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Hepatitis B virus (HBV) remains a leading cause of liver-related morbidity and mortality
through chronic hepatitis that may progress to liver cirrhosis and cancer. The central role
played by HBV-specific CD8+ T cells in the clearance of acute HBV infection, and HBV-
related liver injury is now well established. Vigorous, multifunctional CD8+ T cell responses
are usually induced in most adult-onset HBV infections, while chronic hepatitis B (CHB) is
characterized by quantitatively and qualitatively weak HBV-specific CD8+ T cell
responses. The molecular basis of this dichotomy is poorly understood. Genomic
analysis of dysfunctional HBV-specific CD8+ T cells in CHB patients and various mouse
models suggest that multifaceted mechanisms including negative signaling and metabolic
abnormalities cooperatively establish CD8+ T cell dysfunction. Immunoregulatory cell
populations in the liver, including liver resident dendritic cells (DCs), hepatic stellate cells
(HSCs), myeloid-derived suppressor cells (MDSCs), may contribute to intrahepatic CD8+
T cell dysfunction through the production of soluble mediators, such as arginase,
indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines and the expression of
co-inhibitory molecules. A series of recent studies with mouse models of HBV infection
suggest that genetic and epigenetic changes in dysfunctional CD8+ T cells are the
manifestation of prolonged antigenic stimulation, as well as the absence of co-stimulatory
or cytokine signaling. These new findings may provide potential new targets for
immunotherapy aiming at invigorating HBV-specific CD8+ T cells, which hopefully
cures CHB.

Keywords: T cell exhaustion, liver tolerance, co-inhibitory signaling, metabolic regulation, intrahepatic antigen
recognition, interferon signaling, hepatitis B virus
INTRODUCTION

Hepatitis B virus (HBV) chronically infects more than 250 million people worldwide, which is more
than seven times the number of the human immunodeficiency virus (HIV) (1). Chronic hepatitis B
(CHB) accounted for over 800,000 deaths in 2015, rivaling HIV (2). Of the estimated 250 million
chronic HBV (CHB) carriers worldwide, treatment is indicated in just a small fraction (10-30%) (1).
Moreover, although current HBV therapies like nucleos(t)ide analogs (NAs) can effectively suppress
viral replication, they are incapable of directly targeting the stable episomal HBV reservoir, the
covalently closed circular DNA (cccDNA) (2). CHB patients remain at risk of developing liver
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cirrhosis and cancer despite available potentially life-long and
non-curative treatment (3, 4). This situation justifies an urgent
need for more effective HBV therapies.

The central role played by T cell responses in the control of
HBV infection is now well recognized (5–7). Immunocompetent
human adults readily clear acute HBV infection, up to 95% of the
time (8). T cell responses behind the transient, self-limited
infections are often described as strong and polyclonal (9–11).
In experimentally infected chimpanzees, depletion of CD8+ T
cells at the peak of viremia delays viral clearance until the T cells
return, providing the most definitive evidence that HBV
clearance is largely mediated by virus-specific CD8+ T cells.
Meanwhile, CD4+ T cells aid the activation and maintenance of
the CD8+ T cell responses in addition to triggering HBV-specific
humoral responses that prevent viral dissemination (12, 13). In
CHB patients, T cell responses are quantitively weak, and if
present, functionally impaired (9, 14). It has become evident that
multiple factors contribute to T cell dysfunction, but
immunological events in the liver appear particularly
important to establish T cell tolerance to HBV. The liver
environment has generally been considered tolerogenic,
plausibly to avoid detrimental immune reaction to gut-derived
microorganisms and xenobiotics (15, 16). The cellular and
molecular immunoregulatory mechanisms behind this long-
standing notion, and especially its implications on HBV
clinical outcomes, are beginning to be understood.

