine racemase.
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Here, kL is kcat for the L→ D direction, KL is KM for the L→ D
direction, “Visc” is the effect of viscosity on relative kcat/KM

values, etc. Central to the procedure, random initial values for
all parameters were assigned automatically by COPASI at the

beginning of each individual optimization run. The use of the
mean normalized difference between calculated and observed
values weights the different experimental measurements equally.
This is essentially a sum of chi-squared statistics (Greenwood
and Nikulin, 1996). It is analogous to the commonly used
relative weighting scheme in non-linear regression (Motulsky
and Christopoulos, 2004).

Microscopic rate constants and intrinsic kinetic isotope
effects (KIEs) (where applicable) were adjustable parameters.
For bimolecular rate constants, the lower bound was kcat/KM

for the respective direction, and the upper bound was 109

M−1s−1 (diffusion limit). For unimolecular constants, the lower
bound was kcat for the respective direction, and the upper
bound was 1012 s−1 (vibrational limit). The values of intrinsic
deuterium KIEs were limited to the semi-classical range of 1–6.
The application of these limits is important for restricting the
parameter space searched to a productive one.

The search of parameter space was performed in two phases.
First, a broad search over the rate constant limits given above
was performed using the “genetic algorithm” in COPASI. Second,
a focused search was performed to define well the sum of
squared residuals (SSR) surface at the lower SSR values: narrower
limits on each parameter (corresponding to a 50-fold increase
in SSR from the lowest values obtained in the first search)
were set. The latter employed the “particle swarm” algorithm
in COPASI. A complete search was comprised of 105-106

independent calculations. Each calculation started with random
initial values for the parameters, within the specified limits. This
was automated using the “parameter scan” task in COPASI.

RESULTS AND DISCUSSION

The calculation of C-H pKa values in enzymes active sites
reported here employs the relationship between reactant and
product pKa values for a simple proton transfer reaction:

pKeq = pKreactant
a − pK

product
a (2)

The equilibrium constant (pKeq) for the proton transfer between
a carbon acid and an acid/base catalyst in the active site and the
pKa of the product must be known to solve for the reactant (C-H)
pKa. For general base catalysis by an active site amino acid side
chain, the pKa of the product is the pKa of the protonated form of
the side chain in the enzyme-substrate complex, which is readily
obtained from kcat vs. pH profiles: kcat/KM vs. pH profiles provide
pKa values for free enzyme and free substrate, while kcat vs. pH
profile provides pKa values for enzyme-substrate complexes. The
latter are relevant to the calculation of substrate C-H pKas in
active sites and are used here.

The equilibrium constant is generally more difficult to
obtain. The simplest method, but applicable only to select
classes of enzymes, is to use spectroscopic information (e.g.,
absorbance and extinction coefficient) that is specific to the
carbanionic intermediate to calculate the equilibrium constant.
Pyridoxal phosphate (PLP) dependent enzymes constitute an
especially favorable case since the highly resonance stabilized
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SCHEME 1 | C-H pK calculation for Alanine Racemase.

carbanionic “quinonoid” intermediate has long wavelength
absorption bands (∼500 nm) with high a extinction coefficient
(∼40,000 M−1cm−1) that allow it to be readily identified and
quantified (Metzler et al., 1988; Mozzarelli et al., 2000).

Scheme 1 Illustrates the calculation of the C-H pKa for
alanine bound to alanine racemase (AR) based on spectroscopic
information. From published pH profiles for kcat, one can deduce
a pKa of 7.4 for Lys39 in the substrate-bound active site (Sun and
Toney, 1999). From UV-vis spectroscopy of AR saturated with
alanine, one can calculate pKeq = 3.4 for proton transfer based
on the 500 nm absorption band of the carbanionic quinonoid
intermediate (Toney, 2013). Thus, the external aldimine C-H
pKa = 3.7 + 7.4 = 11.1. The C-H pKa values of 12 active
site-bound substrates are presented in Table 1, along with the
corresponding pKas in water, the difference in pKa for free vs.
active site bound substrates, and pKas calculated via QM/MM
simulations where available.

