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Abstract

Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in
acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is
one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases
such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating
deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced
changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury.
However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be
initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling
and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the
effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src
activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like
supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical
area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by
supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by
Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced
increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena
may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src
family of tyrosine kinases remain to be explored.
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Introduction

Pancreatitis is initiated by numerous insults [1]. The most

commonly used model to study pancreatitis in rodents is the

caerulein model. Caerulein, an octa-peptide analog of the

hormone cholecystokinin, at supraphysiologic concentrations

initiates multiple signaling cascades simultaneously, which even-

tually culminate in cell death and inflammatory mediator

generation [2–6]. The commonly studied upstream signaling

mechanisms include the activation of Src [7], protein kinase C

isoforms [8,9], calcium signaling [10–12], the calcium dependent

protein kinase Pyk2 [13,14], PI3 Kinases [15–17], MAP kinases

[18–20], ERK [21] etc. These regulate phenomena such as actin

reorganization [22–24], caspase activation [5,6], transcription

factor activation such as AP-1 [2], translocation of p65 unit of NF-

kB to the nucleus [25], vesicular trafficking such as from the Golgi

[26], trypsinogen activation [26], mitochondrial depolarization

[5,27], reactive oxygen species formation [27]- eventually initiat-

ing a mode of cell death or the generation of inflammatory

mediators.

Calcium is thought to be an essential player in cell death and

proinflammatory pathways. Studies reducing intracellular or

extracellular calcium concentrations using various methods [28],

such as calcium chelators (e.g. BAPTA –AM or EGTA) [29] or

antagonists to intracellular receptors upstream of the release of

calcium (e.g. the inositol triphosphate, or ryanodine receptors)

[30,31], have supported its role in these pathways. The increase in

intracellular calcium is commonly thought to be ‘‘essential but not

sufficient’’ for the initiation of these pathways since calcium

chelators do prevent certain crucial steps (e.g. trypsinogen
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activation, NF-kB activation) [2,32], but agents that increase

intracellular calcium alone (e.g. ionomycin or thapsigargin) have

been ineffective in activating proinflammatory or cell death

phenomena in most studies [2,28,32].

Acinar cells express numerous members of the Src family of

tyrosine kinases [7,22,33–36], the roles of which in caerulein

induced outcomes is currently being explored. Phenomena

involving Src include basolateral reorganization of actin, which

is dependent on cortactin phosphorylation perhaps via the Src

family member Yes [7,22]. This results in blebbing and acinar

injury. Recently c-Src has been implicated in vesiculation of the

Golgi and transit of proteins through the Golgi cisternae have

been inhibited by mutant dynamin that cannot be phosphorylated

by Src [37]. Our recent studies have supported the antegrade

vesiculation of the Golgi in pancreatic acinar cells to be associated

with pro-cathepsin B processing and interference with this to result

in prevention of caerulein induced trypsinogen activation [26].

While Src family members are activated by various hormones

that act via cell surface receptors, the agonists that activate one

family member may not activate another [13,36]. Moreover some

ligands like bombesin and carbamylcholine, which activate certain

family members (e.g. Yes) [13] also increase intracellular calcium.

The calcium dependent tyrosine kinase Pyk2 is also activated by

stimuli such as supramaximal caerulein [14]. We aimed to explore

the cell biologic and phenotypic outcomes of globally activating

tyrosine kinases, if this is associated with an increase in

intracellular calcium and to learn whether Src may play a role

in these outcomes. To globally activate tyrosine kinase signaling in

a non-receptor mediated manner, we treated freshly prepared

acinar cells (which are able to generate trypsin, unlike those after

overnight culture) with the tyrosine phosphatase inhibitor

pervanadate, and studied its effects in the presence and absence

of the Src inhibitor Dasatinib. Dasatinib (BMS-354825) [38] is a

highly specific inhibitor of the Src-Abl family of tyrosine kinase

which is approved for human use [39–41]. Previously we have

shown the pyrazolo-pyrimidine Src inhibitor PP2 and SU6656 to

interfere with caerulein induced Src mediated actin reorganization

[7]. We also compared the effects of pervanadate to those of

supraphysiologic caerulein.

Interestingly, while pervanadate mimicked the biochemical

effects of supraphysiologic caerulein in initiating the morpholog-

ical changes and deleterious phenotypic outcomes in acinar cells,

its effects were independent of an increase in cytosolic calcium.