In this mini-review, we summarize the current understanding
of immunological factors deemed to contribute to T cell
dysfunction in the liver. A full appreciation of the mechanisms
behind intrahepatic T cell dysfunction is essential to develop a
‘cure’ for CHB and liver cancer by immune reinvigoration.
T CELL DYSFUNCTION DURING
HBV INFECTION

Several human and animal studies have sought to define the
frequency, phenotype, and function of HBV-specific CD8+ T
cells to compare and contrast these features between acute HBV
resolvers and CHB patients (11, 14, 17–20). There is consensus
that in CHB, effector CD8+ T cells show multiple levels of an
‘exhausted’ phenotype, i.e., markedly reduced capacity to
proliferate, produce IFNg, IL-2, TNFa, granzymes, or perforins
(9, 11, 18, 21). Characteristically low frequencies of HBV-specific
CD8+ T cells are often recorded in CHB patients than in acute
resolvers (14, 17, 18). Low CD8+ T cell numbers could be due to
either poor expansion or increased clonal deletion. Frequency
alone may not be of absolute importance over the function and
breadth of the T cell population (11, 14, 20). A higher frequency
of functional but partially exhausted CD8+ T cell with a CD127+
PD1+ phenotype was previously described in inactive CHB
carriers. A subset showing more profound exhaustion
displayed the CD127- PD1+ phenotype (20). Recently, acute
resolvers were shown to have a multi-specific T cell repertoire
covering HBV core, polymerase, and envelope epitopes in all the
study participants. By contrast, a fraction of the CHB patients in
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the same study had T cells against HBV core and polymerase,
with none against the HBV envelope (11). Similarly, HBV core
and polymerase but not envelope specific CD8+ T cells were
found in peripheral circulation in CHB patients in an
independent study (20). The absence of envelope-specific CD8+
T cells is thought to reflect clonal deletion, as envelope-specific
CD8+Tcells presumably becomehyper-responsive to the relatively
abundant hepatitis B surface antigen (HBsAg). However, caution
should be exercised in interpreting these findings since only a few
CD8+ T cell epitopes have been tested for each antigen. Besides the
quantities of the cognate antigen, differences in antigen processing
in the livermayalso affect thequalitativeandquantitative featuresof
HBV-specific CD8+ T cells.
MECHANISMS OF HBV-SPECIFIC
CD8+ T CELL DYSFUNCTION

Potential mechanisms of HBV-specific CD8+ T cell dysfunction
are summarized in Figure 1, and discussed below.

Immunoregulatory Mediators in Liver
Tolerance
Early studies on MHC mismatched liver transplants in animal
models established the liver as a tolerogenic organ (15).
Furthermore, studies in the 1970s already showed that soluble
human and rat liver extracts inhibit T cell activation and DNA
synthesis (22, 23). These extracts are now known to have been
arginase whose high expression levels in the liver and peripheral
blood have been associated with antigen nonspecific impairment
of T cells in both acute and chronic HBV patients (24, 25).
Hepatic necroinflammation may exacerbate the release of these
enzymes by hepatic cytolysis. Plausibly, the observed high
arginase levels during acute HBV infection serve as part of a
regulatory feedback loop to minimize liver damage (24). Similar
immunosuppressive enzymes that deplete metabolites required
for the proliferation and maintenance of functional T cells, such
as the tryptophan-depleting indoleamine-2-3deoxygenase (IDO)
have also since been identified (15, 25, 26). These enzymes are
secreted by various myeloid immune cells, including monocytic
and granulocytic myeloid-derived suppressor cells (MDSCs) that
have been found to be enriched in CHB patients (26–28).
Interestingly, a recent study by Yang et al. reported that
monocytic MDSCs (mMDSCs) were differentially upregulated
inHBeAg-positiveCHBpatients.HBeAgwas then shown to trigger
mMDSC expansion that led to the IDO-mediated suppression of
CD8+ T cell responses in vitro (28). Although the mechanism of
HBeAg-inducedmMDSCs expansion remains to be elucidated, this
report, supplementary to the previous reports on HBeAg
tolerogenicity (29, 30), suggests a novel targetable way by which
HBV exploits nonspecific immunosuppressive effects to maintain
liver persistence.