A general method for evaluating the proton transfer
equilibrium constant is to calculate a FEP for the complete
enzyme catalyzed reaction, then take the ratio of the
deprotonation to reprotonation rate constants as the proton
transfer equilibrium constant. Historically, the determination
of FEPs for enzymes was a laborious process requiring a
variety of enzyme-specific experiments, generally including
pre-steady-state kinetic measurements. Recently, this author
showed that enzymatic FEPs are readily obtained by combining
the information obtained from a variety of commonly employed
enzyme kinetic experiments (Toney, 2013). The types of

information combined include, for example, kcat and KM,
KIEs, viscosity effects, washout vs. turnover ratios, etc. The
key is that these different experimental measurements provide
information on various components of the reaction sequence
constituting the enzymatic mechanism. The experimental data
are combined in a target function for global optimization,
in which the individual rate constants for the enzymatic
mechanism are optimized via a minimization algorithm
(e.g., genetic algorithm, particle swarm, Hooke, and Jeeves,
etc.) to achieve best-fit agreement between calculated and
experimental observations.

This method was employed here to calculate five new
enzymatic FEPs. All FEPs were calculated with COPASI (Hoops
et al., 2006; Mendes et al., 2009). The COPASI input files used
here are provided separately as Supplementary Material. The
general mechanism used for the analysis of all the enzymes
considered here is:

E+ S
k1
⇋

k2
ES

k3
⇋

k4
EI

k5
⇋

k6
EP

k7
⇋

k8
E+ P (3)

Ketosteroid Isomerase (3-Oxo-15-Steroid
Isomerase) FEP
Pollack et al. extensively studied the reaction catalyzed
by ketosteroid isomerase (KSI). Their work resulted
in a nearly complete FEP calculated from a variety of
different experiments (Hawkinson et al., 1991). They
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TABLE 1 | Carbon Acid (Substrate C-H) pKa values.

Enzyme (substrate) Water pKa

(experimental)a
Active site pKa

(experimental)b
Active site pKa

(QM/MM)

1pKa
c

COFACTOR INDEPENDENT ENZYMES

Ketosteroid isomerase (1-3-keto steroid) 13 5.6 5.6 7.4

Triosephosphate isomerase (GAP) 17 9–12 11 5–8

Triosephosphate isomerase (DHAP) 18 10–14 14–20 4–8

Proline racemase (Proline) 29 16 16 13

Mandelate Racemase (Mandelate) 30 9–15 17 15–21

Fumarase (Malate) 30 9–13 – 17–21

PYRIDOXAL PHOSPHATE DEPENDENT ENZYMES

Tryptophan synthase (Tryptophan) 29 8 – 21

Tryptophan indole-lyase (Tryptophan) 29 6 – 23

Tyrosine phenol-lyase (Phenylalanine) 29 6 – 23

Alanine Racemase (Alanine) 29 11 12 18

Aspartate aminotransferase (Aspartate) 29 ∼7 – ∼22

Dialkylglycine decarboxylase (Alanine) 29 8 – 21

aThe references for C-H pKa values for substrates are given in Supplementary Material.
bExperimental active site C-H pKa ranges are determined from the lower limit for the carbanion reprotonation rate constant obtained from the FEP and an assumed upper limit of 1012

s-1. Values that are not well-defined are highlighted in italics. cThe difference in C-H pKa between the substrate in water and in the enzyme active site.

were unable to define a precise value for the energy
of the enolate (enol) intermediate, only a lower limit.
Therefore, FEP calculations to define these values was
undertaken using global optimization. The experimental
data employed included kcat and KM values for the forward
reaction, the partitioning ratio for the intermediate going
backward to substrate vs. forward to product, KIEs,
the equilibrium constant for the reaction, the product
dissociation constant, and two rate constant ratios (k1−/k2,
and k−2/k3). The details of FEP calculations are provided
in Supplementary Material.

Figure 1 shows the results of global optimization with KSI.
The graph presents the sum-of-squared residuals (SSR), which is
a measure of the goodness-of-fit to experimental data for a series
of independent optimization runs, plotted against the fitted values
of the rate constants. Each independent global optimization
run results in a set of parameters (rate constants, KIE) with a
common SSR value (identical y-axis value). The lower the value
of the SSR, the better the optimized rate constants predict the
experimental results.

Fundamentally, the graph shows how sensitive the goodness-
of-fit is to the values of the fitted parameters (i.e., rate constants
and intrinsic KIEs): rate constants with narrower SSR “peaks” at
the bottom of the distributions are better defined. For example,
the inset shows the SSR vs. the value of the intrinsic KIE on
the deprotonation step. The lowest values of SSR occur at an
intrinsic KIE of ∼5, but the wide distribution shows that the
fit to the experimental data is not very sensitive to the value of
this parameter, and it is therefore not well-defined. On the other
hand, k7 has a narrow SSR “peak” and its value is well-defined.