Further, Dasatinib inhibited Src and prevented these outcomes

without affecting calcium signaling. These findings support the

existence of calcium independent mechanisms by which injury

may be initiated in acinar cells.

Materials and Methods

Animals
CD-1/ICR mice were purchased from Charles River Labora-

tories (Wilmington, MA). Mice were housed with a 12-h light/dark

cycle, at temperatures from 21–25C, were fed standard laboratory

chow, and allowed to drink ad libitum. Caerulein was purchased

from Bachem (King of Prussia, PA). Dasatinib was purchased from

LC labs (Woburn, MA). All other reagents and chemicals were

purchased from Sigma (St. Louis, MO). All experimental protocols

were approved by the Institutional Animal Use Committee of the

University of Pittsburgh (Pittsburgh, PA).

Preparation and the Use of Acini
This procedure was carried out as previously described [42,43].

Fresh acini were used for all assays. For treatment with inhibitors,

acini were incubated for 1 hour with Dasatinib (10 mM stock in

DMSO, final concentration 10 mM) prior to adding the stimulus

(100 nM caerulein; CER, or 100 mM pervanadate; PV). Acinar

viability before use was .95%, as indicated by trypan blue

exclusion.

Immunofluorescence Studies
These were done on acinar cells filtered through a 70 micron

mesh treated as described in the results section and in the legend of

Figure 2, and were processed as previously described [7]. Briefly,

these were fixed with 2% paraformaldehyde, permeabilized,

blocked with 5% normal goat serum, and exposed to an antibody

against GM130 (1:500, BD biosciences, San Jose, CA) for 1 hour.

After 3 washes, goat anti-rabbit Alexa 488 (Invitrogen, Carlsbad,

CA.), and DRAQ5 (1:1000) for nuclear staining, or Rhodamine

phalloidin [7,44] were added for 1 hour. After washing, slides were

mounted (fluormount, Sigma, St. Louis, MO) and imaged on a

Zeiss Meta (LSM510) confocal microscope using a 636 lens and 1

micron thick optical sections. Images were processed as described

previously [7] and analyzed using Adobe Photoshop CS4.

Quantification was done for cells parallel to the coverslip. For F-

actin quantification, as described by Torgerson and McNiven

[24], a box was placed to cover entire apical or basolateral

domains or a background area, and the integrated density from

each of these was quantified. The background density was

subtracted from that of the apical or basolateral domains and

the results were depicted as an apical to basal ratio. For measuring

antegrade extension of the Golgi, the pixel length of the apical to

basal axis of the cell, and the pixel length of the Golgi over which

this line passed were measured. Results were calculated as length

of the Golgi as a ratio of apical-basal axis. 25–30 cells were

quantified for each condition from 3 different experiments. The 3

groups were compared using a one way ANOVA.

Trypsin Assay
This was done by the method of Kawabata et al [45] as

described previously [26]. Briefly, after treatment with CER

100 nM, PV 100 mM, CER+DAS (10 mM) and PV+DAS (10 mM)

for 30 min and washed with MOPS buffer [46] to stop

stimulation. Cell pellets were homogenized in MOPS containing

buffer. Trypsin activity was measured by a kinetic assay

quantifying cleavage of the substrate (Boc-Gln-Ala-Arg-MCA,

trypsin 3135; Peptides International, Inc., Louisville, KY) in the

buffer [50 mM Tris (pH 8.1), 150 mM NaCl, 1 mM CaCl2,

0.01% BSA] flurometrically [(Versa FluorTM, Biorad) (Excitation

380-nm, Emission 440-nm] and quantified as arbitrary units per

microgram of DNA in the homogenate of the acini sample and

expressed as percentage maximal.

Lactate Dehydrogenase Assay
Acinar cell injury was measured using a cytotoxicity assay for

lactate dehydrogenase (LDH) leakage (Roche Applied Sciences,

Indianapolis, IN) after 4 hours of treatment. Absorbance was

measured at 490 nm and background at 690 nm, 15 min after

stopping the enzyme reaction. Results were expressed as percent of

total LDH (after lysis with 1% Triton-X100).

