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Abstract: Antibiotics are regarded as a miracle in the medical field as it prevents disease caused by
pathogenic bacteria. Since the discovery of penicillin, antibiotics have become the foundation for
modern medical discoveries. However, bacteria soon became resistant to antibiotics, which puts a
burden on the healthcare system. Methicillin-resistant Staphylococcus aureus (MRSA) has become one
of the most prominent antibiotic-resistant bacteria in the world since 1961. MRSA primarily developed
resistance to beta-lactamases antibiotics and can be easily spread in the healthcare system. Thus,
alternatives to combat MRSA are urgently required. Antimicrobial peptides (AMPs), an innate host
immune agent and silver nanoparticles (AgNPs), are gaining interest as alternative treatments against
MRSA. Both agents have broad-spectrum properties which are suitable candidates for controlling
MRSA. Although both agents can exhibit antimicrobial effects independently, the combination of
both can be synergistic and complementary to each other to exhibit stronger antimicrobial activity.
The combination of AMPs and AgNPs also reduces their own weaknesses as their own, which can
be developed as a potential agent to combat antibiotic resistance especially towards MRSA. Thus,
this review aims to discuss the potential of antimicrobial peptides and silver nanoparticles towards
controlling MRSA pathogen growth.
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1. Introduction

Antibiotics are one of the outstanding discoveries in the medical field in treating
infectious diseases caused by pathogenic bacteria. Before the antibiotic discovery era,
the lethality and death rate caused by pathogenic microorganisms was high until the
accidental rediscovery of penicillin in 1928 by Alexander Fleming [1]. This rediscovery
grants the exploration of other types of antibiotics such as sulphonamides, lipopeptides,
aminoglycosides, fluoroquinolones, and many more [1,2]. Antibiotics also allow modern
medical technology to exist as it aids in preventing infection in chemotherapy and various
surgical wounds.

Although antibiotics give significant advantages in treating diseases caused by pathogenic
bacteria, Alexander Fleming warns of the danger of uncontrolled antibiotic usage where resis-
tance can be developed. The warning appeared to be true as Escherichia coli started to exhibit
antibiotic resistance (AR) towards penicillin in 1940 [3]. Up until this day, antibiotic resistance
has been a significant threat in the healthcare system as more bacteria developed resistance
towards various classes of antibiotics. It is predicted that, by 2050, AR related death may reach
10 million per year [4,5].
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A recent comprehensive report released in The Lancet [6] stated that 4.95 million AR
associated death and 1.27 million AR attributed death were estimated from 204 countries
in 2019. Highest AR related death can be found in Western Sub-Saharan Africa with
estimated 27.3 AR attributed death per 100,000 and 114.8 AR associated death per 100,000.
Meanwhile, the lowest death can be found in Australasia where only 6.5 AR attributed
deaths per 100,000 and 28 AR associated deaths per 100,000. The same report also lists out
six pathogenic bacteria that cause the most death in 2019 [6]. In order of the number of
deaths, E. coli, S. aureus, K. pneumoniae, A. baumannii, and P. aeruginosa caused 929,000 AR
attributed deaths and 3.57 million AR associated deaths.

Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant type of S.
aureus that is generally resistant towards beta-lactam antibiotics such as penicillin (methicillin
and oxacillin) and cephalosporin [7–9]. Beta-lactam inhibits the bacterial growth by halting
the cell wall synthesis process [10–12]. MRSA generally overcomes the beta-lactam effects by
producing beta-lactamase and altering the binding site for cell wall synthesis [7–9,13]. The
current clinically approved method to treat MRSA infection involves different antibiotic
classes such as vancomycin and teicoplanin [14,15]. These glycopeptide antibiotics act on
the bacterial cell wall similar to beta-lactam, but it utilises different target by binding to the
peptidoglycan side chain, which prevents peptidoglycan crosslinking [13–15]. However,
the newer MRSA strain started to exhibit resistance towards glycopeptide antibiotics, which
makes it difficult to treat the infection [13,14]. Other types of antibiotics such as mupirocin,
clindamycin, fusidic acid, and co-trimoxazole also used a second line option in treating
MRSA [16]. However, these antibiotics can only be prescribed when there is no other
alternative available due to the risk of resistance [16,17]. Thus, alternatives to treat MRSA
without the use of different classes of antibiotics are greatly needed.

Recent scientific development showed some promising potential in inhibiting MRSA
through the usage of antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs).
These two agents exhibit broad-spectrum antimicrobial properties, which makes them
the suitable candidates to combat MRSA threat [18–21]. AMPs are naturally occurring
molecules that can be found in all types of life, which are involved in innate immunity
defense [20,21]. AMP mainly takes action on the bacterial membrane, and it can be simpli-
fied into two mechanisms of action: membranolytic and non-membranolytic action [21–23].
Membranolytic action can be defined as direct AMP action on the bacterial membrane,
which greatly alters its structural integrity [23–25]. Meanwhile, non-membranolytic ac-
tion is when AMPs were internalised into the cells without causing major damage to the
membrane, but it targets the vital intracellular components [26–28].

