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Abstract

Background: Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole-genome
sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular tools for
CNV/CNA discovery and analysis based on read depth. Findings: Herein, we present an extension of CNVnator developed in
Python—CNVpytor. CNVpytor inherits the reimplemented core engine of its predecessor and extends visualization,
modularization, performance, and functionality. Additionally, CNVpytor uses B-allele frequency likelihood information
from single-nucleotide polymorphisms and small indels data as additional evidence for CNVs/CNAs and as primary
information for copy number-neutral losses of heterozygosity. Conclusions: CNVpytor is significantly faster than
CNVnator—particularly for parsing alignment files (2-20 times faster)—and has (20-50 times) smaller intermediate files.
CNV calls can be filtered using several criteria, annotated, and merged over multiple samples. Modular architecture allows
it to be used in shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into
JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted analysis of
CNVs by any user. CNVpytor release and the source code are available on GitHub at https://github.com/abyzovlab/CNVpytor
under the MIT license.
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Introduction improvements in CNV callers, moving to parallel processing,
better compression, modular architecture, and new statistical
methods.

CNVnator is a method for CNV analysis based on read depth
(RD) of aligned reads. It has been determined to have high sensi-
tivity (86-96%), low false-discovery rate (3-20%), and high geno-
typing accuracy (93-95%) for germline CNVs in a wide range of
sizes from a few hundred base pairs to chromosome size events
[1-5]. Since its development a decade ago, the tool has been
widely used in different scientific areas by researchers around

The continuous reduction of cost has enabled whole-genome se-
quencing (WGS) to be widely used in different research projects
and clinical applications. Consequently, many approaches for
processing, analyzing, and visualizing WGS data have been de-
veloped and are being improved. Detection and analysis of copy
number variations (CNVs) based on WGS data is one of them.
Research directions related to cancer genomics, single-cell se-
quencing, and somatic mosaicism create huge amounts of data
and demands for processing on the cloud that require further
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the world for detection of CNVs in a variety of species with
different genome sizes: bacteria [6], fungi [7], plants [8-10], in-
sects [11], fish [12], birds [13], mammals [14-17], and humans
[2, 18-20]. It has been used to discover somatic variations in
cancer and disease studies [21] and to find mosaic variants in
human cells [22]. Although CNVnator was developed to detect
germline CNVs, it is well suited to discover copy number alter-
ation (CNAs) present in a relatively high (>50%) fraction of cells,
such as somatic alteration found in cancers. It was not, how-
ever, designed for nor capable of aiding analysis of copy number—
neutral changes.

Here we describe CNVpytor, a Python extension of
CNVnator. CNVpytor inherits the reimplemented core en-
gine of CNVnator and extends visualization, modularization,
performance, and functionality. Along with RD data, it enables
consideration of allele frequency of single-nucleotide poly-
morphisms (SNP) and small indels as an additional source of
information for the analysis of CNV/CNA and copy number-
neutral variations. Along with RD data, this information can be
used for genotyping genomic regions and visualization.

CNVpytor inherits the RD analysis approach developed in
CNVnator [1]. Briefly, it consists of the following steps: read-
ing alignment file and extracting RD signal, binning RD signal,
correcting the signal for GC bias, segmenting the signal using
the mean-shift technique, and calling CNVs (Fig. 1). RD signal
can be parsed from BAM, SAM, or CRAM alignment files and is
counted in 100-bp intervals, resulting in a small footprint of in-
termediate .pytor files in HDF5 format (Table 1). Because of us-
ing the pysam [23] library for parsing, this step (the most time-
consuming one) is parallelized and can be conducted very effi-
ciently, particularly in comparison with the older tool (Table 1).
The binning step integrates RD over larger bins that are lim-
ited to multiples of initially stored 100-bp bins. Bin size can be
adjusted by user depending on application. The recommended
minimal bin size, which depends on sequencing coverage, is pro-
vided in Supplementary Table S1. Next, technical biases in the
read depth signal that are correlated with GC content (so-called
GC biases) are removed using a GC correction procedure. For
the human reference genomes GRCh37 and GRCh38, per bin GC
content is pre-calculated and supplied as a resource with the
CNVpytor package. For other genomes, GC content can be cal-
culated during runtime from a provided FASTA file or precalcu-
lated and added to the CNVpytor resource for future use. Once
information about read coverage (and variants, see below) is ex-
tracted from an alignment file, the following analysis steps take
place (i.e., read input and write output) with the same file. As
a result, histograms for each processed bin size and informa-
tion about CNV calls, including coordinates, different statistics,
and P-values, are all stored in the same .pytor file and can be
extracted into Excel (TSV file) or a VCF file.