Each independent optimization run generates 8 rate constants
and the intrinsic KIE (if KIE measurements are included).
Crucially, ∼100,000 independent optimization runs are
presented in the graph, each starting from a set of random

FIGURE 1 | Results of global optimization with KSI. SSR, sum of

squared residuals of the fit to the target function. Each point results from an

independent optimization run. The figure was generated from ∼100,000

independent runs, each starting from randomized sets of rate constants. The

inset presents the intrinsic KIE resulting from global optimization.

initial rate constant values (within reasonable chemical limits:
>kcat/KM and <109 M−1s−1 for second order rate constants,
and >kcat and <1012 s−1 for first order rate constants),
constituting an essentially exhaustive search of rate constant
space. The randomization of the initial guesses for the rate
constants combined with the user-specified global optimization
termination conditions provide the distribution of values that

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 February 2019 | Volume 7 | Article 25

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Toney C-H Acidity in Enzymes

allow the “SSR surface” to be defined (i.e., not all fits advance to
the absolute SSR minimum).

The resulting rate constant values for KSI are: k1 = 8.3 × 108

M−1s−1, k2 = 8.6 × 104 s−1, k3 = 1.8 × 105 s−1, k4 = 1.7 ×

106 s−1, k5 = 6.4 × 105 s−1, k6 = 43 s−1, k7 = 1.5 × 105 s−1,
k8 = 1 × 109 M−1s−1 . These agree well with those reported by
Pollack et al, and show that global optimization can additionally
define the rate constants for carbanion reprotonation (k4 and k5)
that were previously not well-defined. The equilibrium constant
for proton transfer (Keq) calculated from k3 and k4 is 0.11. This
is in agreement with the previously calculated value of 0.3 ± 0.2
(Hawkinson et al., 1994).

The value of pKeq for the reaction of 5-androstene-3,17-dione
is 0.96 while that for 4-androstene-3,17-dione is 4.2. These values
correspond to 1G0 for proton transfer of 1.3 and 5.7 kcal/mol.
They can be combined with the pKa (4.6) of the general acid/base
catalyst in the active site (Asp38) to give calculated active site
C-H pKa values of 5.6 for 5-androstene-3,17-dione and 8.8 for
4-androstene-3,17-dione. The pKa of 5-androstene-3,17-dione in
solution is 12.7 (Pollack et al., 1989).

Marcus theory for electron transfer has been extended to
a variety of other reactions including proton transfers and
enzymatic reactions (Silverman, 2000; Bearne and Spiteri, 2005).
In its simplest form, the theory describes a reaction in terms of an
intrinsic reaction barrier (Scheme 2), which is the barrier for the
reaction when 1G0 = 0 (kinetic component), and the difference
in free energy between reactants and products (thermodynamic
component). The theory has been extended to include work
terms to describe the energy required to bring reactants together
into the reactive ground state complex; this term is ignored here
since enzymes form the reactive complex in a separate substrate
binding step (i.e., substrate binding energy pays for the work
required to form the reactive complex), and the calculations
for the non-enzymatic reactions correct the measured second
order rate constants for reactive complex formation by using
an association constant of 0.017 M−1 estimated by Hine and
commonly employed in the literature (Hine, 1971). The form
of the Marcus equation used here is given in Equation (4),
where 1G‡ is the observed free energy of activation, 1G0 is the

energy difference between reactants and products, and1G
‡

0 is the
intrinsic reaction barrier.

1G‡
= (1+ 1Go/41G

‡

o )
2
1G

‡

o (4)

The 1G
‡

0 values for proton abstraction in ketosteroid
isomerization were previously estimated to be 10 kcal/mol
for the enzymatic reaction and 13 kcal/mol for the reaction
in solution (Hawkinson et al., 1994). The rate constant values
derived here from global optimization allow calculation of

1G
‡

0 = 9.5 kcal/mol for the enzymatic reaction (Table 2), in
agreement with the previously calculated value.

Mandelate Racemase (MR) FEP
Multiple KIE experiments provide good evidence for a
carbanionic intermediate in mandelate racemase catalysis (Mitra
et al., 1995), as does the partitioning of an alternative substrate

SCHEME 2 | Definition of the Marcus intrinsic barrier.

TABLE 2 | Marcus intrinsic barriers (kcal/mol)a.

