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Abstract Cirrhosis is the consequence of progression of
many forms of necro-inflammatory disorders of the liver with
hepatic fibrosis, hepatocellular dysfunction, and vascular
remodeling. Reversing the primary hepatic disorder, liver
transplantation, and controlling the complications are the ma-
jor management goals. Since the former options are not avail-
able to the majority of cirrhotics, treating complications
remains the mainstay of therapy. Sarcopenia and/or cachexia
is the most common complication and adversely affects sur-
vival, quality of life, development of other complications of
cirrhosis, and outcome after liver transplantation. With the
increase in number of cirrhotic patients with hepatitis C and
nonalcoholic fatty liver disease, the number of patients wait-
ing for a liver transplantation is likely to continue to increase
above the currently estimated 72.3/100,000 population. One
of the critical clinical questions is to determine if we can treat
sarcopenia of cirrhosis without transplantation. No effective
therapies exist to treat sarcopenia because the mechanism(s) of
sarcopenia in cirrhosis is as yet unknown. The reasons for this
include the predominantly descriptive studies to date and the
advances in our understanding of skeletal muscle biology and
molecular regulation of atrophy and hypertrophy not being
translated into the clinical practice of hepatology. Satellite cell
biology, muscle autophagy and apoptosis, and molecular sig-
naling abnormalities in the skeletal muscle of cirrhotics are
also not known. Aging of the cirrhotic and transplanted pop-
ulation, use of mTOR inhibitors, and the lack of definitive
outcome measures to define sarcopenia and cachexia in this
population add to the difficulty in increasing our understanding
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of hepatic sarcopenia/cachexia and developing treatment
options. Recent data on the role of myostatin, AMP kinase,
impaired mTOR signaling resulting in anabolic resistance in
animal models, and the rapidly developing field of nutriceut-
icals as signaling molecules need to be evaluated in human
cirrhotics. Finally, the benefits of exercise reported in other
disease states with sarcopenia may not be safe in cirrhotics
due to the risk of gastrointestinal variceal bleeding due to an
increase in portal pressure. This article focuses on the problems
facing both muscle biologists and hepatologists in developing a
comprehensive approach to sarcopenia in cirrhosis.
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1 Introduction

The need for consilience or unity of knowledge from differ-
ent fields is best exemplified in the field of sarcopenia of
liver disease. Knowledge from hepatology, gerontology,
nutrition, muscle biology, developmental biology, transplant
surgery, epidemiology, molecular biology, physiology, and
metabolism need to be integrated to improve our under-
standing of the mechanisms of loss of skeletal muscle mass
in cirrhosis. Loss of skeletal muscle mass or sarcopenia is
the most common complication of cirrhosis and adversely
affects survival, quality of life, outcome after liver trans-
plantation, and response to stress including infection and
surgery [1]. Cachexia and sarcopenia are recognized as a
major complication of a number of chronic diseases includ-
ing cancer, chronic obstructive pulmonary disease, chronic
heart failure, and chronic renal failure [1-4]. It is interesting
that there has been little focus on the prevalence, impact,
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consequences, and relative paucity of mechanistic targets or
therapy of sarcopenia and cachexia in cirrhosis, especially
given that the liver is the most metabolically active organ
that regulates and interacts with the skeletal muscle and
adipose tissue to form a “metabolic organ complex™ [5, 6].
Cirrhosis is a form of end-stage liver disease that is the
culmination of a number of chronic liver disorders. Since there
is no therapy to reverse the fibrosis, hepatocellular dysfunc-
tion and vascular remodeling in cirrhosis, management has
focused on treating the etiology of the liver disease, preven-
tion and therapy of the complications, and replacing the dis-
eased liver by transplantation. Few effective therapeutic
modalities exist to treat the etiology of the disease and this
contributes to the increase in incidence of cirrhosis [7-9].
Clinically, the most widely recognized complications include
ascites, encephalopathy, portal hypertension with variceal
bleeding, renal dysfunction, and hepatocellular carcinoma;
however, the most frequent complication is malnutrition com-
prised of sarcopenia or loss of muscle mass and loss of fat
mass or a combination constituting “hepatic cachexia”. Pre-
vention or management of complications of cirrhosis has been
the mainstay of therapy in hepatology, but there has been
inadequate focus on managing sarcopenia or cachexia in these
patients [10]. This is reflected by the lack of a clear definition
of the components of malnutrition, the largely descriptive but
not mechanistic studies, and the consequent lack of clear
therapeutic strategies [11]. Although, it is believed that liver
transplantation is curative for cirrhosis, this therapeutic option
does not exist for the majority of patients [12]. Therefore,
nontransplant therapeutic options remain the primary manage-
ment option with the need to focus on reduced muscle mass
because of its clinical relevance.