AgNPs are metallic nanoparticles that have unique physicochemical properties in-
cluding optical, thermal, electrical and high electrical conductivity in comparison to its
bulk form due to its nano size [29,30]. Their enhanced antimicrobial properties mainly
contributed with their large surface area per volume area, which allows more antibacterial
contact with the pathogenic bacteria [19,31,32]. AgNPs are also steadily gaining interest
due to its multiple mechanism of actions. AgNPs generally act on membranes by disrupting
it through hole formation, direct adhesion and internalisation into the membrane, excessive
ROS generation and alteration in signalling pathways [30,33–35]. Despite their excellent
antimicrobial properties, AMPs and AgNPs have their own limitations, but, through the
combination of both agents, a positive synergistic effect can be observed [36,37]. Thus, this
review discusses about MRSA, its mechanism of resistance, advantages and limitations
of AMPs and AgNPs as its own. This topical review also discusses the combination of
AMPs–AgNPs in combating bacteria, particularly MRSA and S. aureus, as no other review
has been reported with the combination of the two antimicrobial agents. The review process
was done based on a literature search in Google Scholar with the keywords, antimicrobial
peptide, antibiotic resistance, MRSA, silver nanoparticles and S. aureus, with most of it
published from 2016–2022 and some of the papers published before 2016.
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2. Methicillin-Resistant Staphylococcus aureus

Staphylococcus aureus is Gram-positive bacteria with round shape morphology that
commonly can be found in the body as a part of its microbiota. Despite it acting commen-
sally on the human body, it can be opportunistic bacteria since it can cause skin infections
and food poisoning. Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-
resistant strain of S. aureus that are mainly resistant to beta-lactam antibiotics. MRSA was
first identified in 1961 in United Kingdom just a year after methicillin was introduced to
treat S. aureus infection [38,39]. Despite methicillin no longer being used clinically, the
term methicillin-resistant is still used to reflect S. aureus resistance towards commercial
antibiotics such as beta-lactams antibiotics including oxacillin. According to World Health
Organization (WHO) and the Centers for Disease Control and Prevention (CDC), MRSA
has been a big and serious threat on the pathogenic bacteria watch list respectively [40,41].
According to recent systematic analysis in the Lancet in 2019, MRSA alone caused more
than 100,000 deaths [6]. Originally, MRSA are common in the healthcare setting, and
this type of MRSA is often dubbed as healthcare-associated or hospital-acquired MRSA
(HA-MRSA) [42]. The infection can be spread through direct contact with an infected
wound or contaminated hands. Untreated infection can cause serious bloodstream in-
fections, surgical site infections, sepsis and pneumonia [7,43]. Other types of MRSA are
community-associated (CA-MRSA) and livestock-associated MRSA (LA-MRSA) [39,43].

Beta-lactam antibiotics act on the bacterial cell wall by binding to the penicillin bind-
ing protein (PBP), which is responsible for the crosslinking of N-acetylmuramic acid
(MurNAc) and N-acetylglucosamine (GlcNAc) [10,11]. This crosslinking will form a
cell wall that protects the bacteria from external threats. MurNAc subunits have pen-
tapeptide chains attached to it, typically with a sequence of l-Ala-γ-d-Glu-l-lysine (or
-meso-diaminopimelic acid)-d-Ala-d-Ala [11]. Beta-lactam antibiotics such as penicillin,
cephalosporin, carbapenem and monobactams have a beta-lactam ring which shared simi-
lar structural homology to d-Ala-d-Ala of the pentapeptide chain [10,44]. The d-Ala-d-Ala
substrate is responsible for the PBP binding site for crosslinking, and this similarity causes
beta-lactam antibiotics bind to PBP, causing the crosslinking between the glycan stands to
be halted [11]. The binding between beta-lactam and PBP causes the build-up of peptido-
glycan precursors which trigger autolytic digestion of old peptidoglycan by hydrolase [10].
Without the production of new peptidoglycan, the structural integrity of the cell wall is
significantly disrupted and led to cell damage due to high internal osmotic pressure [11,12].

