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Abstract: Our study aims to identify the spatial characteristics of water quality and sediment
conditions in relation to fisheries resources, since the productivity of fisheries resources is closely
related to the ambient conditions of the resource areas. We collected water quality samples and
sediment contaminants from twenty-one sites at Gwangyang Bay, Korea, in the summer of 2018.
Our study sites covered the area from the Seomjin River estuary to the inner and outer bays.
To spatially characterize physicochemical features of Gwangyang Bay, we used Self-Organizing
Map (SOM), which is known as a robust and powerful tool of unsupervised neural networks
for pattern recognition. The present environmental conditions of Gwangyang Bay were spatially
characterized according to four different attributes of water quality and sediment contamination.
From the results, we put emphasis on several interesting points: (i) the SOM manifests the dominant
physicochemical attributes of each geographical zone associated with the patterns of water quality
and sediment contamination; (ii) fish populations appear to be closely associated with their food
sources (e.g., shrimps and crabs) as well as the ambient physicochemical conditions; and (iii) in the
context of public health and ecosystem services, the SOM result can potentially offer guidance for
fish consumption associated with sediment heavy metal contamination. The present study may
have limitations in representing general features of Gwangyang Bay, given the inability of snapshot
data to characterize a complex ecosystem. In this regard, consistent sampling and investigation are
needed to capture spatial variation and to delineate the temporal dynamics of water quality, sediment
contamination, and fish populations. However, the SOM application is helpful and useful as a first
approximation of an environmental assessment for the effective management of fisheries resources.

Keywords: coastal bay; environmental assessment; sediment contaminant; Self-Organizing Map;
water quality

1. Introduction

Coastal ecosystems typically retain high economic and environmental values in light of aquatic
resources and biodiversity [1]. Many coastal areas play an important role in operating fisheries
and related industries around the world [2]. In East Asia, fisheries resources are at the core of the
marine industry in several countries including South Korea, East China, and Japan; this is due to the
high biodiversity and high productivity in the coastal regions [3,4]. Biodiversity and productivity
are closely linked to biogeochemical processes among water column, sediment, and biological
entities. This complicated ecological interplay of the coastal ecosystem can respond differently to the
surrounding environmental conditions, which are driven by anthropogenic disturbances as well as
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climatic changes [5]. In this regard, ambient aquatic pollution may be a critical factor determining
biodiversity and productivity.

The productivity of coastal ecosystems, such as primary production and fish biomass, intertwines
with the multiple factors/functions containing nutrient concentrations (carbon, nitrogen, and
phosphorus), phytoplankton growth, zooplankton grazing effects, and benthic biota (e.g., crustaceans
and shellfish). In particular, the ambient water quality can have a significant effect on changes in the
microbial food web structure and functions, which involve the biological community composition,
hypolimnetic hypoxia/anoxia, and toxic algal blooms in coastal areas [6–10]. On top of the microbial
food web changes, sediment contamination is another causal factor affecting the benthic biota, a
significant food source for fish [11–14]. Additionally, resuspension of sediment micro-organisms into
the water column can increase the health risk for those who use water [15]. It is often reported that
high concentrations of heavy metals in sediment can lead to their accumulation in the internal organs
of crustaceans and shellfish [16]. Moreover, heavy metals are more stable and persistent than other
contaminants of aquatic ecosystems [17]. Therefore, identifying the pattern of sediment contamination
in space and/or time is essential in order to assess fish population dynamics in coastal areas.

However, the nonlinearity and complexity of environmental monitoring data often causes
difficulties when analyzing spatial and temporal patterns of ecological phenomena. Since conventional
statistical methods infer cause and effect under the assumption of a linear relationship between
the two, they are limited when it comes to capturing the nonlinear patterns of ecological
phenomena. Conventional data-ordination methods such as principal components analysis (PCA)
and correspondence analysis encompass the main drawback of distortion and artifact effects known
as ‘horseshoe effect’ or ‘arch effect’, although they have been widely used for characterizing complex
features of interest [18]. It has recently been reported that a linear multivariate analysis could not
explicitly account for the complex ecological interplay between phytoplankton, macrophytes, and
sediment nutrient release [19]. In contrast, several studies have shown that nonlinear methods, such
as artificial neural networks, are more suitable for global sensitivity analysis than multiple-linear
regression [19,20]. Specifically, Kim et al. [19] identified an abrupt regime shift of an ecosystem, from a
turbid phytoplankton-dominant state to a clear macrophyte-dominant state, using Self-Organizing
Map (SOM), which is a type of unsupervised artificial neural network. Astel et al. [21] emphasized the
power of the classification by SOM over traditional methods such as PCA. Recently, SOM applications
have been expanded to water quality patterns associated with land use and socio-environmental
management [22–24]. Therefore, given the complex dynamics of ecosystems, nonlinear analytics could
be highly successful in characterizing the biogeochemical features of coastal bays.