Enzyme 1G‡
0 solution 1G‡

0 active site 11G‡
int

Ketosteroid isomerase 13 9.5 −3.5

Proline racemase 10.5 5.1 −5.4

Tryptophan indole-lyase 10.4b 12.8 +2.4

Tyrosine phenol-lyase 10.4b 15.5 +5.1

Aspartate aminotransferase 10.4b 11.5 +1.1

Dialkylglycine decarboxylase 10.4b 11.3 +0.9

a Intrinsic barriers to reaction based on Marcus theory, without including any work terms

since the juxtaposed active site base catalytst and substrate react in a unimolecular step

in the absence of bulk solvent. Calculation details in Supplementary Material.
bCalculated intrinsic barrier for Gly-pyridoxal aldimine in water.

between racemization and bromide elimination (Lin et al., 1988).
This justifies the use of the mechanism in Equation (2) with MR.
The FEP for MR was determined by combining kcat and KM for
both directions of racemization with viscosity effects, KIEs, and
intermediate partitioning (Whitman et al., 1985; Powers et al.,
1991; St Maurice and Bearne, 2002). The global optimization
results are presented in Figure 2. The pKa of the active site
acid/base catalyst is 6.4 (Kallarakal et al., 1995). From the
results presented in Figure 2, the rate constant for deprotonation
of (S)-mandelate in the active site (k3) is 800 s−1 while the
reprotonation rate constant (k4) is in the range of 105 and 1012

s−1. These values translate into a C-H pKa range of 8.5–15.5,
reported as 9–15 in Table 1. The reverse isomerization reaction
occurs with a deprotonation rate constant (k6) of 3,300 s

−1, while
reprotonation (k5) is in the range of 106-1012 s−1. These values
correspond to C-H pKa values of 9–15.

The C-H pKa of mandelate (monoanion) in water is calculated
by assuming the rate constants for deprotonation catalyzed by
hydronium and hydroxide ions are equal at pH 7 and 25◦C, given
the pH independence of the reaction rate in this region (Bearne
and Wolfenden, 1997). The rate constant for proton exchange
at pH 7 and 25◦C is 3 × 10−13 s−1, or 1.5 × 10−13 s−1 for
the hydroxide catalyzed component. This value, divided by the
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FIGURE 2 | Results of global optimization with mandelate racemase. SSR,

sum of squared residuals of the fit to the target function. Each point results

from an independent optimization run. The figure was generated from

∼40,000 independent runs, each starting from randomized sets of rate

constants. The inset presents the intrinsic kinetic isotope effect resulting from

global optimization. The fit to the target function is shows significant sensitivity

to the values of k4 and k5 when they are <106 s−1. Therefore, these are the

lower limits on the values of these rate constants.

concentration of hydroxide at pH 7, gives a rate constant of 1.5×
10−6 M−1s−1, which can be used with the correlation between
log(kOH) and carbon acid pKa presented by Richard (Richard
et al., 2001) to give an estimated solution C-H pKa of 30 for
mandelate. This value is in agreement with others estimated in
the literature (Gerlt et al., 1991). It can be compared to the C-H
pKa of 22 for mandelic acid (Chiang et al., 1990).

Fumarase FEP
The fumarase FEP for pH 7 was calculated by global
optimization, employing kcat and KM for both directions of the
reaction, viscosity effects, the equilibrium constant, and rate
constant ratios and commitments to catalysis determined by KIE
analyses (Alberty and Peirce, 1957; Brant et al., 1963; Blanchard
and Cleland, 1980; Sweet and Blanchard, 1990). The global
optimization results are presented in Figure 3. The rate constant
for deprotonation of malate in the active site (k3) is 1.1× 105 s−1,
while the reprotonation rate constant (k4) is 10

7-1012 s−1. These
values allow calculation of a C-H pKa of 8.5–13 in the active
site (reported as 9–13 in Table 2), given the active site acid/base
catalyst pKa of 6.4 (Brant et al., 1963).