MRSA overcomes this detrimental effect by producing beta-lactamase, an enzyme to
break down the antibacterial effect of beta-lactam antibiotics and production of the mecA
gene, which changes the penicillin-binding protein (PBP) confirmation. Beta-lactamase is
an enzyme produced by bacteria to counteract the effects of beta-lactam antibiotics. This
enzyme hydrolyses beta-lactam in the periplasmic space, thus deactivating it before PBP
interaction [4]. Beta-lactamase production in staphylococci is controlled by the repressor
BlaI and the sensor protein BlaR1 (Figure 1a) [44]. The genes encoding beta-lactamase, the
blaZ-blaR1-blaI genes, are repressed by BlaI is from transcribing beta-lactamase when beta-
lactam is absent [10,12]. Once beta-lactam is presented, the transmembrane sensor, BlaR1,
covalently binds to it and irreversibly acylated at its active site serine. This will activate
the intracellular zinc metalloprotease domain of BlaR1 and cause BlaI that are bound to
blaI-blaRI operator to proteolytically cleave and dissociate from its binding site [12]. The
dissociation allows blaZ to be upregulated and transcribed beta-lactamase enzyme. The
produced beta-lactamase enzyme later hydrolyses beta-lactam antibiotic by hindering it
from binding with PBP [10,12]. Thus, the peptidoglycan synthesis of the bacteria can be
initiated as usual.
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Figure 1. Correlation between Blal and MecA role in MRSA resistance. (a) bla operon responsible for
beta-lactamase production and (b) mec operon responsible for the alteration of normal PBP to PBP2a.
The blue arrows indicate that bla and mec operon shared similarities, which allows the repressor (Blal
and Mecl) to bind to each operon.

In MRSA, the PBP responsible for the peptidoglycan cross-linking is altered to novel
penicillin-binding protein 2a (PBP2a), which has a lower binding affinity to beta-lactam an-
tibiotics [39]. The resistance arose from the mecA gene located in the staphylococcal cassette
chromosome mec (SCCmec), and this resistance gene can be passed to other populations
through horizontal gene transfer [12]. Upon acquiring the mecA gene, it will be localized
in the S. aureus chromosome. The production of PBP2a is controlled by MecI repressor
and transmembrane MecR1 sensor protein (Figure 1b) [10]. In the absence of beta-lactam
antibiotics, MecI represses mecA gene expression by binding to the promoter region of
mec operon [10,39]. In the presence of beta-lactam antibiotics, the antibiotic binds to the
MecR1 sensor protein. It triggers autolytic activation of the metalloproteinase domain in the
cytoplasm part of MecR1, causing signal transduction to be activated [12]. The latter caused
the MecI repressor to be proteolytically cleaved from its binding site, and this allows the
expression mecA to produce PBP2a [10]. The PBP2a production allows the peptidoglycan
wall synthesis to continue without the interaction of beta-lactam antibiotics due to its
low binding affinity to the antibiotic [7,39]. Interestingly, the mec operon shared a similar
structure and function with the bla operon, which produces beta-lactamase [7,12]. This
similarity allows the Blal repressor to bind to the mec operon to repress mecA transcription
(Figure 1) [10].

3. Antimicrobial Peptides (AMPs)

Antimicrobial peptides (AMPs) are naturally occurring host defense mechanisms
against infections. AMPs can be found in all living organisms such as plants, microor-
ganisms and animals [20,23]. Typical AMPs consist of 5–50 amino acid chains and have
amphipathic or cationic structure. Despite AMPs being naturally occurring, synthetic
AMPs have been developed by the scientist to overcome the naturally occurring AMP
limitations [21]. While naturally occurring AMPs are susceptible to proteolytic degradation,
synthetic AMPs have a longer half-life, and it is designed to improve their antimicrobial
properties. AMPs then can be divided into four main groups based on its secondary struc-
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ture including amphipathic alpha-helices, beta-sheets, a combination of both alpha and beta
structure (mixed) and extended structure (without alpha and beta structure) (Figure 2) [21].
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Figure 2. Antimicrobial peptides structural classification based on their secondary structure. (a) alpha-
helices AMPs, human LL-37 (PDB ID: 2K60); (b) beta-sheets AMPs, protegrin-1 (PDB ID: 1ZY6);
(c) mixed structure AMPs, human beta-defensin-2 (PDB ID: 1FD4); (d) extended structure AMPs,
indolicidin (PDB ID: 5ZVN).

Alpha helices’ AMPs generally contain two amino acids that are adjacent to each
other with the distance of 1.5 Å (0.15 nm) [23]. The most studied AMPs in this group is
LL-37 (amino acid sequence: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), AMPs
that can be found in the human body that act as the host defense towards bacterial infec-
tions [21,23,45,46]. Beta-sheets’ AMPs have at least two beta strands with disulfide bonds.
Protegrin-1 (amino acid sequence: RGGRLCYCRRRFCVCVGR-NH2), which is isolated
from pigs, is one of the examples in this group which exhibits antimicrobial activity against
fungi, bacteria and some enveloped viruses [23,26]. Mixed structure usually consists of a
combination of alpha-helix and beta-sheet that are packed against each other. Human-beta-
defensin-2 is one of the well-studied AMPs in this group [23,28]. The extended structure is
a unique group of AMPs that consists of two or more tryptophan, arginine, histidine and
proline structure in single molecules. Cattle neutrophil isolated AMPs, indolicidin (amino
acid sequence: ILPWKWPWWPWRR-NH2), are in this group [23,45].