The main objective of our study is to identify the spatial pattern of water quality and sediment
conditions at Gwangyang Bay in South Korea. We apply a nonlinear modeling method, Self-Organizing
Map, for the rigorous assessment of spatial patterns in water quality and sediment contamination.
According to the spatial characterization, we then discuss the fish communities in the bay in
terms of fisheries resources based on the results. The present study could be novel in view of the
expansion of SOM applications for understanding biological communities associated with ambient
physicochemical conditions. Furthermore, our assessment will be valuable as a first approximation of
spatial heterogeneity in limno-oceanographic patterns for effective management of fisheries resources.

2. Materials and Methods

2.1. Description of the Study Area

Gwangyang Bay is part of the Korean National Archipelagos that are located off the south coast
of the Korean peninsula (Figure 1). The bay receives an annual mean discharge of 2298 × 106 m3

yr−1 from the Seomjin River [25]. A significant amount of nutrients drains into the system from the
watershed (ca. 5000 km2). The water depth varies from 10 m at the Seomjin River estuary to 50 m at
the outer Gwangyang Bay. The tidal cycle appears to be semi-diurnal. Compared to other Korean
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river estuaries that have barrages, the Seomjin River estuary remains open, and thus the water mass
is exchanged between the river and ocean more actively. The natural condition of Gwangyang Bay
remains highly productive as well as biologically diverse. In this respect, Gwangyang Bay (ca. 450 km2

from the estuary to the outer bay) is the most economically productive in Korea. Specifically, amongst
three metropolitan cities and eight provinces, Jeonnam Province with Gwangyang Bay provided 71%
(1,297,815 tons per year) of the aquacultural resources, as of 2016 [26]. On the other hand, there is
a large industrial area near the bay, and the area is primarily involved with oil refineries and steel
plants. This industrial area is regarded as a significant point source of chemical contaminants to the bay.
In addition, intermittent spills from large oil tankers are another factor disturbing the water quality
and benthic sediment [27].
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2.2. Sampling and Data Collection