Aspartate Aminotransferase FEP
Previous studies with aspartate aminotransferase defined rate
constants for a mechanism in which the central 1,3-prototropic
shift occurs as a concerted double proton transfer, avoiding
the carbanionic quinonoid intermediate (Goldberg and Kirsch,
1996). Amore recent study proved the existence of the quinonoid
intermediate on the productive pathway (Hill et al., 2010).
Therefore, a FEP including the quinonoid intermediate on

FIGURE 3 | Results of global optimization with fumarase. SSR, sum of

squared residuals of the fit to the target function. The figure was generated

from ∼40,000 independent runs, each starting from randomized sets of rate

constants. The fit to the target function is shows significant sensitivity to the

values of k4 and k5 when they are <107 s−1 and <108 s−1. Therefore, these

are the lower limits on the values of these rate constants.

the reaction pathway was determined by global optimization.
Only the aspartate/oxalacetate half-reaction was analyzed. The
experimental observations used in global optimization included
pre-steady-state kmax and Kapp from stopped-flow experiments,
KIEs, viscosity dependence, intermediate partitioning (i.e.,
isotopic washout vs. turnover), the equilibrium constant, and the
absorbance of the quinonoid intermediate, which were used in
the previous study on the concerted mechanism. The results are
presented in Figure 4.

The left inset to Figure 4 presents the correlation between
the L-Asp association rate constant (k1) and the dissociation
rate constant (k2). These composite rate constants include the
steps leading from the free enzyme and free substrate up to
and including external aldimine intermediate formation via
transimination. The tight correlation between the rate constants,
as well as the large value of k2 compared to k3, demonstrates
that these steps are essentially at equilibrium with respect to
the remainder of the half-reaction. The slope of the line (i.e.,
calculated equilibrium binding constant) is 4.8mM, which is
equal to the experimental Kapp in stopped-flow analyses.

The remaining rate constants (k3-k8) in the mechanism
are very well-defined by global analysis. The rate constant
for external aldimine deprotonation is 1,800 s−1, while
reprotonation occurs at 200,000 s−1. The value of pKeq calculated
from these rate constants is 2.0, close to the value of 2.3 calculated
from UV-vis spectral data (Goldberg and Kirsch, 1996). The
pKa of the active site acid/base catalyst (Lys258) is taken here
to be ∼5.5, which is the value observed in the pH profile for
kcat with mutant enzymes (Y225F and K258C-EA) (Gloss and
Kirsch, 1995). The value of kcat for wild type and L-Asp shows
pH dependence but the activity does not go to zero below the
acidic pKa, making it unlikely that this ionization is that of
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FIGURE 4 | Results of global optimization for the L-asp/oxalacetate

half-reaction of aspartate aminotransferase. SSR, sum of squared residuals of

the fit to the target function. The figure was generated from ∼40,000

independent runs, each starting from randomized sets of rate constants. The

insets show that the correlation between the association and dissociation rate

constants for L-Asp binding. The individual rate constants are not

well-determined, but their ratio is over a broad range of values, indicating rapid

equilibrium binding. The observed ratio of the rate constants is 4.8mM, which

is the KM value for L-Asp. The intrinsic KIE calculated in the global

optimization is also presented as an inset.

Lys258, which is critical to catalysis (Toney and Kirsch, 1993).
The combination of pKeq = 2 and pKa =∼5.5 gives an active site
C-H pKa for the external aldimine of 7.5, which is reported as∼7
in Table 1 due to the uncertainty in the pKa of Lys258.

The FEP also allows calculation of the C-H pKa for the C4
′

-H
bond of the oxaloacetate ketimine intermediate. The pKeq for C4

′

deprotonation is calculated from the deprotonation rate constant
of 1,300 s−1 and the reprotonation rate constant of 115,000 s−1

to be 2.0. Combined with the pKa of ∼5.5 for Lys258 this give a

C4
′

-H pKa of∼7.5 in the active site.
For enzymatic deprotonation of the external aldimine

intermediate, 1G‡ = 12.9 kcal/mol and 1G0 = 2.7
kcal/mol for proton transfer. These values give 1G

‡

0 = 11.5
kcal/mol (Table 2).

Dialkylglycine Decarboxylase FEP
This unusual PLP enzyme catalyzes the oxidative decarboxylation
of 2,2-dialkylglycines in the first half-reaction of a ping-pong
mechanism and the transamination of pyruvate to L-alanine in
the second (Toney et al., 1995). The L-alanine transamination
half-reaction was analyzed by global optimization. The
experimental data included kmax, Kapp, and rate constant ratios
from stopped-flow experiments and intermediate partitioning
(washout vs. turnover) (Zhou et al., 2001). The results are
presented in Figure 5.