A novel feature of CNVpytor is the analysis of information from
SNPs and small indels imported from a VCF file. An imbalance in
the number of haplotypes can be measured using allele frequen-
cies traditionally referred to as B-allele frequency (BAF) [24-27].
The main advantage of using BAF compared to RD is that BAF

values do not require normalization and are distributed around
0.5 by binomial distribution for heterozygous variants (HETSs).
Additionally, BAF is complementary to RD signal, as it changes
for copy number-neutral events such as loss of heterozygos-
ity. However, BAF dispersion can be measured incorrectly ow-
ing to systematic misalignment particularly in repeat regions,
incomplete reference genome, or site-specific noise in sequenc-
ing data. To mitigate this issue, we filtered out HETs in the frac-
tion of genome that is inaccessible to short read technologies,
as defined by the strict mask from the 1000 Genomes Project
[28]. Such filtering removes almost all HETs with outlier values
of BAF, while values for the retained variants closely follow bi-
nomial distribution (Fig. 1c). To integrate BAF information within
bins, CNVpytor calculates the likelihood function that describes
an imbalance between haplotypes (see Methods). Currently, BAF
information is used when genotyping a specific genomic region
where, along with estimated copy number, the output contains
the average BAF level and 2 independent P-values calculated
from RD and BAF signal. Variant data can also be plotted in paral-
lel with RD signal (Fig. 2). Same as for RD signal, binned informa-
tion calculated from variants is stored in and can be extracted
from the .pytor file.

CNVpytor is to be run in a series of steps (Fig. 3). For enhanced
flexibility, RD and BAF processing workflows proceed in parallel.
In this way each workflow can be run at different times or even
on different computers. For example, data parsing steps can be
run on a cloud where data (i.e., alignment files) are accessible,
resulting in <25 Mb .pytor files that then can be copied to a local
computer/cluster where the remaining calculation steps will be
performed. If necessary, a user can run additional calculations
(e.g., conduct processing with different bin size) using the same
.pytor file in the future, allowing for further flexibility in data
analysis.

Routine processing steps can be followed by CNV visualiza-
tion and analysis in the Viewer session, which can be interactive
or hands-off. Implementation of interactive mode is inspired by
a Linux shell with tab completion and with a help page similar
to the man pages. In this mode, a user can instantly make var-
ious visualizations, preview and filter CNV calls, annotate calls,
create joint calls across multiple samples, and genotype speci-
fied regions. The viewer does not save results into the .pytor file,
and outputs are printed and plotted on the screen or exported to
an output file(s). Hands-off mode executes user-written script(s)
with CNVpytor commands. Such scripts can be used as part of
the processing pipeline where, e.g., images of signals around
called CNVs are generated and stored for possible future inspec-
tion. Through the viewer interface, it is possible to directly ac-
cess Python and run code. This allows user to access some stan-
dard features of underlying libraries, e.g., matplotlib library can
be used to customize plots.