The survey was conducted for three days in June 20–22, 2018 when a neap tide was formed.
We sampled water at a depth between 0 m and 5 m using a Van Dorn sampler (horizontal PVC
Alpha water sampler, size: 8.2 L). Particularly for sampling water adjacent to the river mouth, we
sampled water at a depth between 0 m and 1 m due to the shallow depth relative to the surrounding
ocean. The benthic sediments were collected using an Ekman sampler (M197-C12 manufactured
by Wildlife Supply, Yulee, FL 32034, USA, size: 23 × 23 × 23cm), and then were stored in a 200-ml
polyethylene container. A total of twenty-one sampling sites were selected, which covered an extensive
area from the Seomjin River estuary to the outer Gwangyang Bay (Figure 1). The first day’s survey
was based on six sites (1–6 in Figure 1), the second day was based on eight sites (7–14 in Figure 1),
and the last day was based on seven sites (15–21 in Figure 1). The water temperature and salinity
were measured on site using portable equipment (YSI Professional Plus, YSI Inc., OH 45387, USA).
Since the samples were based on surface water sampling, their vertical gradient was not investigated.
The nutrient and chlorophyll-a concentrations were analyzed from the water samples in the laboratory.
Those concentrations were based on spectrophotometry (OPTIZEN POP Series UV-Vis, KLAB Daejeon,
Korea). Particularly for chlorophyll-a measurement, the water samples were filtered through a 0.45 µm
pore-size membrane (Advantec MFS membrane filter, Dublin, CA 94568, USA); the membrane was
then homogenized prior to the spectrophotometry (OPTIZEN POP Series UV-Vis). Their concentrations
were measured according to standard analytical methods proposed by the Korean Ministry of Oceans
and Fisheries [28] and the Korean Ministry of Environment [29]. Organic and inorganic carbon
concentrations were measured using a carbon analyzer (vario TOC cube, Elementar Americas Inc., NY
11779, USA) according to 850 ◦C combustion catalytic oxidation methods. A total of twelve sediment
contaminants (Ni, Zn, Co, Se, Fe, Al, As, Cd, Pb, Cr, Cu, and Mn) were measured. For preprocessing,
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the sediment samples (0.5 g from the 200-ml sample; the aliquot was weighed with precision to
a hundredth of a milligram) were digested by adding a mixture of 65% nitric acid (HNO3), 65%
perchloric acid (HClO4), and 30% hydrogen peroxide (H2O2). The acidic digestion of the samples was
then processed using a microwave decomposition system. After cooling, the samples were added
to 0.1% nitric acid. We measured the sediment contaminants using an inductively-coupled plasma
mass spectrophotometer (NexION/300X, PerkinElmer Inc., MA 02451, USA). Regarding the survey for
ichthyofauna, beam-trawling was implemented to collect fish samples with respect to four sites (8, 11,
12, and 13) on July 1–2, 2018. The catching/towing time was 30 minutes at each site (net width: 8 m,
1.9-cm mesh-sized wing and body, and trawling distance: 2 km). The survey was limited to the four
aforementioned sites due to several issues of safety related to the route of industrial ships, as well as
the protection of fisheries resources, at the 17 other sites. The fish samples were immediately weighed
and identified on site. The identification of the fish species was conducted according to taxonomy by
Aizawa et al. [30] and Yoon [31].

2.3. Application of Machine Learning to the Data Analysis

Machine learning is an area of artificial intelligence that enables an algorithm to learn from
data, thereby extracting information by incorporating adaptive and self-organizing properties [32].
Amongst the current machine learning algorithms, artificial neural networks (ANNs) have been widely
used to search for optimal solutions using such data-learning processes. Specifically, SOM is a type of
unsupervised ANN, and it is a powerful tool for the recognition of meaningful patterns and features
in complex data (Figure 2). SOM is capable of reducing multi-dimensional scales and mapping into
two-dimensional planes [33]. In ecological research, SOM is now considered to be more appropriate for
multivariate analysis than other conventional statistical techniques [34]. Several studies have shown
that the use of SOM is a robust way to capture the nonlinear pattern of ecosystems [19,20]. For these
reasons, SOM has been extensively applied to pattern recognition in various ecological domains,
including benthic macroinvertebrates [35,36], plankton communities [37,38], and biomanipulation
assessments [39].
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The SOM was trained using nineteen input variables including seven water quality parameters
(water temperature (WT), salinity, total phosphorus (TP), total, nitrogen (TN), total organic carbon
(TOC), total inorganic carbon (TIC), and chlorophyll a (Chl-a)) and twelve sediment contaminants
(Ni, Zn, Co, Se, Fe, Al, As, Cd, Pb, Cr, Cu, and Mn). The SOM size (i.e., the number of hexagons in the
map) was determined based on the rule of 5

√
sample size [40]. To cluster the SOM map, we applied a

hierarchical cluster analysis using Ward’s linkage method [41]. The SOM model was developed using
MATLAB 6.1 (The MathWorks Inc., Natick, MA, USA) and the SOM Toolbox (Helsinki University of
Technology, Helsinki, Finland).

3. Results

3.1. Features of Surface Water Quality at Gwangyang Bay

Water temperature was in the range between 22 ◦C and 26 ◦C at Gwangyang Bay in June (Figure 3).
Overall, lower water temperatures were recorded in the outer bay than in the estuary and inner bay.
However, we also found a decrease in water temperature at a few sites around the inner bay, including
the sites 4, 5, and 6. In addition, it is notable that there was a subtle difference (~1 ◦C) in water
temperature between site 11 and site 12, which are geographically close to each other.
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Figure 3. Water quality observation at Gwangyang Bay. The numbers on the x axis indicate the
study sites.

The salinity pattern presents the extent to which the freshwater of rivers affects the coastal bay.
Given minimum salinity across the bay, sea water basically affects all of the study sites (Figure 3).
The relatively low salinity values, observed from the sites 1, 2, and 6, were still as high as sea or
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brackish water (>15 psu). In the outer bay (the sites 13–21), the salinity values were high and stable at
approximately 29 psu.