The inset shows that, as with aspartate aminotransferase,
the formation of the external aldimine intermediate is at

FIGURE 5 | Results of global optimization for the L-Ala/pyruvate half-reaction

of dialkylglycine decarboxylase. SSR, sum of squared residuals of the fit to the

target function. The figure was generated from ∼40,000 independent runs,

each starting from randomized sets of rate constants. The inset shows the

ratios of the association and dissociation rate constants for both L-Ala and

pyruvate binding. The linear correlation over a very large range of values

indicates rapid equilibrium binding of both.

equilibrium (k1/k2). Additionally, the hydrolysis of the pyruvate
ketimine intermediate and pyruvate dissociation (k7/k8) is
also at equilibrium, with the slopes of the lines equaling
the experimental values of Kapp for these substrates in
stopped-flow experiments.

The four remaining rate constants (k3-k6) are well-defined
by global analysis. The pKeq value calculated from the
deprotonation/reprotonation rate constant ratio for the L-
Ala external aldimine intermediate (2,600/255,000 s−1) is 2.0.
The pKa of the active site catalyst was determined from pH
dependence studies to be <6 (Zhou and Toney, 1999). Here, it
is assumed to be 6. Combined, these values allow calculation of
an L-Ala external aldimine C-H pKa of 8.0. The C4

′

-H pKeq is
similarly calculated from the deprotonation/reprotonation rate
constant ratio for the pyruvate ketimine intermediate (77/2,400

s−1) to be 1.5, corresponding to a C4
′

-H pKa of 7.5.
For enzymatic deprotonation of the L-Ala external aldimine,

1G‡ = 12.7 kcal/mol, while 1G0 = 2.7 kcal/mol for proton

transfer. These values give 1G
‡

0 = 11.3 kcal/mol (Table 2).
Additional enzymes Details of the calculations of the C-H

pKa values and intrinsic barriers for the other enzymes reported
in Tables 1, 2 are provided in the Supplementary Material.

Active Site C-H Acidity
The decrease in substrate C-H pKa going from water to enzyme
active site (i.e., 1pKa in Table 1) varies from ∼7 for ketosteroid
isomerase to ∼23 for the PLP dependent enzymes tryptophan
indole-lyase and tyrosine phenol-lyase. The average value for the
cofactor independent enzymes is 12 ± 6 (using mean values
of ranges) which corresponds to ∼16 kcal/mol of carbanion
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stabilization by the enzymes, while that for the PLP dependent
enzymes is 21 ± 2 which corresponds to ∼29 kcal/mol of
carbanion stabilization by the enzymes.

Richard et al. have shown that, in water, the pyridoxal
protonation state used by enzymes lowers the Cα-H pKa of amino
acids from ∼29 to ∼17 (Toth and Richard, 2007; Richard et al.,
2009). Adjusting for this factor, the protein components of PLP
enzymes reduce the Cα-H pKa of amino acids by an average
of 9 ± 1 units, which is similar to the value for the cofactor
independent enzymes. Thus, PLP itself provides the lion’s share of
carbanion stabilization in PLP dependent enzymes. The protein
components provide ∼12 kcal/mol of carbanion stabilization. In
terms of potential active site interactions, this translates into ∼6
hydrogen bonds, or ∼3 salt bridges, or a combination thereof,
that selectively stabilize the carbanion product over the reactant.

The calculated pKa of the Cα-H bond in the active site
of aspartate aminotransferase is ∼7. Bronsted analysis of
the aspartate external aldimine intermediate in aspartate
aminotransferase gave a β value of 0.62, and demonstrated
strong steric hindrance toward exogenous catalysts, as expected
for a reactant sequestered from solvent (Toney and Kirsch,
1989, 1992). Based on this Bronsted analysis, one can calculate a
second-order rate constant for deprotonation of the active site-
bound substrate by water and compare it to an experimentally
estimated value for a resonance-stabilized carbon acid
with pKa = 7.

The second order rate constant for external aldimine
deprotonation by water calculated from the previously reported
analysis (log kB = 0.62 × pKa−0.047 × molecular volume
−2.1) when steric hindrance by the active site is eliminated
(by assuming molecular volume = 0) is 7 × 10−4 M−1s−1.
The experimentally derived rate constant for deprotonation
of a resonance-stabilized C-H with pKa = 7 is ∼0.02 s−1,
or ∼4 × 10−4 M−1s−1 accounting for the concentration of
water (Pearson and Dillon, 1953). The agreement between these
independently derived values of the C-H deprotonation rate
constants corroborates at least the aspartate aminotransferase
pKa reported in Table 1. In terms of Marcus theory, the similarity
in the rate constants suggests that aspartate aminotransferase
does little to reduce the intrinsic kinetic barrier to deprotonation
compared to that in water, which is discussed further below.