In terms of AMP mechanism of actions, it can be divided into two main categories,
membrane disruptive and non-membrane disruptive AMPs [22,26,28]. Membrane disrup-
tive AMP can be further divided into the toroidal-pore model, barrel-stave model and
carpet model (Figure 3) [26,27]. The toroidal-pore model is where AMPs form pores in the
membrane (1–2 nm diameter) vertically [27]. This will also cause the phospholipid head
to bend due to the insertion of AMPs [28]. In the barrel-stave model, AMPs bind to the
cell membrane and aggregate before penetrating the membrane [26]. During this process,
hydrophobic regions of AMPs are inserted into the phospholipid membrane, while the
hydrophilic regions of AMPs are facing the outer part of the membrane pore [27]. This
will cause uncontrolled cellular movement for the cell, which will lead to cell death. The
carpet-like model destroys the membrane in a detergent-like manner [22]. AMPs are first
arranged onto the cell membrane by their hydrophobic part facing the phospholipid bilayer,
which alters its surface tension. The altered surface tension later causes micelles formation
as the results of peptide accumulation and destroys the membrane [22,27].
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Figure 3. Antimicrobial peptide mechanism on the bacterial membrane. Accumulation of AMPs on
the bacterial membrane surface, which leads to three main membranolytic mechanisms. (a) toroidal
pore model which forms pores on the membrane, (b) barrel-stove model which AMPs aggregate
before entering the membrane and (c) a carpet-like model which promotes the formation of micelles.

A non-membrane disruptive mechanism is rarely studied in AMP research, but re-
cent advancement showed that AMPs are internalised into cells and interacts with vital
intracellular targets and even inhibits cell wall biosynthesis [28]. This includes inhibition
of protein and nucleic acid synthesis, cell division and protease activity [23,26,28]. AMPs
inhibit protein synthesis by directly interacting with the transcription and translation pro-
cess. PR-39 AMPs isolated from a pig’s small intestine can inhibit protein synthesis, which
causes proteins degradation that are required for DNA synthesis [28]. Indolicilin induces
degradation of nucleic acid by binding to the double stranded DNA, which causes the DNA
synthesis to be halted [23,26]. Teixobactin AMPs bind to lipid II and lipid III (precursors of
cell wall), which later inhibits the cell wall synthesis process [28]. Based on the promising
antimicrobial action of AMPs, Table 1 showed some examples of AMPs that are effective
towards MRSA and wild type S. aureus.

As the innate immune system, AMPs have broad spectrum antimicrobial properties
which are said to be effective towards pathogenic microorganisms [21,23,45]. These an-
timicrobial properties are greatly enhanced as AMPs can be found abundantly at the site
of the infection, which makes it more time efficient since it can react faster to combat the
infection [23,28]. Resistance towards AMPs is also said to be low, which makes it one of
the suitable candidates to combat MRSA [28]. Besides that, AMPs also have good water
solubility and thermal stability [23,45]. However, AMPs do possess weakness as naturally
occurring AMPs are susceptible towards proteolytic degradation, which limits their poten-
tial [23,28]. In addition, AMP production and purification can be costly sometimes. Despite
their broad antimicrobial spectrum, it can be a challenge to be used medically as some
AMPs might induce hypersensitivity after application and might cause immunogenicity
and toxicity when it is administered in humans [21,23,45].
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Table 1. Examples of natural antimicrobial peptides that are effective towards Staphylococcus aureus
(methicillin-susceptible and MRSA).

AMPs Type(s) AMPs Origin/Type Amino Acid Sequence Antibacterial Activity on
Staphylococcus aureus Ref.

Temporin A
Isolated from frog skin

secretion, Rana
temporaria

FLPLIGRVLSGIL-NH2

Effective toward methicillin-susceptible S.
aureus (MSSA) and MRSA. Exhibit MIC

value of 4 µg/mL once tested on surgical
wound isolated MRSA.

[18]

Exhibit MIC values of 16–64 µg/mL once
tested on 215 isolates of MSSA and MRSA [47]

Cecropin A-melittin
hybrid peptide

[CA(1–7)M(2–9)NH2]

Hybrid peptide derived
from cecropin A and

melittin partial
sequence

KWKLFKKIGAVLKVL-
NH2

Effective towards MRSA. Exhibit MIC
value of 8 µg/mL once tested on skin

lesion isolated MRSA.
[18]

Exhibit MIC values of 4 mg/mL to
32 mg/mL once tested on 215 isolates of

MSSA and MRSA
[47]

Citropin 1.1
Isolated from frog’s

dorsal and submental
glands Litoria citropa

GLFDVIKKVASVIGGL-
NH
(2)

Exhibit MIC value of 16–64 mg/mL once
tested on 215 isolates of MSSA and MRSA [47]

Effective towards MRSA. Exhibit MIC
value of 16 µg/mL once tested on wound,

deep wound and skin lesion isolated
MRSA.