2 Malnutrition is the most frequent clinical problem
in cirrhosis

Data from the Centers for Disease Control in 2006 showed
that the annual incidence of cirrhosis is 72.3 per 100,000
population with an annual mortality rate of 27,000 [13].
Additional data support similar prevalence rates of cirrhosis
both in the Western hemisphere and globally [13—18]. With
the assumption of the baseline prevalence of 0.15 %, the
total number of cirrhotics in the USA in 2006 is estimated to
be 2.5 million. An alternative database search also yielded
similar data from the VA system [17, 19]. Data were avail-
able from 2000 to 2007 and are shown in Fig. 1 [19]. These
estimates further confirm the data from the organ procure-
ment and transplant network that the prevalence of cirrhosis is
progressively increasing based on the new patients added to
the active and inactive waiting lists. Given the background of
these staggering numbers, it is important to underscore the fact
that the increase in annual liver transplant rates (17.42 to
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Fig. 1 Annual number of patients diagnosed with cirrhosis in the VA
system and the annual liver transplants done in the USA [17, 19]. If the total
number of patients with cirrhosis diagnosed each year is assumed to follow
the VA system, then the widening gap between these two graphs depicts the
number of cirrhotics who are not transplanted and therefore need nontrans-
plant therapeutic options. This gap has continued to widen over the past
decade and is anticipated to follow this pattern till 2020. Data compiled
from OPTN / SRTR 2009 Annual Data Report. HHS/HRSA/HSB/DOT.
http://optn.transplant.hrsa.gov/ar2009/data_tables section9.htm

22.29/million population) has not kept pace with the increase
in numbers of patients with cirrhosis (Scientific Registry of
Transplant Recipients (SRTR): 2009 OPTN/SRTR Annual
Report 1999-2008. HHS/HRSA/HSB/DOT). Using the high-
est liver transplantation rate of 22.29/million (in 2006), the
number of nontransplanted cirrhotics would increase by about
14,000/year based on the US population assumption of 300
million, without taking into account the projected increases
related to hepatitis C and nonalcoholic fatty liver disease [7, 8,
14]. Using these very conservative figures, the nontransplant
management of cirrhosis will be required for over 2.5 million
patients by the end of this decade. The goals of this approach
are to increase transplant free survival, decrease the risks of
complications, and improve quality of life especially since a
reduced post transplant quality of life is being increasingly
recognized [11, 20-22].

Transplant free survival depends on the severity of the
underlying liver disease as well as management of the
complications of cirrhosis [23]. Malnutrition has been
reported in 60-80 % of patients with cirrhosis, but when
sarcopenia was specifically evaluated, it occurred in about
40 % of cirrhotics [24, 25]. Esophageal varices are present
in 30-60 % of patients with cirrhosis. Refractory ascites
occurs in 5-10 % of patients and spontaneous bacterial
peritonitis occurs in about 30 % of patients with ascites
[23]. Hepatorenal syndrome occurs in about 8 % of cirrhotic
patients with ascites. Portopulmonary hypertension and hep-
atopulmonary syndrome occur in about 0.5-5 % of cir-
rhotics. The annual incidence of hepatocellular carcinoma
is 1.4 % in compensated and 4 % in decompensated cirrho-
sis. Extensive studies have been published on these compli-
cations as of September 30, 2011 and the unfiltered numbers
of human studies published and indexed in PUBMED are
shown in Table 1. As can be seen, the number of
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Table 1 Number of publications retrieved on PUBMED using the
search terms limited for “human”