Intracellular Calcium Imaging
Acinar cells alone or after treatment with Dasatinib (10 mM) as

above were loaded with Fura-2AM as described previously [47],

coated on glass bottom culture dishes (MatTek corporation,

Ashland, MA) and imaged on a temperature-controlled motorized

stage of an Olympus IX81 inverted microscope (Melville, NY)

Calcium Independent Acinar Injury
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with a 206 (0.70 NA) objective and a QImaging Retiga EXi CCD

camera (QImaging, Burnaby, Canada). Baseline images were

taken, and cells with extremely bright or dim fluorescence were

omitted. Caerulein (100 nM) or PV (100 mM) were added, and

cytosolic calcium levels were determined by alternate excitation at

340 nm and 380 nm, measuring emission at 510 nm. Pre- and

post-images using differential interference contrast were obtained

to demonstrate appropriate cell morphology. Image acquisition

was with the MetaMorph 7.5 Imaging System using the

MetaMorph 6.3 software. The 340/380 emission ratio was

averaged for 7–25 acini per field, with background subtraction

for each experiment.

Immunoprecipitation and Western Blotting
Isolated acini were stimulated with CER 100 nM, PV 100 mM,

CER+DAS (10 mM) and PV+DAS (10 mM) for various times and

washed with ice-cold PBS to stop stimulation. Acini were

homogenized in lysis buffer containing various protease inhibitors

(Complete, EDTA Free; Roche, Mannheim, Germany). Lysates

were used for Immunoprecipitation after protein estimation with a

Pierce protein assay kit (Thermo Fisher Scientific, Rockford, IL).

In this case, lysates (1 mg/ml) were incubated with 5 mg/ml anti-

Src primary antibody (SC-18; Santa Cruz Biotechnology, Inc.,

CA) for 2 h at 4uC, followed by addition of 4 mg of protein-A

beads for 1 h in the same buffer. The beads were then washed

three times, boiled in 16Laemmli sample buffer, and analyzed by

Western blot. Membranes for western blots were incubated with

primary antibody [p-Src (Y-416); (1:500) (Cell Signaling, MA)]

and then probed with horseradish peroxidase-labeled goat anti-

rabbit IgG (Sigma, St. Louis, MO). To visualize the band intensity

on membrane, autoradiography was performed by using ECL plus

Western Blot Detection Kit (Amersham GE Health care,

Buckinghamshire, UK). Intensity of bands was quantified by

scanning the film, storing it as a TIFF file and measuring the

integrated density of each band in Adobe Photoshop CS4 after

subtracting the back ground. Active Src levels (PY-416) were

normalized to total Src (SC-18) for loading. Results were expressed

as fold change over basal.

Statistical Analysis
Data depicted is from at least 3 different experiments. Images

shown are representative images from these and each parameter is

shown as mean 6 SEM. Pair wise comparisons were done using

the Student’s T test for normally distributed data and the Mann-

Whitney test for data without a normal distribution. Multiple

groups were compared using one way ANOVA. A p value of

,0.05 was regarded as significant.

Results

Pervanadate Induces Src Activation Which is Prevented
by Dasatinib

Addition of the tyrosine phosphatase inhibitor pervanadate (PV)

at the commonly used concentration of 100 mM resulted in rapid

activation of Src as seen by an increase in its phosphorylation at

Y416 on western blotting of Src immuno-precipitates (Figure 1A).

This was sustained over 10 minutes. This increase in Y416

phosphorylation was similar to what we have previously noted

with supramaximal caerulein, which induces cell injury [7].

Pervanadate induced activation of Src was prevented by the Src

inhibitor Dasatinib as evidenced by a lack of increase in Y416

phosphorylation (Figure 1B). Likewise Dasatinib prevented

100 nM caerulein induced activation of Src (Figure 1C).

Pervanadate Induces Basolateral F-actin Reorganization,
Antegrade Golgi Fragmentation which is Prevented by
Src Inhibition

Since pervanadate activates the Src family, we then studied F-

actin localization, which we have previously shown is dependent

on Src activation in pancreatic acinar cells [7]. Normally acinar

cells have enrichment of F-actin (shown in red) in the sub-apical

areas of acinar cells (Figure 2A). Pervanadate (100 mM) caused

reorganization of F-actin to the basolateral areas (Figure 2A&B)

with a reduction in the apical to basal F-actin ratio (Figure 2D).