[18]

Exhibit MIC value of 32 µg/mL once
tested on MRSA strain JE2 [48]

Cathelicidin LL-37 Human derived
cathelicidin AMPs

LLGDFFRKSKEKI
GKEFKRIVQRIKD-

FLRNLVPRTES

Effectively reduces infection once tested
on MRSA infected wound on mice in
comparison to the antibiotic groups

(teicoplanin).

[49]

Exhibit MIC values on biofilm forming
MSSA and MRSA (isolated from chronic

wound) 89.6 mg/L and 132.3 mg/L,
respectively. Inhibit the growth by

affecting quorum sensing and biofilm
gene expression.

[50]

4. Silver Nanoparticles (AgNPs)

Silver nanoparticles are the product of nanotechnology which are particles of silver that are
ranging in size from 1 to 100 nm [38,39]. Their nanosized greatly enhances its broad-spectrum
antibacterial properties as it has larger surface area per volume ratio [29,33,35,51]. Due to
their unique properties in terms of optical, electrical, magnetic and antibacterial, AgNPs have
various applications, which include medical appliances, optical sensors, cosmetics, drug delivery,
textiles, keyboards, wound dressings and food packaging [35,51–53]. AgNPs are gaining
popularity due to their multiple mechanisms of action on bacteria (Figure 4), which include
direct adhesion of AgNPs on the bacterial surface and altering the membrane structural
integrity [32,54]. Next, AgNPs penetrate inside the bacterial cell and interact with its
intracellular components, damaging it until it cannot perform vital cellular processes [32,54].
AgNPs are also able to induce reaction oxygen species and free radical generation, thus
causing irreversible oxidative damage to the bacteria [55,56]. Alteration of vital signaling
transduction, which is necessary for the bacterial life cycle, is also one of the mechanisms
exhibited by AgNPs [52,57].
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When AgNPs is in contact with the outer membrane of the bacteria, it adheres to it
due to the difference in electrostatic charge [58]. This electrostatic force is driven by the
positively charged AgNPs and negatively charged bacterial cell membrane [34,59]. The
negative charge on the membrane is contributed by the presence of the amino, carboxyl
and phosphate group [60,61]. This metal depletion on the membrane causes pit formation
on the membrane as first visualized using transmission electron microscopy by Sondi and
Salopek-Sondi [62]. The phenomenon causes the membrane to fail to regulate vital cellular
content movements and may lead to cell death.

After AgNPs attached on the membrane, its permeability and structural integrity
are greatly altered, and this causes some portion of AgNPs to infuse into the cell. This
statement is further strengthened by several studies which revealed that AgNPs penetrate
the cells through transmission electron microscope analysis on bacteria [19,62,63]. In
addition, in the presence of oxygen and proton, AgNPs dissociate to Ag+ ions, which also
facilitates the infusion [64]. When AgNPs are internalised into the cell, it interacts with
cellular molecules and structures such as protein, DNA and lipids. For instance, AgNPs
interrupt protein synthesis by interacting with ribosome by denaturing it, which halts
the translation process [65,66]. AgNPs also interacts with DNA molecules, which may
cause denaturation and shearing of DNA and also cell division interruption [32,67]. The
interaction causes the bacteria to lose the ability to undergo division, reproduction and
eventually cell death [54,68].

Reactive oxygen species or ROS are also the culprits for the bacterial growth inhibition.
AgNPs generate a high level of ROS, which induces oxidative stress in the cell [55,56].
Oxidative stress causes a vital cellular component breakdown, such as protein, RNA
and DNA, which led to the alteration of membrane permeability and increased cellular
component leakage from the cell [52,69]. This will cause irreversible oxidative damage to
the bacteria and cell death [33,65].

Tyrosine phosphorylation is important in activation of various proteins such as RNA
polymerase sigma factor that are essential in the bacterial transcription process [34,57].
Increased dephosphorylation of tyrosine profile might inhibit vital processes in bacteria
such as polysaccharide biosynthesis of bacterial capsule in bacteria [33,34]. AgNPs can
alter tyrosine phosphorylation, which led to failed regulation of the cellular process and
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homeostasis, which later destroys the cells [52,57]. Since AgNPs managed to exhibit
multiple mechanisms of action on bacteria, it is said to be effective to combat MRSA. Table 2
showed some AgNPs action on inhibiting the growth of MRSA.

Table 2. Antibacterial effect of AgNPs on MRSA.

Silver Nanoparticles’ Properties Antibacterial Action Ref.