Search term Number of publications on
PUBMED

Cirrhosis, ascites 5,633

Cirrhosis, hepatic encephalopathy 2,870

Cirrhosis, portal hypertension 8,675

Cirrhosis, hepatocellular carcinoma 11,963

Cirrhosis, sarcopenia 8

Liver, sarcopenia 16

Cirrhosis, liver, cachexia 46

Cirrhosis, liver, malnutrition 1,000

publications on sarcopenia in cirrhosis is very small and if
the search term is expanded to cachexia or malnutrition, the
number of publications is higher but the studies are no
longer specific to muscle loss.

3 Malnutrition and its specific components in cirrhosis

The major problems with the term “malnutrition in cirrhosis”
is the lack of focus on the specific components that constitute
malnutrition, i.e., sarcopenia, loss of visceral or subcutaneous
adipose tissue mass, alteration in substrate utilization and
disordered energy metabolism, and a combination to varying
extent of these disorders. One definition for malnutrition that
has been proposed is that it is “a state of nutrition in which a
deficiency or excess (or imbalance) of energy, protein and
other nutrient causes adverse effects on body composition,
function and outcome” [26]. The limitation of this definition is
that it lacks specifics when it comes to the definition or
terminology, especially in the background of advanced liver
disease. Recent attempts to arrive at a consensus definition for
sarcopenia, cachexia, and precachexia have focused on non-
hepatic diseases, aging, and cancers. However, these defini-
tions and the underlying mechanisms may need to be modified
in patients with cirrhosis.

A number of complex metabolic alterations occur in liver
disease that are unique to cirrhosis and affect the skeletal
muscle growth and atrophy responses. These include dysregu-
lation of fatty acid oxidation and ketogenesis, gluconeogenesis
from amino acids, glycogenolysis, and selective utilization of
aromatic amino acids in the liver and branched chain amino
acids in the skeletal muscle as a source of energy [27, 28]. A
number of biochemical, cytokine, hormonal, and neurological
abnormalities in advanced liver disease are also similar to
those in other chronic disorders [29]. Therefore, it is essential
to have a consensus definition for the terms precachexia,
cachexia, and sarcopenia in cirrhotic patients that has common
features with other chronic diseases and certain essential

differences. Inclusion of patients with cirrhosis while such
definitions are being generated will assist in both consilience
and translation of the rapid advances occurring in the field of
myology and nutrition into clinical application for these
patients. Sarcopenia is characterized by loss of muscle mass
and has been used to define the loss of muscle mass in aging
even though it is now being used in other disease states.
Cachexia is defined as loss of both fat and muscle mass [6,
30-32]. Additional terms that have been used include preca-
chexia that is defined by the unintentional weight loss of <5 %
ofusual body weight in the last 6 months, in the background of
an underlying chronic disease, while sarcopenic obesity is
used to refer to the disproportionate loss of muscle mass in
the presence of increased adipose tissue mass [5, 32]. Missing
are clear generalizable definitions and establishment of normal
values. Most publications use historical norms and younger
subjects to define sarcopenia that may not necessarily reflect
the patient population [33, 34]. The potential of historical
controls having different growth patterns, adipose tissue, and
muscle mass in adulthood needs to be addressed. Additionally,
the large-scale changes in the population demographics, mo-
bility, and ethnicity are likely to affect the normative values.
Furthermore, a recent comment that one of the hallmarks of
cachexia is that loss of lean body mass cannot be prevented or
reversed by simply increasing nutritional intake is of critical
importance in the management of cirrhotic patients since nei-
ther cachexia nor sarcopenia is clearly defined in the cirrhotic
population, but they do suffer from either or both [35]. Given
the absence of standardized terminology in patients with liver
disease, there is a compelling need to define these terms taking
into consideration, the metabolic abnormalities specific for
cirrhosis. Finally, it must be reiterated that even though the
signaling pathways responsible for regulation of skeletal mus-
cle mass are altered, it is not clear if the same alterations occur
in all chronic noncommunicable diseases [36, 37].