From the distributional pattern of the phosphorus concentration, we found a clear decline in the
concentration away from the estuary (sites 1, 2, and 3) towards the outer bay (sites 13–21) (Figure 3).
The TP concentrations were high near the estuary (ca. 0.1 mg TP L−1). In the outer bay, TP was
relatively low, but exceeded 0.05 mg L−1 (average of 0.075 mg L−1), which is typically considered to
be eutrophic conditions [42,43]. In the inner bay, the TP concentrations were intermediate between
those in the estuary and the outer bay; however, there was some spatial variation within the inner
bay (sites 6–10). Similar to the TP concentrations, the TN concentration also decreased away from the
estuary towards the outer bay (Figure 3). Compared to TP, the pattern of decline is relatively clear in
TN. It is notable that the shape of the TN concentrations was mesotrophic (average of 0.365 mg L−1) in
the range of 0.2 to 0.8 mg L−1 [43].

In contrast to phosphorus and nitrogen, the concentration of carbon increased away from
the estuary towards the outer bay (Figure 3). Inorganic carbon comprised approximately 90% of
the total carbon (TC), and thus the TIC pattern was analogous to that of the TC. It was difficult
to identify the spatial and longitudinal gradient of the TOC concentrations. It appears that the
TOC concentrations were relatively low in the inner bay. We also compared these results with the
chlorophyll-a concentrations, assuming that a large portion of TOC in the water column was arising
from phytoplankton biomass. However, there was no relationship between the TOC and the Chl-a.
The Chl-a concentrations were mostly low (<5–7 µg L−1, average of 4.69 µg L−1), but at site 7 the
Chl-a concentration was significantly higher (13.9 µg L−1). It was remarkable that the highest value of
carbon concentrations was observed in inorganic form (TIC), not organic (TOC) which directly replects
Chl-a concentration at site 7 (Figure 3).

3.2. Distribution of Sediment Contaminants in the Bay

Overall, the sediment contaminants showed spatial variation in their concentrations. Compared to
the water quality parameters (e.g., water temperature, salinity, phosphorus, nitrogen, and carbon), the
concentration of several metal contaminants, including nickel (Ni), cobalt (Co), iron (Fe), and lead (Pb),
showed a similar spatial distribution (Figure 4). At sites 2, 10, and 11 in particular, the concentrations of
these contaminants were relatively low. Zinc (Zn), selenium (Se), aluminum (Al), arsenic (As), chrome
(Cr), copper (Cu), and manganese (Mn) also shared spatial commonality to some extent (Figure 4).
Compared to Ni, Co, Fe, and Pb, these heavy metal contaminants exhibited higher concentrations
to some extent in the inner bay (sites 4–7). It is notable that cadmium (Cd) presented the highest
concentration in the estuary (at site 1); excluding this site, the spatial concentrations of cadmium were
slightly higher in the inner bay than in the outer bay. In summary, there is spatial variation in the
heavy metal contamination of sediment; however, it was quite difficult to quantitatively distinguish
the characterization of sediment contamination in space based merely on the visual comparison of
bar graphs.
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Figure 4. Sediment contaminant observation at Gwangyang Bay. The numbers on the x axis indicate
the study sites.

3.3. Spatial Characterization of Physicochemical Attributes Using Self-Organizing Map

The SOM analysis provided a different visualization for characterizing the physicochemical
attributes of Gwangyang Bay (Figure 5). Unlike the previous comparison based on bar graphs
(Figures 3 and 4), the SOM simultaneously extracted a comparative pattern of both water quality
and sediment contaminants across the bay. We could explicitly delineate the concentrations of
physicochemical components, comparing the contrast of the gradient on a black and white scale
(Figure 5). At Gwangyang Bay, in common with typical coastal ecosystems, higher water temperatures
corresponded to lower salinity, and vice versa. The phosphorus and nitrogen concentrations presented
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nearly identical SOM patterns; this means that these nutrient patterns were spatially similar across
the bay. Interestingly, we observed the inverse relationship between carbon and other nutrients
(i.e., phosphorus and nitrogen), as found from the earlier graphs (Figure 3). This inverse relationship
was clearer for TIC versus either TP or TN. It appears that higher Chl-a concentrations corresponded
to lower levels of TOC. Regarding the sediment contamination, the SOM also provided heavy metal
patterns in comparison to the ambient water quality. Most of the sediment contaminants, except
cadmium, exhibited high concentrations in the bottom-right of the SOMs, which implies that there are
a group of sites at Gwangyang Bay where heavy metals concentrations are high (Figure 5). On the
contrary, the top-left of the SOMs represented a group of sites showing low concentrations of the
sediment contaminants. Consequently, it was found that the spatial distribution of water quality and
sediment contamination were clearly separated at Gwangyang Bay.
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Table 1. Characterization of water quality and sediment contaminants using SOM.