Spherical shape with the size ranges from
8.55 to 20.3 nm

Exhibit MIC value 8.125 µg/mL on MRSA. It said the AgNPs inhibit
MRSA by adhering and penetrating the cell by interacting with vital

cellular compounds.
[70]

Spherical AgNPs with the size range
from 5–10 nm

Exhibit MIC value ranging from 11.25 µg/mL to 45 µg/mL on MRSA.
AgNPs disrupt the biofilm formed by MRSA once visualised using a

scanning electron microscope.
[71]

Spherical AgNPs with the size 150 nm
that are determined by dynamic light

scattering

Showed inhibition on disk diffusion assay and exhibited MIC value
at 0.015 mg/mL on all tested MRSA strains. [72]

Spherical AgNPs with the size range
<100 nm (Three different AgNP sizes

used in the experiment. AgNPs 1:36 nm,
AgNPs 2:113 nm and AgNPs 3:78 nm)

Smaller AgNPs (AgNPs 1:36 nm) showed higher MRSA inhibition
due to higher AgNP contact rate with bacteria based on a disk

diffusion assay. MIC value of MRSA upon interaction with AgNPs is
0.50 µg/mL.

[73]

Spherical AgNPs with diameter of 9 nm Exhibit MIC value of 1.95µg/mL on MRSA (ATCC 33591) [74]

Spherical AgNPs with size range of
16–18 nm

Inhibit MRSA growth at MIC value of 8 µg/mL and AgNPs cause the
accumulation of ROS, which led to irreversible oxidative damage

on MRSA.
[75]

Spherical AgNPs with size range of
4.5 to 26 nm

Disk diffusion assay showed an inhibition zone of 23.7 ± 0.08 mm in
comparison to ampicillin treatment (26.7 ± 0.33 mm). AgNPs also
exhibits MIC value of 1.2 mg/mL. ROS accumulation contributed

to MRSA membrane disruption and led to cell death.

[76]

Despite AgNPs possessing broad spectrum antibacterial activity on MRSA, it tends to
aggregate and reduces its antibacterial properties [36,77]. Other than that, some AgNPs can
be toxic in vitro and in vivo when it is administered as its own without a capping agent,
which limits its toxicity effect towards cells [78]. Oxidation of AgNPs also contributes to its
weakness to be developed as a promising antibacterial agent [78–80].

5. AMP and AgNPs Combination on MRSA or MSSA

Despite AMPs and AgNPs having their own weaknesses on their own, the combination
of these two, or sometimes with the addition of polymer, enhances its antibacterial properties
while greatly reducing their toxicity effects. Synergistic effect in terms of stronger antibacterial
activity of these two agents can also be observed once they are administered together.

A study by Jin et al. utlises AMPs, Tet-213 and AgNPs that are loaded onto porous
silicon microparticles [36]. Tet-213 is a 10 amino acid peptide (sequence: KRWWKWWRRC)
that possesses broad spectrum activity due to the presence of thiol group and, with the
combination of AgNPs, the antimicrobial effect increases drastically. The presence of porous
silicon microparticles (PSiMPs) acts as a carrier for effective delivery of the antimicrobial
agent to the infected site [36,81]. PSiMPs was chosen due to its tunable pore size, biocom-
patibility and decompatibility. However, PSiMPs only dissociate in an alkaline condition as
it is normally acidic during the early stage of infection [82]. Despite the carrier only being
able to dissociate in alkaline conditions, the presence of ROS also allows PSiMPs be to be
dissociated easily. When ROS is high during the wound infection, it allows the carrier to
be disintegrated and releases silver ions from AgNPs together with Tet-213. The acidic
condition also allows a gradual release of AgNPs-AMPs, which allows more effective and
stable antimicrobial action. In this study, for the combination of these agents, the MIC
value was greatly reduced to 2 mg/mL in comparison to AgNPs-PsiMPs (2.5 mg/mL) and
AMPs-PsiMPs (>5 mg/mL) on S. aureus [36]. In-vitro testing on mouse fibroblast (NIH3T3)
cells and human immortal keratinocyte (HaCaT) showed low toxicity effects as this com-
plex does not affect the cells’ proliferation. This AgNPs-AMPs-PSiMPs combination also
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exhibits low toxicity and faster wound healing on rats infected with S. aureus [36]. The
faster wound healing contributed with the release of silicon ions in the complex, with the
help of AgNPs and AMPs to reduce the bacterial infection in the wound. Note that silicon
ions promote wound healing by activating the epidermal growth factor receptor (EGFR),
epidermal growth factor (EGF) and extracellular signal-related kinase (ERK) signaling
pathway [36,83,84].