4 Clinical impact of sarcopenia, cachexia,
and malnutrition in cirrhosis

Since liver transplantation is not available or necessary for the
majority of cirrhotics, nontransplant options are required and
the end points for the therapy of these patients need to be
redefined to improve quality of life, prevent and treat compli-
cations, and potentially extend survival [12, 13,21, 22]. Using
the published prevalence data, the total number of cirrhotic
patients with reduced muscle mass is about 1.25 million.
Sarcopenia is the most common complication of cirrhosis with
very limited data on the mechanisms responsible for it and few
treatment options (24). It contributes to the aggravation of
other complications of cirrhosis including encephalopathy,
ascites, and portal hypertension [28, 38-43]. It is also the
major contributor to impaired quality of life in these patients
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[44—47]. In contrast to the very limited literature on sarcopenia
or muscle loss in liver disease [24, 25], there is an explosion of
data on sarcopenia in aging and molecular mechanisms of
regulation of muscle loss and re-growth [30, 48—54]. Unfor-
tunately, these very interesting and exciting advances in the
field of muscle biology have had very limited translation into
human cirrhosis. Our recent preliminary data that an increase
in muscle mass [55, 56] is likely to improve survival provides
an impetus for rapid translation to clinical use of many of the
novel concepts in skeletal muscle loss including the role of
satellite cells, autophagy, myostatin regulation of muscle
mass, proteolytic pathways, metabolic regulation of muscle
protein kinetics and the molecular regulation and integration
of protein synthesis, breakdown, and satellite cell-mediated
regeneration [37, 57, 58].

5 Obese cirrhotic

An additional consideration in defining sarcopenia is the
impact of weight loss and muscle loss in the obese cirrhotic
[59-61]. While the traditional clinical profile of a patient
with progressive worsening of liver disease is loss of muscle
and adipose tissue mass, the clinical profile of patients with
cirrhosis is changing with the rapid increase in the number
patients with nonalcoholic fatty liver disease that occurs in the
setting of obesity [59, 62]. The current focus on the manage-
ment of the obese cirrhotic is to promote weight loss to
prevent progression of the necro-inflammation and fibrosis
of nonalcoholic fatty liver disease [63—65]. However, the
benefit of weight loss in cirrhosis related to nonalcoholic fatty
liver disease is as yet unknown [63]. This is of clinical signif-
icance because of recent suggestions that overweight patients
may have a better survival with chronic diseases classically
associated with cachexia including those with advanced can-
cer, end-stage heart failure, renal failure on hemodialysis, and
aging [66, 67]. The term “reverse epidemiology” has been
applied to this paradox that unlike in the general population,
overweight and obesity may not necessarily be detrimental to
the short-term outcome in such patients [67, 68]. There are no
data on the impact of obesity or weight loss in obese cirrhotic
patients. Furthermore, it is also believed that in obese patients,
a small weight loss can mask higher loss of skeletal muscle
mass. This is especially important, since the end point of most
clinical interventions is loss of whole body weight or body
mass index, neither of which is a good measure of whole body
skeletal muscle mass.