Other liver cell populations such as dendritic cells (DCs), liver
sinusoidal endothelial cells (LSECs) hepatic stellate cells (HSCs)
may also contribute towards T cell tolerance in the liver by
several mechanisms that include: (i) IFNg-dependent production
August 2021 | Volume 12 | Article 721975

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baudi et al. Intrahepatic T Cell Tolerance
FIGURE 1 | Potential mechanisms of HBV-specific CD8+ T cell dysfunction. Top panel: Illustration of how persistent antigen recognition, predominantly by HBV
infected hepatocytes, results in dysfunctional HBV-specific CD8+ T cells that fail to clear infection. Bottom panel: Illustration of how systemic and hepatic antigen
recognition may cooperatively trigger robust HBV-specific CD8+ T cell responses that result in viral clearance.
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of the soluble factors like IDO, arginase (31) (ii) activation of T
regulatory cells (Tregs) via the expression of anti-inflammatory
cytokines such as interleukin-10 (IL10) and transforming growth
factor-beta (TGFb) (15, 16, 32), (iii) upregulation of co-
inhibitory receptor ligands, particularly PD-L1 that leads to T
cell exhaustion in a positive feedback cycle with IL10 and TGFb1
(32, 33) (iv) Expression of cell killing ligands like FasL and
TRAIL (34). Notably, liver DCs have been described as immature
and dysfunctional compared to peripheral DCs (35). However,
this remains controversial in CHB because some studies don’t
report any such difference (36).

Negative Signaling Mechanisms
Exhausted CD8+ T cells exhibit reduced effector function often
in association with upregulation of co-inhibitory receptors such
as PD-1, cytotoxic T-lymphocyte associated antigen 4 (CTLA-4),
T-cell immunoglobulin and mucin domain-containing protein
(Tim-3) (37–41). Of these, PD1-PD-L1 interactions have so far
received the greatest attention as a target for tumor immune
therapy. Ligation of PD-L1 to PD-1 receptors on T cells impairs
downstream TCR signaling to inhibit their immune activation
(33). A brief overview of how PD-1 expression is regulated in
general is given by Bally et al. (42). The role of PD-1-PD-L1 in
HBV-specific CD8+ T cell dysfunction (37, 38, 43–46) has been
intensively investigated. Sustained PD-1upregulation is
correlated with HBV-specific T cell dysfunction during CHB
(18, 43) and PD-L1 expression on peripheral blood was shown to
be upregulated in CHB patients (47). PD-L1 expression could
also be induced on hepatocytes by type I and type II interferons
(48). Anti-PD-L1 treatment on CHB patient-derived peripheral
and intrahepatic HBV-specific CD8+ T cells enhanced IFNg
expression in vitro (38, 44), suggesting the immune restoration
potential of PD-1 blockade. However, promising results of the in
vitro studies do not necessarily assure therapeutic value in vivo.
In HBV transgenic mice, antibody blockade, as well as genetic
removal of PD-1 signaling, increased the frequency of HBV-
specific CD8+ T cells, but the majority of HBV-specific CD8+ T
cells remained dysfunctional (37). Importantly, a recent clinical
study by Gane et al. showed that treatment of HBeAg negative
CHB patients with a single dose of the PD-1 antibody Nivolumab
resulted in modest HBsAg reduction within 24 weeks without
any adverse events (46), and only one out of 10 patients exhibited
HBsAg seroconversion and strong induction of HBV-specific
CD8+ T cell responses. While the results were encouraging, the
therapeutic impact of PD-1 signaling blockade was rather
marginal. The data raises the possibility that other yet
unknown co-regulatory molecules are present to suppress
HBV-specific CD8+ T cell responses. Simultaneous blockade of
multiple inhibitory receptors seems to improve therapeutic
potential. In vivo co-blockade of PD-1/LAG-3 and PD-1/Tim-
3 during LCMV infection synergistically enhanced CD8+ T cell
responses (49, 50). Dual PD-1/CTLA-4 pathway blockade
showed similar synergism in partially reversing HBV-specific
CD8+ T cell exhaustion in vitro (51) There is a paucity of data on
the impact of multiple target blockade in CHB, and the nature
and extent of negative regulatory molecules’ co-regulation and
expression may differ between patients. Personalized T cell
Frontiers in Immunology | www.frontiersin.org 4
characterization may be required for optimized treatment to
reverse T cell exhaustion.