This was dependent on Src as evidenced by prevention of this

phenomenon by Dasatinib (Figure 2C, D). This phenomenon is

very similar to caerulein induced actin reorganization [24], which

is prevented by the Src inhibitor PP2 [7].

The Golgi in acinar cells (shown in green) is normally arranged

as compact stacks in the supra-nuclear area (Figure 1E), the

thickness of which (measured as apical-basal length) is normally

less than 25% of the length of apical-basal axis of the cells

(Figure 2H). We have recently shown caerulein to cause antegrade

fragmentation of the Golgi in pancreatic acinar cells [26]. Recent

studies have shown that Src regulates similar Golgi phenomena in

other cells [37]. We therefore studied if Src activation by

pervanadate may result in antegrade fragmentation of the Golgi.

Indeed, pervanadate treatment for 10 minutes disrupted the Golgi

stacks in an antegrade manner with the Golgi extending to

51.863% of the apical-basal axis (Figure 2F, H). This extension

was prevented by Dasatinib (29.662.5%, p,0.002 Figure 2G, H).

Pervanadate Induced Trypsinogen Activation and Acinar
Injury is Dependent on Src Activation

We have recently shown that trypsinogen activation is regulated

by post Golgi trafficking. We therefore studied if pervanadate

treatment would result in trypsinogen activation. Pervanadate

treatment of acini for 30 minutes resulted in a 4.2 fold increase in

trypsinogen activation in acinar homogenates compared to acini

under basal conditions (Figure 3A). This was significantly reduced

by inhibiting Src with Dasatinib. Similarly, supramaximal

(100 nM) caerulein induced trypsinogen activation (2.7 fold basal,

Figure 3B) was significantly reduced by Dasatinib. Therefore Src

activation seems to regulate trypsinogen activation.

Since intra-acinar protease activation, and actin reorganization

are thought to be involved in acinar cell injury, we therefore

studied if LDH leakage, a marker of acinar injury is affected by

changes affecting trypsinogen activation. Indeed incubation of

acinar cells with pervanadate resulted in an increase in LDH

leakage compared to the acini incubated under basal conditions

(19.2 vs 9.8 percent P,0.01, Figure 3C). This was similar in extent

to the amount of LDH leakage induced by supramaximal

(100 nM) caerulein (17.6 vs 9.8 percent P,0.02, Figure 3D). Src

inhibition with Dasatinib resulted in a reduction in both

pervanadate and caerulein induced acinar injury. Therefore Src

seems to regulate both deleterious phenomena, i.e. intra-acinar

protease activation and actin reorganization, consequently regu-

lating acinar injury.

Pervanadate Induced Phenomena are Independent of an
Increase in Cytosolic Calcium

Since several studies have proposed an increase in cytosolic

calcium to be necessary for premature trypsinogen activation [28–

31], we therefore studied if pervanadate increases cytosolic

calcium, or if Src inhibition with Dasatinib affects caerulein

induced increases in cytosolic calcium. While there was no

increase in cytosolic calcium under basal conditions over 10

Calcium Independent Acinar Injury
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minutes (black triangles, BASAL Figure 4), 100 nM caerulein

caused a rapid and appropriate increase in cytosolic calcium (red

squares). This caerulein induced increase was unaffected by

Dasatinib, with which the acini had been pre-incubated and which

was present in the medium throughout the assay (pink squares).

Surprisingly, pervanadate (blue diamonds) did not cause an

increase in cytosolic calcium after addition to acini over this

duration, during which we note significant Src activation

(Figure 4).