6 Aging cirrhotic

The aging of the population is accompanied by older
cirrhotics. In fact, a review of the SRTR data (Fig. 2)
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Fig. 2 Numbers of patients with cirrhosis who are being placed on the
liver transplant list annually and are active on the waiting list. Patients
aged 50 years or more are forming the most rapidly increasing popu-
lation of waitlisted patients on the transplant list. These patients are
likely to have more sarcopenia due to the combined effects of aging
and cirrhosis. Data compiled from OPTN / SRTR 2009 Annual Data
Report. HHS/HRSA/HSB/DOT. http://optn.transplant.hrsa.gov/
ar2009/data_tables section9.htm

showed that the most rapidly increasing population of
patients with cirrhosis is over the age of 50 years. It is
well recognized that the skeletal muscle mass in humans
increases till the age of 20, is stable between 20 and 50,
and after the age of 50 years, there is approximately a
1 % loss of muscle mass [69, 70]. This rapidly increas-
ing population of older cirrhotics waiting for transplan-
tation is likely to suffer from the combined effects of
aging and cirrhosis on reduced muscle mass and conse-
quent complications and adverse outcomes. A significant
proportion of patients remain on the transplant waitlist
(OPTN / SRTR 2009 Annual Data Report. HHS/HRSA/
HSB/DOT) for prolonged periods of time (Fig. 3) and
this adds to the burden of cirrhotic.sarcopenia.

7 Post-transplant immunosuppressant effects

The most rapidly increasing immunosuppressive regimen
being used for maintenance therapy after liver transplanta-
tion is noncalcineurin inhibitors like sirolimus and everoli-
mus (Fig. 4). The impact of these mTOR inhibitors on
muscle protein synthesis and autophagy is well known
[71, 72]. However, their role in post-transplant skeletal
muscle recovery has not been studied. Furthermore, their
contribution to the post-liver transplant metabolic syndrome
and development of sarcopenic obesity are also not known
and need detailed human studies [73]. Additionally, calci-
neurin is required for skeletal muscle differentiation, hyper-
trophy, and fiber-type determination [74]. With the nearly
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Fig. 3 Waiting time on the active liver transplant list has not changed
significantly over the past decade. Continued waiting increases the age of
the patient and the severity of disease, both of which worsen sarcopenia
and muscle function. Data compiled from OPTN / SRTR 2009 Annual
Data Report. HHS/HRSA/HSB/DOT. http://optn.transplant.hrsa.gov/
ar2009/data_tables section9.htm

universal use of calcineurin inhibitors after liver transplan-
tation, the confounding effects of these on the reversal of
pre-transplant sarcopenia is not known. It is therefore evi-
dent that post-transplantation immunomodulation is likely
to affect the anticipated benefits after liver transplantation.

8 Potential mechanisms of sarcopenia and cachexia
in cirrhosis

8.1 Metabolic studies show altered whole body protein
turnover in cirrhosis

As mentioned earlier, studies to date have used isotopic
tracer methodology and descriptive and correlation studies
to explain the development of “malnutrition” in cirrhosis.
Isotopic tracer studies have shown that whole body protein
breakdown is increased, unaltered, or decreased [75-79].
Indirect measures of whole body protein synthesis have
been either unaltered or decreased [77-80]. Additionally,
rates of albumin synthesis that have been used in other
chronic disorders are a poor measure of nutrient response
since albumin is synthesized in the liver and has limited
value as a measure of nutritional response to substrate
administration [78].

8.2 Impact of complications of cirrhosis on protein turnover

Plasma concentrations of branched chain amino acids are
reduced in cirrhosis and this may have a negative impact on
skeletal muscle protein synthesis and breakdown [81, 82]. As
mentioned earlier, complications of cirrhosis have an adverse
impact on skeletal muscle mass and energy metabolism in
cirrhosis. Following gastrointestinal bleeding, a large protein
load deficient in isoleucine that results in enhanced amino acid
oxidation, further reduction in plasma, and muscle amino acid
pools contribute to the sarcopenia. This has major clinical
implications with the potential use of isoleucine supplemen-
tation during gastrointestinal bleeding to prevent worsening
muscle mass induced by gastrointestinal bleeding. Other com-
plications including infection and encephalopathy also have
the potential to aggravate skeletal muscle proteolysis and
impaired protein synthesis in cirrhosis.