Metabolic Dysregulation in T Cells
Metabolic reprogramming after priming is important for T cell
differentiation because energy demand largely differs between
naïve, effector, and memory T cells (52–54), and mitochondrial
plasticity is directly linked to T cell metabolism (55). Metabolic
abnormalities, such as reduced glycolysis and oxidative
phosphorylation, were observed in exhausted virus-specific
CD8+ T cells during the early phase of chronic lymphocytic
choriomeningitis virus (LCMV) infection (56). PD-1 high HBV-
specific CD8+ T cells in CHB patients were also shown to highly
express the glucose transporter, Glut1, and dependent on glucose
supplies (57). These changes were accompanied by increased
mitochondrial size and lower mitochondrial potential. Recently,
Fisicaro et al. reported extensive mitochondrial dysfunction,
such as mitochondrial membrane potential depolarization and
reactive oxygen species (ROS) elevation in association with
upregulation of co-inhibitory receptor genes in the CD8+ T
cells from CHB patients (58). More importantly, mitochondrial
antioxidant treatment using mitoquinone and a piperidine-
nitroxide could modestly enhance IFNg production by HBV-
core specific CD8+ T cells from these patients (58), indicating a
potential role for ROS in CD8+ T cell exhaustion. Coordinated
protein catabolism by the ubiquitin-proteasome and autophagy-
lysosome systems is also essential for CD8+ T cell survival,
proliferation, and memory formation (59–61). In addition,
autophagy was recently shown to enable HBV-specific effector
memory CD8+ T cells to reside in the liver and resist
mitochondrial depolarization (62). Importantly, genes
associated with ubiquitin-proteasome and autophagy-lysosome
systems were also markedly downregulated in exhausted HBV-
specific CD8+ T cells in CHB patients (59, 63). In vitro treatment
of exhausted HBV-specific CD8+ T cells with polyphenols, such
as resveratrol and oleuropein, improved autophagic influx and
antiviral CD8+ T cell function (64). More recently, p53, a known
negative regulator of glycolysis and an enhancer of oxidative
phosphorylation (OXPHOS), was shown to be upregulated in
exhausted HCV-specific CD8+ T cells from chronic HCV
patients (65). Its relevance to chronic HBV infection remains
to be determined because p53 was thought to be upregulated by
type I interferon (IFN-I) response, which is largely absent during
HBV infections. Overall, these results characterize CD8+ T cell
exhaustion as a state of metabolic insufficiencies with suppressed
mitochondrial respiration, glycolysis, protein degradation. These
abnormalities are reminiscent of functional defects previously
associated with CD8+ T cell senescence, although exhaustion
and senescence are distinctly different in terms of generation,
development, and metabolic and molecular regulation (63, 66).

Intrahepatic Antigen Recognition
The tolerogenic environment in the liver likely contributes to
imprinting the genetic and epigenetic signatures in the
dysfunctional HBV-specific CD8+ T cells during CHB. It is
important to keep it in mind, however, that efficient HBV-
specific CD8+ T cell responses are induced in the majority of
August 2021 | Volume 12 | Article 721975
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adult-onset HBV infections, resulting in viral clearance. Factors
that determine the dichotomy presumably include traditional
factors such as T cell receptor (TCR) signaling (signal 1), co-
stimulatory signaling (signal 2), and cytokine signaling (signal 3).

A strong antigenic stimulus is necessary for effective CD8+ T
cell responses (67). We have shown recently that the magnitude
of HBV-specific CD8+ T cell responses was directly correlated
with the level of early antigen expression in an animal model of
transient HBV infection, i.e., hydrodynamic transfection of HBV
plasmid (67). Suppression of HBV by siRNA also inhibited the
expansion of HBV-specific CD8+ T cells (67), indicating the
importance of strong antigen recognition for the induction of
HBV-specific CD8+ T cell responses. Paradoxically, the same
antigenic stimulus becomes extremely detrimental for T cell
responses if it is prolonged (68–70). Indeed, HBV-specific
effector memory CD8+ T cells that were generated by DNA-
prime, vaccinia-boost immunization produced a large amount of
IFNg upon antigen recognition in the liver, but they lost the IFNg
producing ability almost completely within three days during
which they continuously recognized antigen and express PD-1
(71). Slow blood flow in the liver sinusoid, as well as tightly
packed microanatomy of the hepatic parenchyma, facilitate
prolonged interaction between HBV infected hepatocytes and
HBV-specific CD8+ T cells (72). Intravital imaging analysis
revealed that HBV-specific CD8+ T cells were able to
recognize HBV expressing hepatocytes while they were still in
the sinusoid (73). Prolonged antigen recognition appears to
inhibit TCR signaling partially through PD-1 signaling (74).