CNVpytor can be used as the Python module. All function-
alities, like reading and editing CNVpytor data files, and all cal-
culation steps and visualizations can be performed by calling
functions or classes. This way CNVpytor can be easily inte-
grated in different platforms and computing environments; e.g.,
CNVpytor can be run from Jupyter Notebook on a local machine
or in cloud services, e.g., Google Colab. CNVpytor is also inte-
grated into OmniTier’s “Compstor Novos” variant calling work-
flow [29].
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Figure 1: Schematics of core algorithm and data processing steps. (a) Read depth analysis steps include parsing alignment file, calculating and storing read depths in
100-bp intervals, binning using user-specified bin size, correcting RD for GC bias, segmenting by mean-shift, and calling CNVs. (b) B-allele frequency (BAF) analysis
steps include reading variant file, storing the data about SNPs and small indels, filtering variants using strict mask, calculating BAF for heterozygous variants (HETs),
and calculating likelihood function for bins. For CNVs, BAF signal splits away from value 0.5 expected for HETs. (c) Distribution of the variant allele frequency for all
variants and variants within strict mask as defined by the 1000 Genomes Project. Black line shows fit by Gaussian distribution. (d) An example of RD depending on GC
within bin. Statistics of RD signal within bins of the same percentage of GC content is used to correct for GC bias in the signal. White line represents average RD level
for bins with given GC content. (e) An example of RD and BAF signals for a germline duplication in NA12878 sample (raw RD signal is in grey, GC-corrected RD signal
is in black, brighter color of BAF likelihood corresponds to higher values of the likelihood).

Table 1: Efficiency of parsing alignment file on modern computers in relation to sequencing coverage and engaged number of CPU cores

Sequencing coverage Parsing time File size
of the human
genome CNVpytor CNVnator CNVpytor (Mb)
CNVnator (Gb)
BAF With 1 and

4 Cores 8 Cores 23 Cores RD parsing parsing 10 kb bins
5x 10 min 5 min 3 min <2 min 1 18 20 250
30x 1h 28 min 18 min 10 min 1.5 19 20 250
100x 33h 1.5h 1h 33 min 2 20 20 250

ple regions across multiple samples can be plotted in parallel,
facilitating comparison across samples and different genomic
loci (Fig. 2). To get a global view, a user can visualize an entire
genome in a linear or circular fashion (Fig. 4, Supplementary Figs
S1 and S2). Such a view can be useful in judging the quality of
samples and in visually checking for aneuploidies.

Some additional features include GC-bias curve plot and

Data visualization and result curation

Visualization of multiple tracks/signals can be done interactively
by mouse and by typing relevant commands, as well as by run-
ning scripts with CNVpytor commands provided as inputs to
CNVpytor. CNVpytor has extended visualization capabilities
with multiple novel features as compared to CNVnator. For each

sample (i.e., input file) multiple data tracks such as RD signal,
BAF of SNPs, and binned BAF likelihood can be displayed in an
adjustable grid layout as specified by a user. Specifically, multi-

2D histogram (Fig. 1d), allele frequency distribution per region
(Fig. 1c), and comparing RD distributions between 2 regions (Sup-
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Figure 2: BAF signal corroborates and complements RD signal. Example of CNVpytor region plots produced for deletion (left), duplication (middle), and CNN-LOH
(right) for NA12878 sample. Within the coordinates of heterozygous deletion, there is a 50% decrease in RD signal and a loss in heterozygosity in BAF signal (i.e., no
heterozygous SNPs in the region). Duplication of 1 haplotype results in the increase of RD signal by 50% and in a split in VAF distribution of SNPs and a split in BAF
likelihood function. In the CNN-LOH region, few reliable heterozygous SNPs are detected while RD signal does not change. Likelihood function values are normalized

to the maximum value across the range.

plementary Fig. S3). Figure resolution, layout grid, colors, marker
size, titles, and plotting style are adjustable by the user. Overall
CNVpytor has more functionalities than other available software
(Supplementary Table S2).

CNVpytor also has implemented functionality to export data
into formats that can be embedded into JBrowse, a web-based
genome browser used to visualize multiple related data tracks
(Fig. S4). The export enables users to utilize JBrowse capabilities
to visualize, compare, and cross-reference CNV calls with other
data types (such as CHiP-seq, RNA-seq, ATAC-seq, etc.) and an-
notations across genome. Exported data provide 3 resolutions of
RD and BAF tracks (1, 10, and 100 kb bins) while the appropriate
resolution is chosen automatically by JBrowse depending on the
size of the visualized genomic region. Multiple .pytor files can be
exported at once.