Discussion

In this study we note that pervanadate treatment of acinar cells

results in F-actin reorganization, trypsinogen activation and acinar

injury independent of an increase in cytosolic calcium. This seems

to involve Src since Dasatinib prevents the activation of Src, in

addition to inhibiting F-actin reorganization, antegrade fragmen-

tation of the Golgi, trypsinogen activation and acinar injury

induced by pervanadate, which on its own does not increase

Figure 1. Src is activated by pervanadate and supramaximal Caerulein. Western-blot of immunoprecipitated Src after treatment of acini
with 100 mM pervanadate (PV) for various times (A), 2 minutes of 100 mM pervanadate with or without pre-incubation with 10 mM Dasatinib (DAS) (B)
or 100 nM caerulein (CER) with or without pre-incubation with 10 mM Dasatinib (Das) (C). These were blotted for antibodies to Src PY416 (i.e. active
Src, upper panel), and then stripped and blotted for Total Src (SC-18, Lower panel). Corresponding graphs shown on the right show active Src levels
(PY-416) as a ratio to total Src (SC-18) depicted as fold change over basal (BAS). Each data point was calculated from 3 or more experiments. For
figure 1A, the graph depicts fold increase over BAS at the time of adding the stimulus and the asterisks in the graph depict a p value of #0.02. p
values for the graphs corresponding to figure 1B, C are mentioned above these.
doi:10.1371/journal.pone.0066471.g001
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Figure 2. Pervanadate induced F-actin reorganization and antegrade Golgi fragmentation is inhibited by Dasatinib. Fluorescence
imaging of acini under basal conditions (Basal, A, E), after stimulation with 100 mM pervanadate (PV) for 10 minutes (B,F) or pervanadate treated acini
in the presence of Dasatinib (PV+DAS, C,G) showing F-actin (Red), the Golgi marker GM130 (green) and nuclei (Blue). Under basal conditions F-actin
(A) is enriched in the sub-apical area, and the stacks of Golgi (E) in the supranuclear area occupying ,25% of the apical-basal axis length (H). 100 mM
pervanadate within 10 minutes reorganizes the F-actin to the basal surface (B) and induces antegrade fragmentation of the Golgi (F). The
pervanadate induced changes in F-actin (C) and Golgi (G) are prevented in acini pre-incubated with 10 mM Dasatinib. Quantification of integrated
density of apical to basal ratios of F-actin staining (D) and ratio of Golgi length in the apical-basal axis to that of the acinar cell (H) from 3 different
experiments are shown. The measurement bar (left lower corner) depicts 10 mm.
doi:10.1371/journal.pone.0066471.g002

Figure 3. Dasatinib reduces pervanadate and caerulein induced trypsinogen activation and acinar cell injury. Trypsin activity is
increased in cell homogenates from acini treated with 100 mM pervanadate (PV) (A), 100 nM caerulein (CER) (B) for 30 minutes. Lactate
dehydrogenase (LDH) leakage is increased from acini treated with 100 mM pervanadate (PV) (C), 100 nM caerulein (D) for 4 hours. Preincubation with
10 mM Dasatinib (DAS) prevents these phenomena in response to both pervanadate and caerulein (A, B, C, D). BAS; Basal conditions. p-values
mentioned in the figure were calculated using the Student’s t-test. Each bar representing mean 6 SEM, was calculated from at least 3 different
experiments.
doi:10.1371/journal.pone.0066471.g003
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cytosolic calcium levels. These phenomena induced by pervana-

date are very similar to those known to be induced by

supraphysiologic caerulein (apart from the increase in cytosolic

calcium), the injurious effects of which were also prevented by

Dasatinib.

These findings suggest the possibility of acinar cell injury being

triggered by a complex involving aberrant vesicular trafficking and

cytoskeletal events such as antegrade vesiculation of the Golgi [26]

and reorganization of F-actin to the basolateral surface [7,22]

respectively, all without increasing cytosolic calcium concentra-

tions. So far the ligands known to induce reorganization of actin in

acinar cells via receptor mediated mechanism (e.g. carbamylcho-

line, caerulein at supraphysiologic concentrations) also increase

cytosolic calcium [48]. While agents inducing oxidant stress such

as hydrogen peroxide reorganize F-actin in acinar cells and induce

cell injury, chelation of intracellular calcium has shown to prevent

this and resulting acinar injury in the same study [49]. Similarly,

studies using the intracellular calcium chelator BAPTA-AM

[28,50,51], extracellular chelator EGTA [50], omission of calcium

in the extracellular medium [28] have shown dependence of

trypsinogen activation on calcium whether mediated by supra-

physiologic caerulein or TNF-a [51]. Water immersion stress also

reduced trypsinogen activation along with reducing basal levels as

well as the peak and plateau cytosolic calcium levels induced by

supraphysiologic caerulein [52]. However, the sole increase in

cytosolic calcium such as with thapsigargin or ionomycin does not

result in trypsinogen activation [28]. Therefore, the question

whether it is the basal calcium levels necessary for cell signaling or

the elevation in cytosolic calcium induced by injurious agents that

plays a role in the deleterious outcomes is so far unanswered.