8.3 Etiology of cirrhosis and reduced muscle mass

Cirrhosis develops following chronic liver disease due to a
number of etiologies that have been recognized to affect
skeletal and fat mass. Among cirrhotics, the most severe
loss of body protein, muscle area, and function has been
reported in those with alcohol related and cholestatic dis-
eases [83—85]. Alcohol has a direct adverse effect on skel-
etal muscle protein turnover and increased expression of
myostatin [86]. Bile salts have been reported to increase
muscle oxygen consumption and energy expenditure [87].
Since cirrhosis is a state of accelerated starvation, increased
energy expenditure is likely to further impair protein syn-
thesis and accelerate proteolysis.

8.4 Molecular mechanisms responsible for sarcopenia
of cirrhosis

Data on the skeletal muscle signaling pathways regulating
protein synthesis and breakdown have been identified but not
studied in cirrhosis [37]. Satellite cell biology has been exten-
sively evaluated and its contributory role in sarcopenia of aging
identified [88]. However, there are no studies that have exam-
ined the role of impaired satellite cell function in human cir-
rhotic sarcopenia. A number of reasons contribute to this
including the limited interest due to lack of availability of
successful therapy, lack of focus on quality of life, and the
belief that liver transplantation as a therapeutic advance will
correct all the adverse consequences of cirrhosis. Additionally,
the coagulopathy that is almost universal in advanced liver
disease has been believed to preclude obtaining muscle biop-
sies safely. Encephalopathy and ascites limit performing com-
plex and prolonged studies and the heterogeneity of the
etiology and stage of the disease are additional factors that have
resulted in limited advances in our understanding of the
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mechanisms of sarcopenia and cachexia in cirrhosis. Finally,
given the cross-translational nature of the problem, it is difficult
to identify investigators with established expertise in hepatol-
ogy, metabolism, and molecular and skeletal muscle biology.
Notwithstanding these limitations, some advances have been
made in this field and lay the foundation for a greater intellec-
tual interaction between hepatologists, developmental biolo-
gists, and those with expertise in muscle biology.

The past decade has seen enormous advances in under-
standing the mechanisms of sarcopenia of aging as well as
the regulatory pathways that govern skeletal muscle atrophy,
growth, regeneration, and satellite cell function. Discovery of
myostatin, a TGF3 superfamily member, and the cross talk
between the canonical insulin-like growth factor 1 (IGF1)-
Akt—-mTOR signaling as well as the ubiquitin proteasome
pathways need to be examined in the context of cirrhosis [36,
37]. Identification of mTOR regulation by nutrient sensor,
AMP kinase, general control of nutrition derepressed
(GCN2) as a leucine sensor, and identification of increased
skeletal muscle autophagy as a potential contributor to loss of
muscle mass as well as its protective role during nutrient
starvation are very exciting advances that have not been ex-
amined in a disease state [48, 49, 89]. Translation of the role of
these signaling pathways in liver disease is likely to contribute
to identification of potential therapeutic targets that is likely to
result in the development of novel therapeutic measures to
reverse sarcopenia and cachexia in cirrhosis.

In contrast to the sarcopenia of cirrhosis, other systemic
disorders and aging are also accompanied by sarcopenia with
consequent reduced survival and quality of life (Table 2) [70,
90-102]. The predominant mechanism(s) in these disorders has
been an increased proteasome-mediated proteolysis with a
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Fig. 4 Use of mTOR and calcineurin inhibitors as maintenance immu-
nosuppression after liver transplantation. This does not include the use of
steroids alone which also contributes to sarcopenia. mTOR inhibitors
result in impaired muscle protein synthesis as well as autophagy, both of
which could aggravate sarcopenia after liver transplantation. Data com-
piled from OPTN / SRTR 2009 Annual Data Report. HHS/HRSA/HSB/
DOT. http://optn.transplant.hrsa.gov/ar2009/data_tables_section9.htm
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lesser contribution from reduced protein synthesis. With aging,
there is also a significant contribution of impaired satellite cell
function. This has also been shown by us in an animal model
with portosystemic shunting but not evaluated in other disease
states.