Alternatively, a user can utilize a lightweight CNVpytor plu-
gin for JBrowse. The plugin takes information about coverage
from a relatively small (as compared to BAM) VCF file and on
the fly performs the read depth and BAF estimation, segmen-
tation, and calling. For read depth analysis, the plugin fetches
the information from the DP field in the VCF file and uses it as
a proxy for actual coverage. Since for large bin sizes such an es-
timate corresponds well to the actual value (Fig. S5), the plugin
enables quick and easy review of large copy number changes in
a genome. For BAF analysis, the plugin conducts analyses the
same way as a stand-alone application. All temporary values
are stored in the browser cache for fast and interactive visual-

ization of a genomic segment. As well as improving responsive-
ness by eliminating the network lag of a client-server applica-
tion, this ensures that no information about a personal genome
is transferred to external servers. Once the analyses are com-
plete, the results are instantly visualized using JBrowse’s na-
tive capabilities. Usage cases of the plugin are: 1) quick and vi-
sual cross-referencing of copy number profiles between multiple
samples and in relation to other data types, and 2) a review of
a personal genome(s) for large CNVs in a simple user-friendly
environment.

Development of new, maintenance, and improvement of exist-
ing bioinformatics tools are driven by changing data types, de-
mands for newer and user-verifiable analyses, necessity for pro-
cessing larger datasets, and the evolving nature of computa-
tional infrastructures and platforms. CNVpytor brings the func-
tionality of its predecessor CNVnator to a new level and signif-
icantly expands it. CNVpytor is faster and virtually effortless to
install, requires minimum space for storage, enables analysis of
BAF for call confirmation and genotyping, provides users with
instant and extended visualization and convenient functional-
ity for result curation (including merging over multiple sam-
ples), and is equipped for integration with other tools. The uti-
lized method is suitable to segment RD signal in the case of mo-
saic or somatic cancer sample CNAs, and the alteration will be
called if its cell frequency is >50% (Supplementary Fig. S6). A
more accurate approach to discover cancer and mosaic CNAs
is under development. The prototype of the somatic CNA caller



GET READ-DEPTH DATA

# cnvpytor -root file.pytor -rd file.bam

CALCULATE RD HISTOGRAMS

# cnvpytor -root file.pytor -his 10000

PARTITION RD HISTOGRAMS

# cnvpytor -root file.pytor -partition 10000

# cnvpytor -root file.pytor -snp2rd
# cnvpytor -root file.pytor -rg hg38
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GET VARIANT DATA

# cnvpytor -root file.pytor -snp file.vcf.gz

RD FROM VARIANT DATA

MASK VARIANTRS

# cnvpytor -root file.pytor -mask_snps

CALCULATE HISTOGRAMS

# cnvpytor -root file.pytor -snp2his 10000

CREATE BAF HISTOGRAMS

# cnvpytor -root file.pytor -baf 10000

INTERACTIVE MODE EXECUTING SCRIPT
# cnvpytor -root file.pytor -view 10000 # cnvpytor -root file.pytor -view 10000 < file.spytor
PLO

Figure 3: CNVpytor workflow and steps used in data processing. Left: Reading RD data from alignment file, creating histograms, segmentation, calling CNVs. Right:
Reading SNP and indel data from VCF file, filtering variants using strict mask, calculating histograms and likelihood function. Middle: Alternatively, if alignment file is
not available, RD signals can be calculated from variant data (green arrows). Visualization using both RD and/or BAF data can be done from an interactive command

line interface or automatically by running script file.

is functional, available in the current version, and documented
on the CNVpytor GitHub page. Provided good genome ampli-
fication and high sequencing coverage in a single cell, detec-
tion of CNAs in the cell becomes like detecting germline vari-
ation, i.e., every somatic variant will be present in 1 of 2 hap-
lotypes. Advancement of single-cell amplification approaches
[30] renders CNVpytor applicable to analysis of single-cell data.
A lightweight plugin for JBrowse enables on-the-fly visualiza-
tion and analysis convenient for wide categories of users. Over-
all, CNVpytor establishes a framework for discovering and an-
alyzing copy number changes from WGS data either by an in-
dividual researcher or clinician or in a collaborative and shared
environment.