Interestingly, supraphysiologic caerulein induced Src activation

has been shown to be prevented by chelation of intracellular

calcium [33]. Conversely, store mediated calcium entry has been

thought to be Src dependent based on its inhibition using PP1

[53]. Our studies however show that Dasatinib did not inhibit the

cytosolic calcium increase induced by caerulein. This seems

logical, since the release of intracellular calcium induced by

supraphysiologic caerulein peaks within a few seconds of its

addition and likely precedes the activation of Src which peaks

between 1–2 minutes [36].

In this study, the antibody used to immuno-precipitate and pull

down Src binds an epitope common to all Src family members.

We therefore have not characterized the specific member(s)

involved in the phenomena noted. Acinar cells express several

members of the Src family, including c-Src, Lyn, Yes, Fyn

[7,22,36] which are activated by diverse stimuli [13,36] and are

proposed to have diverse functions [34]. It remains to be explored

whether it is the magnitude of Src activation or the activation of

specific members of the Src family that play a role in the outcomes

we note. Supraphysiologic caerulein has been shown to activate

both Yes and Lyn [7,13,36], which are the two best studied Src

family members in acinar cells. However, both of these are

partially activated by the high affinity CCK receptor agonist JMV

180 [13,36], though to a lesser extent than supraphysiologic

caerulein. JMV 180 however antagonizes low affinity receptor

activation, does not result in trypsinogen activation [54], and

reduces the severity of caerulein induced pancreatitis [55].

Potential members that have been implicated in post Golgi

trafficking in other systems include c-Src [37]. The Golgi has been

thought to regulate trypsinogen activation in acinar cells via pro-

cathepsin B processing [26]. Yes has been thought to regulate

actin dynamics in acinar cells [7,22] and is involved in injurious

blebbing. The activation of trypsin, followed by its secretion by

agonists such as bombesin does not result in acinar injury [56].

Therefore the depletion of F-actin from the sub-apical surface as

induced by supramaximal caerulein, and the prevention of this

with partial restoration of secretion, as shown for PP2 [22],

support the role of the induction of both trypsinogen activation

and inhibition of secretion bring responsible for acinar injury. This

is supported by recent data that carbamylcholine, which at high

doses also activates Src family members [13] depletes subapical

actin [48] and results in acinar injury [57]. While we do not

propose that Src family kinase activation is solely responsible for

the observed outcomes, the inhibition of these by Dasatinib,

suggests the involvement of the Src family in the phenomena

noted. Previous studies looking at vanadate have found it

ineffective in preventing trypsinogen activation in acinar cells

[58], which is in agreement with our data.

In summary, we have described two key cell biological events-

antegrade vesiculation of the Golgi and apical F-actin depletion

and its reorganization to the basolateral surface, which in previous

studies have been shown to be involved in trypsinogen activation

[26] and injurious blebbing of acinar cells [7] respectively, to result

from an agent-pervanadate, without pervanadate elevating cyto-

solic calcium levels. This suggests that acinar cell injury can be

initiated independent of an increase in cytosolic calcium. The

inhibition of these phenomena and those induced by supraphys-

iologic caerulein by Src inhibition [7,37] without Dasatinib

affecting the increase in cytosolic calcium induced by caerulein

support the need of further studies to explore the role of Src in

these phenomena.
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Figure 4. Pervanadate and Dasatinib do not affect resting or
caerulein induced changes in cytosolic calcium. Cytosolic calcium
levels in Fura-2AM loaded acini measured over 10 minutes. Arrow
indicates time of addition of the stimulus. 100 mM pervanadate (PV,
blue diamonds) does not result in an increase in resting cytosolic
calcium levels, which remain unchanged in its presence, similar to basal
acini (BASAL, black triangles). 100 nM Caerulein (100 nM CER, red
squares), causes a prompt increase in cytosolic calcium levels, which is
not reduced in the presence of 10 mM Dasatinib (100 nM CER+10 mM
DAS, pink squares). Each data point represents mean value calculated
over multiple (n$3) experiments, in each of which 7–25 acini per field
were analyzed. Standard error of mean is depicted as a bar. Asterisks
correspond to time points at which calcium levels were significantly
different (p,0.05) from basal levels compared to either conditions with
100 nM Caerulein alone, or to the same in the presence of 10 mM
Dasatinib. Calcium levels in conditions with 100 mM Pervanadate were
not significantly different from basal.
doi:10.1371/journal.pone.0066471.g004
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