A star conjugated PCL-b-AMPs nanocomposite was also used in stabilising AgNPs
and enhancing antimicrobial activity of it with the help of AMPs [77]. Star conjugated
PCL-b-AMPs consist of polycaprolactone (PCL) and polypeptide (Phe8-stat-Lys32), which
are later loaded with AgNPs. This complex is relatively stable at room temperature for three
months with any sign of aggregations. In this case, PCL-b-AMPs penetrate the negatively
charged membrane since this complex is positively charged. This penetration allows AgNPs
to be released in the cytoplasm and the deactivating of vital cellular components. This
complex managed to exhibit enhanced inhibition on S. aureus (27.6 mm) when compared
to the combination of PCL-b-AMPs (19.1 mm) and AgNPs (12.7 mm) alone. A low MIC
value (4 µg/mL) is also observed when PCL-b-AMPs with AgNPs is tested on MRSA [77].
This suggests that a synergistic effect of AMPs and AgNPs allows higher inhibition on
the bacterial growth. A damaged membrane was also observed on MRSA, which later
led to cell death [77,85]. This complex also showed no sign of resistance even after 21
passage exposure with a sub-lethal MIC value of the complex when tested on the wild
type S. aureus [77]. It also showed low cytotoxicity towards normal mouse fibroblast cells
(L929) as it managed to retain up to 80% of cell viability after 48 h. The PCL-b-AMPs
managed to reduce AgNPs toxicity by only releasing it to the target site besides from their
biocompatibility.

Polymersomes, which are polymeric biocompatible vesicle, were also used for an
effective synergistic antimicrobial effect of AMPs and AgNPs [85]. PR-39 peptide was
utilised in the polymeric compound as it is effective towards inhibiting bacterial growth.
Originally, porcine PR-39 peptide could not translocate across the bacterial membrane as
MRSA produces protease which degrades the AMPs. For the addition of polymersomes
and AgNPs, the MRSA growth was totally eradicated under 23 h [85]. Polymersomes and
AgNPs allow the complex to translocate the cells and release the antimicrobial agent to
inhibit the bacterial growth. From the scanning electron microscopy, apparent damage on
MRSA membrane can be observed, which led to cell death [27,85]. A low toxicity level
toward CCL-110 human dermal fibroblast (HDF) cell lines can be observed since the coating
reduces the toxicity effects of AgNPs and stabilises AMPs [77,85].

A combination of protegrin-1 AMPs and gelatinized coated AgNPs also greatly en-
hances its antimicrobial properties as it exhibits low MIC value (6 µg/mL) in comparison to
AgNPs (48 µg/mL) and AMPs (8.5 µg/mL) treatment alone [79]. It is said that this complex
limits MRSA growth by membrane permeabilisation (possibly through the toroidal pores
model) [28,79]. The same study also combines AgNPs with another type of AMPs, Indoli-
cidin [79]. This combination also exhibits excellent antimicrobial properties as its MIC value
to inhibit MRSA is 12 µg/mL. The MIC value for indolicidin alone on MRSA 40 µg/mL is
relatively high in comparison to the AgNPs-Indolicidin complex. This complex acted on
MRSA by self-translocating into the cells by forming an apparent pore on the membrane
and interacting with nucleic acid, which halts the DNA synthesis [22,27]. Low haemolytic
activity can be observed when the complex was tested with human erythrocytes. However,
more optimisations are required as they showed a cytotoxicity effect towards cancerous
and normal cell lines, which grants in vivo assessment to elucidate the actual toxicity.

A novel composite of AgNPs and designed AMPs P-13 (amino acid sequence: KR-
WWKWWRRCECG) were tested against S. aureus (ATCC 25923) [86]. Based on the MIC
values, this composite manages to inhibit bacteria effectively at lower concentration
(7.8 ± 0.05 µg/mL) compared to AgNPs and AMPs alone with 7.8 ± 0.05 µg/mL and
>500 ± 0.04 µg/mL, respectively. Interestingly, with the addition of P-13 to AgNPs, a
drastic toxicity reduction can be observed on mouse fibroblast cells (NIH-3T3) [86]. This
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addition allows AMPs to stabilise AgNPs and reduce its cytotoxicity effect in comparison
to AgNPs alone. It is proposed that this complex inhibits bacteria growth by adhesion
to the bacteria through electrostatic force and was internalised into the cell reacting with
vital cellular components. This causes cellular leakage out of the cell, which led to cell
death [27,86].

Another study by Li et al. developed multifunctional peptide (MFP)-coated silver
nanoparticles as an alternative to combat antibiotic resistance [78]. In this study, AMPs
tachyplesin-1 and target peptide N-ac-PGP-PEG were combined to adsorb AgNPs through
electrostatic interaction. This complex was proven to be effective at inhibiting S. aureus
and MRSA growth with MIC values of 8 µg/mL and 16 µg/mL, respectively [78]. Despite
the MIC for vancomycin, an antibiotic control in this experiment is much lower than the
complex (2 µg/mL); this complex was proven to be a promising agent to inhibit the bacterial
growth with future optimisations.