Materials and Methods
RD analysis

Calculations for RD binning, mean-shift algorithm, partitioning,
and calling CNVs are explained in detail in the CNVnator arti-
cle [1]. The only difference in CNVpytor implementation is how
information about GC content is obtained. For the 2 versions
GRCh37 (hg19) and GRCh38 of the human reference genome, in-
formation about GC and AT content for each 100-bp bin is pro-
vided as resource data within the CNVpytor package. This way
the user does not need to have reference genome FASTA for GC
correction. In spite of slightly different implementation, called
regions by CNVnator and CNVpytor overlap by >99%. Addition-
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Figure 4: Novel features of visualization using data for HepG2 cell line. Genome-wide visualizations can be useful in some cases, including cancer studies and clin-
ical applications such as screening for chromosomal abnormalities. They also can be useful for quick insight in sequencing or single-cell amplification quality. To
demonstrate genome-wide plot types, HapG2 immortal cell line sample is used. (a) Manhattan and (b) circular style plot of RD signal. Large CNVs and chromosome
copy number changes are apparent. One can also judge the dispersion of the RD signal. The inner circle in (b) shows RD signal while the outer one shows minor allele
frequency (MAF). Regions where we can see loss of MAF signal with normal RD, e.g., chromosome 14 or 22, are chromosomal CNN-LOH. (c) Examples of smaller CNVs
not apparent in the global view. Each CNV is ~15 Mb. The displayed regions with multiple CNVs (that are possibly complex events) were hardly visible on the circular

plot.

ally, CNVpytor can calculate read depth from coverage of im-
ported variants (Fig. 3). This is an approximate but rather pre-
cise solution to cases when the alignment file is not available
(Supplementary Fig. S5).

Variant data

CNVpytor imports information about SNPs and single-letter in-
dels from the variant (VCF) file. All other variants are ignored.
For each variant the following data are stored in the CNVpytor
file: chromosome, position, reference base, alternative base, ref-
erence count (ref;), alternative count (alt;), quality, and genotype
(0/1 or 1/1).

In the normal case with 1 copy of each haplotype, heterozy-
gous SNPs are visible in half of the reads coming from that hap-
lotype. In other words, B-allele frequency distributes around 1/2.
Contrarily, in the regions with constitutional duplication of 1
haplotype, heterozygous SNPs are expected with a frequency
equal to 2/3 or 1/3 depending on whether they are located on
a duplicated haplotype. This split from value 1/2 can be visible
in a plot of BAFs vs position of variants as shown in the right
panel of Fig. 1. Similarly, for homozygous deletion complete loss

of heterozygous SNPs is expected. In the case of somatic sub-
clonal CNA (e.g., frequently observed in cancer genomes), the
ratio between haplotypes can be an arbitrary number depend-
ing on cell frequencies with the CNA. Consequently, the split in
BAF plot varies from 0 through 1. Measuring the level of this split
can provide useful information about type of CNV. Moreover,
copy number-neutral loss of heterozygosity (CNN-LOH) can be
detected this way:.

For each stored variant, we can calculate 2 frequencies de-
fined in following way:

* B-allele frequency (BAF): BAF = _2lt

ref +alt;

® Minor allele frequency (MAF): MAF = min (
min(BAF, 1 — BAF)

alt; ref;
refij+alt; * refi+alt; | —

One of the characteristics of next-generation sequencing is
that some bases are not accessible for variant discovery us-
ing short reads, owing to the repetitive nature of the human
genome. In the 1000 Genomes Project, a genome mask is created
to tabulate bases for variant discovery. There are ~74% of bases
marked passed (P), which corresponds to ~77% of non-N bases
(1000 Genomes Project Consortium [28]. We use that mask to fil-



ter out variants called in non-P regions. This way we eliminate
~22% of variants, but there is a benefit because with fewer false-
positive heterozygous SNPs the statistics is improved (Fig. 1c)
and this improves the quality of further calculations. The same
way as for GC content, information about strict mask P regions
for 2 versions of the human reference genome is stored in re-
source files that are part of the CNVpytor package.