QM/MM studies have been performed on several of the
enzymes discussed here, providing theoretical estimates of C-
H acidity in active sites through calculated FEPs. A study on
ketosteroid isomerase gave a value of pKeq that is essentially
identical to the value calculated from the global optimization FEP
reported here, providing excellent C-H pKa agreement between
theory and experiment (van der Kamp et al., 2013).

Proline racemase and similar cofactor-independent,
two-cysteine amino acid racemases have been examined
computationally (Stenta et al., 2008, 2009; Puig et al., 2009;
Rubinstein and Major, 2009). The general conclusion from the
computational studies is that no stable carbanionic intermediate
exists, but that the reaction is a highly asynchronous, double
proton transfer with the transition state essentially a fleeting
carbanion. Based on experimental data, Albery and Knowles
argued that a carbanionic intermediate does exists, although
barely (Albery and Knowled, 1986). From molecular orbital

considerations, electrophilic substitution reactions preferentially
occur by front-side attack (Cram et al., 1955; Jensen and Gale,
1960; Sayre and Jensen, 1979). Therefore, it is reasonable to
conclude that back-side double proton transfer in the proline
racemase reaction effectively occurs through a carbanion, either
a very short-lived intermediate or a transition state. The pKa

of this carbanionic species is calculated to be 15.8 from a DFT
treatment and 21.6 from a semi-empirical one (Stenta et al.,
2008). The former value agrees well with the experimental value
reported in Table 1.

QM/MM calculations on the triosephophate isomerase
reactions have produced a variety of energetic profiles, from
which C-H pKa values from ∼14 to 20 for dihydroxyacetone
phosphate, and a C-H pKa value of 11 for glyceraldehyde
phosphate, are calculated (Cui and Karplus, 2002; Guallar et al.,
2004; Wang et al., 2006; Xiang and Warshel, 2008). The range
for dihydroxyacetone phosphate is in general agreement with the
experimental upper limit presented in Table 1, calculated from
a refined experimental FEP (Toney, 2013). Mandelate racemase
showed a shallow well in QM/MM studies for the carbanionic
intermediate at 14 kcal/mol (Prat-Resina et al., 2005). This
translates into a C-H pKa value of 17, close to the upper limit of
the experimental range. Finally, QM/MM calculations on alanine
racemase yield a C-H pKa value (12) that is in good agreement
with experiment (11) (Major and Gao, 2006; Major et al., 2006).
In general, QM/MM studies appear to provide accurate values
for proton transfer equilibrium constants, and thereby accurate
active site C-H pKa values.

The rates of proton transfers between heteroatoms such as
nitrogen and oxygen are fast. For simple weak acids such as
amines, carboxylic acids, alcohols, and water, proton association
with the conjugate base is generally diffusion limited (1010-
1011 M−1s−1). Acidity is determined by the wide variation in
rate constants for proton dissociation from the acid form. For
example, the rate constants for proton dissociation from acetic
acid (pKa = 4.8) in water is 7.8 × 105 s−1, while that for
p-nitrophenol (pKa = 7.1) is 2.6× 103 s−1 (Isaacs, 1995).

The ionization of carbon acids is more complex. For
example, a carbon acid with a pKa similar to acetic acid
(∼5) dissociates a proton with a rate constant of ∼1 s−1 in
water (Pearson and Dillon, 1953). The large difference in the
rates of ionization of heteroatoms vs. carbon exists because
carbanions generally must be resonance stabilized to lower their
pKas to those of heteroatom-based acids. Scheme 1 shows the
extensive resonance that occurs with PLP, where the carbanionic
intermediate is stabilized via the azaallylic group as well as the
pyridine ring.

The kinetic consequences of increasing carbon acidity by
resonance delocalization have been elaborated by Bernasconi and
given the name the “Principle of Non-perfect Synchronization”
(Bernasconi, 1987, 1992, 2010). This principle can be
summarized by noting that full resonance stabilization,
which occurs only in the product and accounts for low pKa

values (i.e., thermodynamic stability of carbanions), requires full
p orbital character at the reacting carbon. Conversely, transition
states necessarily have only partial p orbital character, and
are therefore only partially resonance stabilized compared to
the product.
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Marcus theory casts activation free energy (1G‡) in terms
of the thermodynamic driving force of the reaction (1G0), and

the intrinsic reaction barrier (1G
‡

0; activation free energy for
reaction when1G0 = 0) (Kresge and Silverman, 1999; Silverman,
2000). An excellent discussion of Marcus theory applied to
enzymes is presented by Bearne and Spiteri (2005). In terms of
Marcus theory, the intrinsic barrier to proton transfer is greater
for carbon acids compared to heteroatom acids because of the late
development of resonance stabilization with carbon.