Variable Unit Mean Group 1 Group 2 Group 3 Group 4

WT ◦C 24.3 25.3 23.3 25.4 * 25.1
Salinity psu 28.6 29.1 30.3 * 21.4 28.0

TP mg L−1 0.075 0.074 0.063 0.103 * 0.087
TN mg L−1 0.365 0.377 0.262 0.716 * 0.414

TOC mg L−1 1.96 1.78 2.10 2.24 * 1.73
TIC mg L−1 22.0 21.6 22.7 * 18.3 22.4

Chl-a µg L−1 4.70 4.28 4.09 3.35 6.37 *
Ni ppm 28.7 22.4 30.6 * 24.1 30.2
Zn ppm 75.3 63.4 66.6 82.1 93.5 *
Co ppm 18.8 15.3 19.7 16.6 20.0 *
Se ppm 1.0 0.6 1.0 0.9 1.2 *
Fe % 2.6 2.1 2.6 2.6 2.7 *
Al % 2.9 2.7 2.7 3.0 3.4 *
As ppm 5.6 5.0 4.9 6.5 6.8 *
Cd ppm 0.08 0.06 0.06 0.12 * 0.10
Pb ppm 21.4 18.2 21.0 19.5 24.1 *
Cr ppm 47.7 40.5 49.1 43.6 50.3 *
Cu ppm 18.8 14.6 17.1 19.9 23.4 *
Mn ppm 691.3 538.5 643.6 431.9 933.6 *

* Bold numbers indicate the highest mean value among all groups for each variable.

Following the previous separation, the SOM finally classified four groups of physicochemical
attributes at the bay, producing a pattern of the spatial characteristics of water quality and sediment
contamination (see the bottom-right corner of Figure 5). Group 1 represented the main channel of the
bay (sites 8, 10, and 11); Group 2 mostly belonged to the outer bay (sites 12–21); Group 3 corresponded
to the estuary (sites 1 and 2); and Group 4 covered the inner bay (sites 3–7, and 9). To identify the
main characteristics of water quality and sediment contamination in each group, the average values
of the variables were compared (Table 1 and Figure 6). Group 1 (referred to as the main channel)
was dominated by low concentrations of sediment contaminants. Group 2 (referred to as the outer
bay) exhibited higher saline conditions along with high concentrations of TIC, nickel, cobalt, and iron.
Group 3 (referred to as the estuary) showed high concentrations of nutrients (phosphorus, nitrogen,
and organic carbon), and the salinity was distinctly lower than in the other groups. The sediment
appeared to be intermediately contaminated with heavy metals, while iron and cadmium showed
the highest concentrations among the groups. Group 4 (referred to as the inner bay) appeared to be
the most contaminated by heavy metals, such as zinc, selenium, aluminum, arsenic, lead, chrome,
copper, and manganese. Moreover, it is remarkable that the Chl-a concentration was also the highest
in Group 4. From the SOMs, Gwangyang Bay can be characterized according to four distinct groups of
physicochemical attributes in accordance with geographical zonation, such as the estuary, inner bay,
main channel, and outer bay.
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4. Discussion