The ratio between reads coming from one or another haplo-
type is distributed following a binomial distribution. If counts
are known, then one can calculate the likelihood function for
that ratio:

1 Te:
L (pijalt;, ref;) = B (x; alt; + 1, ref; + 1) = mpia“' (1 — p)eh

where p; is allele frequency for variant i and B(alt;, ref;) is the
normalization constant.

By multiplying likelihood functions of individual variants in
a bin, one can obtain likelihood for each bin. This is true only if
the real value of that ratio does not change within that bin. How-
ever, we are using non-phased variant counts, which means that
there is a 50% chance that variant is coming from one or another
haplotype. The frequency of a fixed haplotype is sometimes de-
scribed by either a BAF or a 1 - BAF distribution.

In that case, we have to use the symmetrized beta distribu-
tion for likelihood:

B (x;alt; + 1, ref; + 1) + B (x;ref; + 1, alt; + 1)
2

i alt; (1 _ pi)reﬂ + pi’ef' (1 _
2B (alt;, ref;)

L (pilalt;, ref;)

alt;

pi)

The likelihood function for each bin is calculated as a product
of individual likelihood functions of variants within that bin:

L (po) ~ niebin(b) L (pi|alt;. ref;) ~ 1_[1.

(P = p) ™ + pfi (1 - p)™),

where py is the allele frequency for bin b. To calculate likelihood
functions, we use discretization. Interval [0,0.5] is discretized us-
ing some resolution (default is 101 point) and for each the point
function is calculated by multiplying values of symmetrized beta
distribution for each variant. The position of maximum likeli-
hood represents the most probable BAF value in a particular bin.
Along with the likelihood function average values of variant BAF
and MAF are calculated per bin and stored in thet CNVpytor file,
together with counts of homozygous and heterozygous variants.

For each CNV call the following values are calculated: (i) event
type: “deletion” or “duplication”; (ii) coordinates in the reference
genome; (iii) CNV size; (iv) RD normalized to 1; (v) e-vall: P-value
calculated using i-test statistics between RD difference in the
region and global (i.e., across whole genome) mean; (vi) e-val2:
P-value from the probability of RD values within the region to be
in the tails of a Gaussian distribution of binned RD; (vii) e-val3:
same as e-vall but without first and last bin; (viii) e-val4: same
as e-val2 but without first and last bin; (ix) qO: fraction of reads

B

mapped with zero quality within call region; (x) pN: fraction of
N bases (i.e., unassembled reference genome) within call region;
(xi) dG: distance to nearest gap in reference genome.

There are 5 parameters in viewer mode used for filtering
calls: CNV size, e-vall, q0, pN, and dG. Those parameters will de-
fine which calls CNVpytor will plot or print out. When calls are
printed or exported, CNVpytor optionally can generate graphical
file(s) with a plot of the CNV call region containing user-specified
tracks.

To annotate called regions, we use Ensembl REST API (over-
lap/region resource). It is an optional step that requires web con-
nection and is executed when calls are previewed by the user or
exported to an output file. The annotation is added in an ad-
ditional column in the output and contains a string with gene
names, Ensembl gene IDs, and information about the position
of genes relative to CNV (i.e, inside, covering, or intersecting
left/right breakpoints of the CNV region).

The copy number of a provided genomic region is calculated as
a mean RD within the region divided by mean autosomal RD
scaled by 2. To achieve better precision, first and last bin con-
tent are weighted by the fraction of overlap with the provided
region. Optionally CNVpytor can provide additional values: (i) e-
value from the probability of RD values within the region to be
in the tails of a Gaussian distribution of binned RD (analogous to
e-val2); (ii) qO: fraction of reads mapped with q0 quality within
call region,; (iii) pN: fraction of reference genome gaps (Ns) within
call region; (iv) BAF level estimated using maximum likelihood
method; (v) number of homozygous variants within the region;
(vi) number of heterozygous variants within the region; (vii) P-
value based on BAF signal.