9 Therapeutic options and outcome measures

Therapy for malnutrition in cirrhosis has focused on altering
the hormonal and metabolic abnormalities of cirrhosis with
very limited success. These have included growth hormone,
insulin-like growth factor, testosterone, branched chain ami-
no acid replacement, and late evening snack [103-105].
Quantifying the effectiveness of therapy requires precise
outcome measures. Since skeletal muscle mass and strength
have been related to survival and quality of life in cirrhosis
as well as other chronic disorders with sarcopenia, studies
that focus on such definite measures are necessary [24, 25,
83, 106, 107]. Once again, the outcome measures do not
focus on reversal of sarcopenia, and limitations of the out-
come measures for malnutrition in cirrhosis include the
development of ascites and whole body volume overload-
ing, sodium retention, changes in plasma and muscle amino
acid concentrations, hyper- and hypometabolism in over
30 % of patients, and the use of lean body mass as a
surrogate for skeletal muscle mass. Initial suggestions that
low expression of skeletal muscle IGF1 was followed by
therapeutic intervention studies using IGF1-IGF1 binding
protein complex with limited benefit [103, 104, 108—110].
Recently, we have shown that an increased expression of
skeletal muscle myostatin is responsible for reduced muscle
protein synthesis and impaired satellite cells in a rat model
of portosystemic shunting [56]. We have also shown that the
adverse consequences of increased myostatin expression
can be reversed without impacting the underlying liver
disease which is especially exciting because of the afore-
mentioned data that liver transplantation is not a universally
available treatment option and reversing “hepatic cachexia—
sarcopenia” can be a major therapeutic option for cirrhosis.

9.1 Nutriceuticals in sarcopenia of cirrhosis

The novel field of nutriceuticals has been shown to be
effective in countering sarcopenia of aging [111-113].
These data have enormous application in patients with cir-
rhosis and systematic studies with defined outcome meas-
ures in reversal of sarcopenia and skeletal muscle function
are needed. Use of leucine-enriched essential amino acids to
stimulate mTOR independent of upstream inhibitors includ-
ing myostatin and AMPK has been shown to be effective in
other disorders with muscle atrophy [113—-115]. Previous
studies on branched amino acid supplementation in patients
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Fig. 5 Potential mechanisms of sarcopenia due to impaired protein
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with cirrhosis have focused on their benefit in encephalop-
athy with nitrogen balance as a secondary outcome measure
(Table 3) [116—123]. It is interesting that the focus of amino
acid supplementation in cirrhosis is based on the lower
plasma-branched chain amino acids suggesting that admin-
istering these amino acids would result in improvement in
outcome. However, since sarcopenia in cirrhosis as in other
conditions with anabolic resistance is believed to be due to
impaired mTOR signaling response, it can potentially be
overcome by leucine-enriched supplementation with amino
acids [124-126]. When branched chain amino acids are
administered, stimulation of protein synthesis by leucine is
likely to result in increased utilization of other essential
amino acids that may then become limiting for protein
synthesis. Even though this has not been specifically eval-
uated in patients with cirrhosis, the alteration in plasma
amino acid profile in response to branched chain versus