In this study, we successfully characterized the dominant pattern of physicochemical attributes
at Gwangyang Bay using SOM. Compared to visualization using bar graphs (Figures 3 and 4), the
SOM was more convenient for detecting the magnitude of the variables, as well as revealing the
relationships between them. In fact, the SOM is a very efficient algorithm for comprehensively
presenting complex data. For this reason, its application has gradually been increasing with respect
to complex biological domains such as plankton dynamics [37,38,44], fish communities [45–47],
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and benthic macroinvertebrates [48–50]. Conventional multivariate methods, including principal
component analysis and correspondence analysis, are limited in their ability to extract nonlinear
features of a complex dynamic nature [34,51]. However, the property of SOMs that mimics the
principle of competition and adaptation inherent in biological systems is better suited to nonlinear
relationships in data processing [52]. Although an earlier modeling study compared SOM with
other conventional statistical methods [34], recent work has also demonstrated the robustness of
its application to the evaluation of abrupt/nonlinear ecological regime shifts [19]. In this respect,
we highlight the fact that SOM is an effective analytical tool for characterizing ecological attributes,
explicitly mapping the relationships between parameters/variables (Figure 5).

The robustness and power of SOMs pertinent to multivariate ecological analysis has enabled
us to understand and elucidate the spatial pattern of water quality and sediment contamination
associated with the surrounding natural and anthropogenic conditions at Gwangyang Bay. The four
groups of physicochemical attributes reflect the unique characteristics of geographical zonation from
river to bay (i.e., estuary, main channel of the bay, inner bay, and outer bay) (Table 1 and Figure 5).
Consequently, the SOM result manifests the dominant physicochemical attributes of each geographical
zone associated with the patterns of water quality and sediment contamination.

First, one of the dominant physicochemical attributes was the nutrient gradient from Seomjin
River to Gwangyang Bay. It is well known that rivers are a significant source of nutrients to coastal
areas [53,54]. As such, high concentrations of phosphorus and nitrogen were found in Group 3 of the
SOM (referred to as the estuary) (Table 1 and Figure 6). Additionally, the longitudinal gradient of
salinity related to the nutrient pattern was evident in accordance with the nutrient gradient (Figure 3).
In fact, numerous studies have produced similar results. Baek et al. [55] reported that surface nitrate
concentrations were increased by Seomjin River runoff and inversely correlated with salinity at
Gwangyang Bay. A similar pattern has been reported in other international studies as well [53,54].
In the Yangtze River Estuary, which is geographically close to Gwangyang Bay in climatic scale,
phosphorus and nitrogen were found to occupy >60% of the total nutrient flux [56]. A large amount of
nutrients coming from the river may potentially affect biomass of (generic or specific) fish communities
via bottom-up food chain flow.

Second, another interesting pattern was that the main channel of the bay showed relatively low
concentrations of sediment contaminants (Table 1 and Figure 6). Given that heavy metal contaminants
stem from exogenous sources of chemical pollutants (i.e., the industrial complex adjacent to the bay),
we conjecture that the relatively fast current and hydrodynamics in the middle of the bay could reduce
the quantity of heavy metal contaminants settling into the sediments [57]. On the contrary, the inner
bay featured high concentrations of heavy metals, which implies that the relatively enclosed shape
of the bay could lead to the accumulation of these metals. Nevertheless, sediment contamination
mostly remained within acceptable levels based on the pollution index [13]. Counter to this judgement,
the inner bay could be considered contaminated based on the concentrations of Zn, Pb, Cr, Cu, and
Mn, if using different criteria such as the Marine Sediment Pollution Index [58]. Several studies have
assessed heavy metal concentrations of sediment, benthos, and fish in rivers and estuaries [59,60].
For example, in another part of Asia, the Tigris River’s sediments showed twice the heavy metal
concentrations found at Gwangyang Bay [16]. The same study reported that certain levels of heavy
metals were detected in some fish species. Specifically, Silurus triostegus, Mastacembelus simacks, and
Mystus halepensis accumulated heavy metals in their liver, gill, and muscle tissues (Cu: 2–5%, Ni:
0.6–1.0%, Mn: 0.2–1.6%, Fe: 0.1–0.7%; % concentration = mg kg−1 in wet weight/mg kg−1 in dry
weight; Tables III–VI by Karadede-Akin and Unlu, [16]). In this context, there have been public health
concerns in relation to the heavy metal contamination of sediment. Specifically, Yi et al. [60] reported
that human health can be potentially influenced by eating fish that were affected by their benthic food
sources and sediment contamination with respect to the lower Yangtze River. Thinking along the
same lines, we presume that a certain amount of heavy metal could be transported from sediment to
fish via benthic food chain flow at Gwangyang Bay. The characterization of sediment contamination
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using SOM indicates that intense monitoring and bio-assessment are further required for the inner
bay. If commercial fish were exposed to the heavy metal contamination (even though it is below
acceptable ranges of contamination), the advisory criteria for fisheries resources would be needed.
To this end, the SOM result can offer guidance for fish consumption in the context of public health and
ecosystem services.