The AMP@PDA@AgNPs nanocomposite was created through polymerisation to in-
hibit biofilm formation by S. aureus [80]. PDA was added as a delivery agent, which allows
more effective AMPs and AgNPs delivery to the target site. This allows more effective
internalisation into the cell to exhibit its antimicrobial activity. This nanocomposite showed
no cytotoxicity effect even at a high concentration (400 µg/mL) when tested on human
embryonic kidney (HEK293T) cells. To inhibit S. aureus growth, only a concentration of
25 µg/mL was required, which is much lower than the concentration used in the cytotox-
icity assessments. This complex also managed to reduce biofilm formed by the bacteria
by reducing the expression of biofilm forming genes (las I and rh II, fim H) [80]. Table 3
showed other combinations of AMPs with AgNPs that are able to inhibit S. aureus or MRSA
growth effectively.

Table 3. Combinations of AMPs and AgNPs with addition of polymer for inhibiting S. aureus or
MRSA growth.

AMP Type Product Combination Antibacterial Properties Ref.

Nisin (antibacterial peptide
produced by the Lactococcus lactis,
which is commonly used as food

preservative)

Silver-nisin nanoparticles
(Ag-nisin NP)

Exhibit MIC value of 4 mg/L on MRSA in
comparison to silver nitrate (16 mg/L) and nisin

(4 mg/L) alone. Inhibit MRSA growth by
destroying the biofilm. Ag-nisin NP showed

lower cytotoxicity on human skin fibroblasts (Hs
44.Fs, ATCC® CRL7024™) and human kidney

epithelium cell line (HEK) compared to
silver nitrate.

[87]

Daptomycin (clinically approved
AMPs for medical usage)

Daptomycin-silver
nanoclusters (D−AgNCs)

Complex exhibits the highest inhibitory effect
against S. aureus in comparison to the controls

(daptomycin or AgNCs alone). Inhibit growth by
inducing DNA damage and ROS generation.

[88]

GL13K (amphiphilic AMPs that
was developed from BPIFA2

(human salivary protein)

AgNP-dGL13K complexes
(AMPs and AgNPs coated

with etched Titanium (eTi) for
stable nanostructure)

Exhibit excellent antibacterial properties on
MRSA through in vitro and in vivo rat models. [89]

G-Bac3.4 (amino acid sequence:
CRFRLPFRRPPIRIHPP

PFYPPFRPFL–NH2)

Bioconjugate G-Bac3.4 with
silver nanoparticles

These bioconjugate AMPs and AgNPs exhibit
antimicrobial action by internalising into MRSA

and inhibiting the growth.
[90]

MBP-1 (plant antimicrobial
peptide)

MBP-1 and silver
nanoparticles combination

The MIC of MBP-1 is 0.6 mg/mL while MIC for
silver nanoparticles were 6.25 and 12.5 mg/L.

MIC of silver nanoparticles and MBP-1
combination was found to be 3.125 mg/mL and

6.25 mg/mL, respectively, on S. aureus. Faster
wound healing can be observed on rats infected

with S. aureus.

[37]
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In general, AMPs and AgNPs can be combined together to exhibit synergistic antimi-
crobial effect or carrier/polymer can be added to the complex to allow more effective AMPs
and AgNPs for the target site without exhibiting a high toxicity effect (Figure 5).
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6. Conclusions and Future Perspectives

Despite as antibiotic resistance threat that keeps on increasing year by year, scientists
are never giving up on finding alternatives to curb the spreading of antibiotic resistance. The
emergence of antimicrobial peptides with multiple membranolytic and non-membranolytic
mechanism cast light on the antibiotic resistance research. A lower rate of microbial
resistance towards AMPs also allows it to be studied intensively in combating MRSA,
a worldwide pathogenic threat. The introduction of silver nanoparticles in this modern
era also allows its utilisation in combating antibiotic-resistant bacteria including MRSA.
Multiple mechanisms, such as direct adherence and internalization of AgNPs, allow it
to exhibit an antimicrobial effect effectively by inducing ROS and alteration of signal
transduction. Nevertheless, AMPs and AgNPs each possess their own weaknesses, which
include toxicity and instability. A combination of these two agents somehow overcomes
these weaknesses by stabilising these agents to the target site. A synergistic effect can
also be observed once these two agents are combined to inhibit bacterial growth. A lower
toxicity effect in vitro and in vivo can also be observed. Although this research is still
the beginning, future optimisations can be done, especially in terms of enhanced complex
stability, lower dosage required in inhibiting bacteria and lower toxicity, in vitro and in vivo
need to be done. Clinical research also needs to be done before the co-application of AMPs
and AgNPs can be truly used in combating antibiotic resistance, especially towards MRSA
in humans.
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