Antigen presentation by hepatocytes alone is probably
insufficient for priming of functional HBV-specific CD8+ T cell
responses. We have previously shown that HBV-specific naïve
CD8+ T cells are primed by HBV-expressing hepatocytes (75).
Although hepatocyte-primed naïve and memory HBV-specific
CD8+ T can expand rapidly, they produce very little to no IFNg
and Granzyme B (75–77). The lack of functional differentiation
presumably reflects the absence of co-stimulatory signaling (i.e.,
signal 2) as hepatocytes do not express ligands for co-stimulatory
molecules. Indeed, activation of dendritic cells appears to
facilitate functional differentiation of intrahepatically primed
CD8+ T cells (75, 76). In addition, expression of a co-
stimulatory molecule OX40 expression by CD4 T cells and its
ligand OX40L by hepatic innate immune cells were shown to be
pivotal in determining HBV immunity in an HBsAg transgenic
mouse model (78).

Recently, we and others characterized genetic signatures of
intrahepatic T cell priming. Similar to HBV-specific CD8+ T
cells in CHB patients, the intrahepatically primed, dysfunctional
CD8+ T cells showed upregulation of inhibitory molecules PD-1,
Lag 3, and Tim-3, together with enrichment in binding sites for
the transcription factors AP-1, NFAT, NR4A, OCT, TCF, and
EGR (79). Interestingly, NR4A has been implicated in T cell
exhaustion that limits CAR-T cell-based immunotherapy in solid
tumors and LCMV infection (80, 81). In stark contrast to
exhausted CD8+ T cells during LCMV infection, genes related
to IFN-I signaling activation were downregulated in
intrahepatically primed T cells. Importantly, strong stimulation
Frontiers in Immunology | www.frontiersin.org 5
of IFN-I signaling in the liver enhanced T cell responses (82),
suggesting that IFN-Is indeed provide the third signal (signal 3)
that complements the TCR signal (signal 1) and co-stimulatory
signal (signal 2). It should be noted, however, that the same IFN-
I signaling could suppress HBV-specific CD8+ T cell responses
by reducing antigen expression levels during the early phase of T
cell priming (67), a phenomenon recently highlighted in the
development of RNA vaccines (83).
PERSPECTIVES

Recent advances in unbiased deep sequencing and other genetic
analysis methods have accelerated the delineation of CD8+ T cell
dysfunction in the liver, providing numerous targets to test for
novel immunotherapies against CHB. It would be now important
to determine whether the functionalities of highly exhausted T
cells are reversible. Even more crucial is to establish an ideal
animal model for evaluating the therapeutic value of each target.
Several mouse models have been used to study HBV-specific
CD8+ T cell responses during transient and persistent antigen
expression. The advantages and disadvantages of each mouse
model have been described elsewhere (84, 85). While these
models provided useful information on T cell responses, none
of them mimics a bona fide HBV infection. It is therefore
essentially impossible to assess the extent to which chronically
infected individuals can tolerate the restoration of HBV-specific
CD8+ T cell responses, as the expansion of functional CD8+ T
cells likely cause hepatitis. In this regard, antigen suppression
should be incorporated in the immune restoration approach to
mitigate the risk of uncontrolled T cell expansion.
CONCLUSION

Given the stability of cccDNA, invigoration ofHBV-specificCD8+T
cells remains one of the most viable approaches to cure CHB.
Therefore, delineation of the key pathways and processes that
underline HBV-specific CD8+ T cell dysfunction T cell is an
important research goal to develop effective HBV immunotherapies.
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