Regarding the fish populations at Gwangyang Bay, we could roughly assess the abundance and
dominance of fish populations in response to the spatial clustering groups determined by SOM. In
terms of individual and species numbers, sites 8 and 11 appear to show higher productivity than
the others (Table 2). Notably, this pattern was in accordance with SOM characterization (Group 1:
sites 8 and 11). Considering the highest richness and biodiversity (H′ = 2.35, Table 2), we assert that
the high productivity at this site is closely associated with the significant influx of nutrients from the
river. As for the nutrients, recent biochemical research from Gwangyang Bay has reported that the
influx of phosphorus and nitrogen from rivers is highly correlated with the protein compositions in
the ocean [61]. The same study underlined that the high proportion of protein under the abundant
nutrient condition is related to the production of phytoplankton. However, the fish biomass and
composition were slightly heterogeneous between the two sites (Table 2). In particular, total biomass
of fish highlights the fact that site 8 is the most productive among the four sites (Table 3). While the
SOM characterizes it as being part of the main channel (SOM Group 1), site 8 appears to be affected by
abundant planktonic food associated with nutrient input from the river (SOM Group 3). Given this
mixture pattern in site 8, the current study facilitates the need for additional monitoring and intense
sampling near the river.

Table 2. Observed fish populations at Gwangyang Bay in July 2018.

Common Name Scientific Name Site 8 (%)
N = 556

Site 11 (%)
N = 369

Site 12 (%)
N = 204

Site 13 (%)
N = 222

Sum
N = 1351

Blackhead seabream Acanthopagrus schlegelii 1 (0.2) 1
Cardinalfish Apogon lineatus 13 (2.3) 23 (10.4) 36

Common skate Okamejei kenojei 14 (2.5) 6 (1.6) 2 (1.0) 22
Conger eel Conger myriaster 1 (0.3) 1

Daggertooth pike
conger Muraenesox cinereus 3 (0.5) 4 (1.1) 2 (1.0) 9

Dorsal soft ray Pampus echinogaster 27 (4.9) 3 (0.8) 4 (2.0) 8 (3.6) 42
Dotted gizzard shad Konosirus punctatus 1 (0.2) 1

False kelpfish Sebastiscus marmoratus 15 (4.1) 1 (0.5) 16
Filamentous
shrimpgoby Myersina filifer 1 (0.5) 1

Fingerling rockfish Sebastes inermis 1 (0.3) 1
Goblinfish Inimicus japonicus 7 (1.3) 2 (0.5) 9

Grey stingfish Minous monodactylus 1 (0.2) 1
Largehead hairtail Trichiurus lepturus 4 (0.7) 5 (1.4) 4 (2.0) 1 (0.5) 14

Pinkgray goby Amblychaeturichthys
hexanema 12 (3.3) 12

Red barracuda Sphyraena spp. 2 (0.9) 2

Red eel goby Ctenotrypauchen
microcephalus 5 (1.4) 1 (0.5) 6

Red tongue sole Cynoglossus joyneri 12 (2.2) 13 (3.5) 3 (1.5) 1 (0.5) 29
Sand smelt Sillago sihama 17 (3.1) 17

Scad Decapterus maruadsi 2 (0.5) 2
Spiny red gurnard Chelidonichthys spinosus 9 (1.6) 6 (1.6) 19 (9.3) 2 (0.9) 36
Spotnape ponyfish Leiognathus nuchalis 263 (47.3) 166 (45.0) 22 (10.8) 94 (42.3) 545

Tidepool gunnel Pholis nebulosa 2 (1.0) 2
White croaker Argyrosomus argentatus 142 (25.5) 97 (26.3) 109 (53.4) 58 (26.1) 406

Wild marbled sole Pleuronectes yokohamae 1 (0.2) 1
Yellow croaker Larimichthys polyactis 41 (7.4) 31 (8.4) 33 (16.2) 32 (14.4) 137
No. of species 16 16 14 10

Shannon diversity (H′) 2.35 1.97 1.94 1.44
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Table 3. Spatial comparison in the biomass of fish, shrimps, and crabs at Gwangyang Bay in July 2018.
Bold numbers indicate the highest value among the four sites.