balanced amino acids lends credence to this view [127].
This can be overcome by administering a balanced mixture
of essential amino acids with leucine enrichment. Plasma
concentrations of aromatic amino acids in cirrhosis are elevat-
ed and have been suggested to play a role in the development
of hepatic encephalopathy [81]. Therefore, studies to deter-
mine the optimum concentration of appropriate amino acid
supplementation to derive the maximum skeletal muscle pro-
tein response in cirrhotics are necessary. Furthermore, gluta-
mine is a conditionally essential amino acid in cirrhosis and
has been shown to directly suppress myostatin expression in
muscle cells in vitro [128, 129]. The role of glutamine sup-
plementation in addition to leucine may reverse the molecular
abnormalities of increased myostatin and mTOR resistance in
cirrhosis to maximize the beneficial effects. Extracellular rath-
er than intracellular concentrations of amino acids have been
shown to be potent regulators of muscle protein metabolic
response [82]. Therefore, administration of the appropriate
combination of essential amino acids to alter plasma concen-
trations can be an effective therapy in these patients [82, 130].
The integration of metabolic studies, molecular signaling
pathway analyses, and clinically meaningful outcome meas-
ures are necessary to have a direct impact on the survival,
complications, and quality of life in patients with cirrhosis.
Few studies have examined the impact of interventions on
skeletal muscle mass or strength in cirrhotics [131]. This is
important because an increase in acute protein synthesis re-
sponse does not always translate into an increase in muscle
anabolism [53, 132]. Finally, the source of dietary proteins,
the amino acid composition as well as the digestibility of
different proteins and the age of the subject alter the muscle
protein metabolic response [112, 133, 134].

Table 3 Effect of oral branched chain amino acid treatment on nutritional outcome in cirrhosis

Author No. Treatment Dose Outcome measure  Result Comments
duration (days) of BCAA (g)

McGhee [116] 4 11 15 Nitrogen balance ~ Negative Both groups 50 g/day protein

Horst [117] 37 21 20-60 Nitrogen balance ~ Negative 20 g increase to 60, both groups achieved similar
nitrogen balance without HE

Christie [118] 8 3 20-60 Anthropometry, Negative Increase from 20 to 60 g, both groups similar change

nitrogen balance in nitrogen balance
Swart [119] 8 5 12-28 Nitrogen balance  Negative Higher nitrogen balance with 60 or 80 g/day protein
Fiaccadori 42 28 25 Nitrogen balance  Positive =~ BCAA mixture improved nitrogen balance
[120]

Guamieri [121] 7 90-120 0.45/kg bw  Nitrogen balance  Positive =~ BCAA improved nitrogen balance compared
to lipid—carbohydrate supplement

Egberts [122] 22 7 0.25/kg bw  Nitrogen balance  Positive  Greater increase in semiquantitative nitrogen balance
with BCAA

Marchesini [123] 61 90 0.24/kg bw  Nitrogen balance  Positive  Semiquantitative nitrogen balance better with BCAA

BCAA branched chain amino acid, bw body weight, HE hepatic encephalopathy
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9.2 Role of exercise in cirrhotic patients

The role of aerobic and resistance exercise on skeletal
muscle insulin signaling, protein synthesis response, AMP
kinase activity, and satellite cell function has been identified
[50, 135]. However, fatigue, reduced maximum exercise
capacity in cirrhotics, and the presence of complications
including ascites, encephalopathy, and portal pressure have
limited the translation of the data or the elegant designs of
the studies performed in noncirrhotic patients [136—143].
Resistance exercise increases portal hypertension, and even
transient increases in portal hypertension can result in cata-
strophic variceal bleeding and death [144]. It is therefore
critical that the data on the impact of exercise on muscle
mass and function be translated very judiciously in cirrhotic
patients.

Novel strategies to reverse cachexia including myostatin
antagonists are also of clinical interest especially given
recent data that myostatin may play a critical role in cirrhotic
sarcopenia [56, 145]. Given the paucity of data, the under-
studied nature of the problem, sarcopenia in cirrhosis
deserves to be recognized as an area of unmet need with
the potential to improve the outcome of the large number of
patients with cirrhosis. One potential strategy for develop-
ment of novel and successful therapies is the need for con-
silience between the diverse and seemingly unrelated fields
identified earlier. A putative therapeutic approach to sarco-
penia in cirrhosis is suggested in Fig. 5.
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