Table 2 presents the intrinsic barriers to enzymatic proton
transfers for which well-defined non-enzymatic and enzymatic
values can both be calculated (see Supplementary Material).
One fundamental catalytic mechanism that enzymes employ
is selective stabilization (binding) of an intermediate, thereby
lowering 1G0 (Albery and Knowles, 1976). A second, equally
important mechanism for catalysis is selective stabilization of
transition states (catalysis of an individual step) (Albery and

Knowles, 1976), thereby lowering 1G
‡

0. Within this context,
the values in Table 2 show distinct behaviors for cofactor
independent and PLP dependent enzymes.

Compared to non-enzymatic reactions, the two cofactor
independent enzymes decrease intrinsic barriers to proton
transfer by ∼5 kcal/mol, while the PLP dependent enzymes
increase intrinsic barriers by 2.4 ± 1.7 kcal/mol. The cofactor
independent enzymes enhance the rate of proton transfer by
stabilizing both the carbanion product (as evidenced by decreases
in substrate C-H pKas in active sites; Table 1) and the transition

state leading to it (as evidenced by decreases in 1G
‡

0; Table 2).
On the other hand, the PLP dependent enzymes presented
in Table 2 (all of which employ PLP in the pyridine N-
protonated form) achieve high rates of deprotonation exclusively
by selective stabilization of the carbanionic intermediate (C-
H pKa reduction). Indeed, the high degree of carbanion
stabilization on PLP enzymes is likely achieved by augmenting
resonance stabilization through active site interactions with the
cofactor, which inevitably leads to increased intrinsic barriers
seen in Table 2.

Gerlt et al. (1991), Gerlt and Gassman (1992, 1993a,b),
previously addressed a conundrum posed by carbon acid
deprotonation in enzyme active sites: the large difference
in pKas of active site acid/base residues and substrate C-H
makes deprotonation unfavorable. Central to their analysis is
the idea that the intrinsic barriers to C-H deprotonation in
active sites are similar to those in water (Gerlt and Gassman,
1992). If this were the case, then C-H pKas would have to
be reduced to that of the active site acid/base in order to
account for the observed rates of enzymatic deprotonation. The
authors championed concerted acid-base catalysis leading to

enol intermediates in deprotonation of α-carbonyl compounds
to account for the drastically reduced pKas of substrates.
The present analysis shows that enzymes can indeed lower
intrinsic barriers to C-H deprotonation compared to reactions
in water. This reduction in intrinsic barrier can be as large
as ∼7 kcal/mol in the case of proline racemase (Table 2),
corresponding to a rate enhancement of ∼105 fold. For proline
racemase, the experimental and computational evidence points
to the transition state being a fleeting carbanion (Albery
and Knowled, 1986; Stenta et al., 2008). As discussed in the
Supplementary Material, this corresponds to a C-H pKa of
16 in the active site (Table 1) and a difference in pKa of
∼9 units between the active site cysteine acid/base catalyst
and the substrate. The enzyme achieves a high rate of C-H
deprotonation not simply by lowering the C-H pKa to that of
the acid/base catalyst, but by coordinately lowering both 1G0

and 1G
‡

0, as has been discussed previously (Bearne and Spiteri,
2005). For proline racemase, 11Grxn is ∼-18 kcal/mol while

11G
‡

0 ∼-7 kcal/mol.
In conclusion, FEPs based on experimental data allow the

calculation of substrate C-H pKas in enzyme active sites based
on the relation between pKeq for the proton transfer and
known pKas of catalytic active site residues. The decreases
in C-H pKa provided by active sites ranges from moderate
(∼7 units) for relatively reactive substrates such as ketosteroids
and triosephosphates to large (∼20) for amino acids in PLP
enzyme active sites. Calculations of Marcus intrinsic barriers
for several reactions show that enzymes alter both intrinsic
reaction barriers (catalysis of an individual step) and carbanion
stability (selective binding of an intermediate) to achieve their
impressive rate enhancements. The results presented here are an
important step toward a complete quantitative understanding of
the fundamental origins of enzyme catalysis.
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