Fauna Type Biomass
Site 8 Site 11 Site 12 Site 13

N = 556 N = 369 N = 204 N = 222

Fish Individual
biomass (g) 28.9 33.6 49.0 * 25.6

Total biomass
(kg) 16.0 * 12.4 10.0 5.7

Shrimps Individual
biomass (g) 8.40 28.69 * 7.50 9.63

Total biomass
(kg) 0.42 0.83 2.33 * 0.09

Crabs Individual
biomass (g) 4.39 4.58 * 4.52 4.32

Total biomass
(kg) 2.52 * 0.80 0.50 0.51

* Bold numbers indicate the highest mean value among all groups for each variable.

On the other hand, we draw attention to benthic food items for fish among the study sites.
Interestingly, we found spatial variation of the biological entities, such as fish, shrimps, and crabs,
across the four sites (Table 3). Seemingly, the fish communities are similar between site 8 and site 11 in
terms of richness and diversity (Table 2). Nonetheless, we found that the benthic communities, such
as shrimps and crabs, showed different habitat selections; the total biomass of shrimps was similar
between the two sites, while that of crabs was significantly different (Table 3). It is remarkable that this
pattern was opposite for the individual biomass between the two. Without direct evidence to explain
the reason behind this pattern, however, knowing that marine benthic populations represent over
80% of primary food sources for fish [62,63], it is presumable that the spatial differentiation in benthic
communities can lead to the abundance and composition of fish communities. Similarly, the distinct
pattern of dominant fish populations was remarkable at sites 11 and 12, which are geographically very
close to each other; while Leiognathus nuchalis were predominant (45%) at site 11, Argyrosomus argentatus
were predominant (53.4%) at site 12 (Table 2). Interestingly, the biomass pattern of the shrimps
differed from each other; site 11 showed the largest individual biomass, while site 12 showed the
largest total biomass. This implies that there are more food resources available for specific fish
populations (e.g., Argyrosomus argentatus) at site 12. At site 11, availability of the food sources might
be limited in terms of both quantity and size (i.e., too large to eat; see Table 3). Lastly, within the
outer bay, the richness and composition of the fish populations differed between sites 12 and 13.
As previously discussed, this might also be related to the double-to-triple total biomass of shrimps
at site 12 compared to the other three sites (Table 3). However, there is a great deal of uncertainty in
investigating fish populations, given their variation in both space and time. Moreover, it is difficult
and subjective to determine the spatial variation of fish populations, since they migrate from space to
space. As a consequence, geographical distance may not be meaningful for determining the spatial
characterization of ecological features in coastal areas, and more intensive surveys are required.
Therefore, the spatial clustering by SOM can be an effective means to guide sampling and monitoring
sites at Gwangyang Bay because the SOM groups seem to reflect biological differentiation in response
to ambient physicochemical conditions.

5. Conclusions

To recap, the present environmental conditions of Gwangyang Bay were spatially characterized
according to four different groups of water quality and sediment contamination conditions. From the
results, we place emphasis on several interesting points: (i) the SOM manifests the dominant
physicochemical attributes of each geographical zone associated with the patterns of water quality
and sediment contamination; (ii) fish populations appear to be closely associated with their food
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sources (e.g., shrimps and crabs) as well as the ambient physicochemical conditions; and (iii) in the
context of public health and ecosystem services, the SOM result can potentially offer guidance for fish
consumption associated with sediment heavy metal contamination. The present study has scientific
novelty in view of the expansion of SOM applications for understanding biological communities
in association with their ambient physicochemical conditions. At the same time, however, we
recognize limitations in representing general features of Gwangyang Bay, since the snapshot of
our survey is limited in its ability to characterize a complex ecosystem. In this regard, consistent
sampling and high-frequency investigations are needed to capture spatial variation and to delineate
the temporal dynamics of water quality, sediment contamination, and fish populations. Nevertheless,
our study highlights that the use of SOM is helpful for a first approximation of spatial heterogeneity in
limno-oceanographic patterns for effective management of fisheries resources.
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