To make a joint call set for multiple samples, CNVpytor proceeds
in the following way:

1. Filter calls using user-defined ranges for size, p-val, q0, pN,
and dG;

2. Sort all calls for all samples by start coordinate;

3. Select first call in that list that is not already processed
and select calls from other samples with reciprocal overlap
>50%;

4. For selected calls, calculate genotypes within the region
of intersection and, optionally, annotate with overlapping
genes.

If specified, for each joint CNV call CNVpytor will create a
graphical file with a plot of the call region containing user-
specified tracks.

For data storage and compression, we used HDFS5 file format and
h5py Python library. Additional compression is obtained by stor-
ing RD signal using 100-bp bins. The same bin size is used for
storing reference genome AT, GC, and N content. Data organi-
zation within the .pytor file is implemented in an IO module,
which can be used to open and read different datasets from an



external application. The Python library xlwt is used to generate
spreadsheet files compatible with Microsoft Excel.

The Matplotlib [31] Python library is used for creating and stor-
ing visualizations. Different plotting styles are available within
matplotlib. Derived installed libraries can be used, as well as a
variety of file formats for storing graphical data.

CNVpytor depends on several widely used Python packages: re-
quests 2.0 or higher, gnureadline, pathlib 1.0 or higher, pysam
0.15 or higher, numpy 1.16 or higher, scipy 1.1 or higher, mat-
plotlib 2.2 or higher, h5py 2.9 or higher, xlwt 1.3 or higher. All
dependences are available through pip installer, which makes
installation of CNVpytor straightforward.

An archival copy of the code and links to data used to create
figures are available via the GigaScience database, GigaDB [32].

Project name: CNVpytor

Project home page: https://github.com/abyzovlab/CNVpytor
Operating systems: Platform independent

Programming language: Python

Other requirements: requests >2.0, gnureadline, pathlib >1.0,
pysam >0.15, numpy >1.16, scipy >1.1, matplotlib >2.2, h5py
>2.9, xlsxwriter >1.3, pathlib >1.0

License: MIT License

RRID:SCR_021627

bio.tools ID: cnvpytor

Supplementary Figure 1: Genome-wide plot for K562 cell line:
normalized read depth (top), B-allele frequency of individual
SNPs (middle), and BAF likelihood function (bottom). Bin size is
100 kb.

Supplementary Figure 2: Circular plot for K562 cell line. Inner
circle corresponds to read depth; outer, to binned MAF. Bin size
is 100 kb.

Supplementary Figure 3: Comparison of read depth statistics be-
tween 2 regions.

Supplementary Figure 4: JBrowse export example. (a, b)
CNVpytor-produced read depth and binned BAF data for a
glioblastoma cancer sample for chromosome 1 deletion are
visible. (c) JBrowse view of the same data. Same color-coding
schema is followed here.

Supplementary Figure 5: Comparison between read depth sig-
nal parsed from alignment file and variant file for 3 samples: RD
Manhattan plot comparison for NA12878 sample (a), K562 sam-
ple (b), and HepG2 (c); distribution of differences in copy number
within bins for same samples (d—f). Bin size is 10 kb.
Supplementary Figure 6: CNVpytor application on polyp sub-
clonal CNA [33]. Raw RD signal is in grey, GC-corrected RD signal
is in black, segmentation is in red, and CNA calls in green.
Supplementary Table 1: Recommended minimal bin size for
given coverage to ensure relative deviation of RD signal <10%

for 150-bp reads. For 100-bp reads one can use 33% smaller bin
size.

Supplementary Table 2: Comparison between CNVpytor fea-
tures with other similar tools.

API: application programing interface; BAF: B-allele frequency;
bp: base pairs; CNA: copy number alteration; CNV: copy number
variation; CPU: central processing unit; Gb: gigabase pairs; GUI:
graphical user interface; HETs: heterozygous variants; kb: kilo-
base pairs; Mb: megabase pairs; RD: read depth; REST: represen-
tational state transfer; SNP: single-nucleotide polymorphism,;
WGS: whole-genome sequencing.
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