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Abstract: The genus Paphiopedilum, belonging to the Orchidaceae, has high ornamental value. Leaf
variations can considerably improve the economic and horticultural value of the orchids. In the
study, a yellow leaf mutant of a Paphiopedilum hybrid named P. SCBG COP15 was identified during
the in vitro plant culture process; however, little is known about their molecular mechanisms. For
this, RNA-seq libraries were created and used for the transcriptomic profiling of P. SCBG COP15
and the yellow mutant. The Chl a, Chl b, and carotenoid contents in the yellow leaves decreased
by approximately 75.99%, 76.92%, and 56.83%, respectively, relative to the green leaves. Decreased
chloroplasts per cell and abnormal chloroplast ultrastructure were observed by electron microscopic
investigation in yellowing leaves; photosynthetic characteristics and Chl fluorescence parameters
were also decreased in the mutant. Altogether, 34,492 unigenes were annotated by BLASTX; 1,835
DEGs were identified, consisting of 697 upregulated and 1138 downregulated DEGs. HEMA, CRD,
CAO, and CHLE, involved in Chl biosynthesis, were predicted to be key genes responsible for
leaf yellow coloration. Our findings provide an essential genetic resource for understanding the
molecular mechanism of leaf color variation and breeding new varieties of Paphiopedilum with
increased horticultural value.

Keywords: Paphiopedilum hybrid; leaf variegation; chlorophyll metabolism; transcriptome analysis

1. Introduction

Leaves are vital organs in plants for photosynthesis, respiration, and nutrient transfor-
mation, as well as an important aesthetic trait in ornamental plants. Commonly, chlorophyll
(Chl), carotenoids, and anthocyanins are the main leaf pigments that are determined by
genotype and growth environment [1]. Chl is the primary photosynthetic pigment found in
leaves. It is able to capture light energy and transfer it to the photoreaction center to gener-
ate chemical energy during photosynthesis [2]. Recently, most research has focused on red
leaves, which are associated with anthocyanin accumulation [3]. However, the yellowing
of leaves has received significantly less attention, and most studies on leaf yellowing have
focused on Chl metabolism [4–6].

In Arabidopsis thaliana, a total of 27 genes participating in Chl biosynthesis have been
identified (Supplementary Figure S1), including those contributing to Glu-tRNA, Chl a, and
Chl b production [2], and mutations at any position may lead to low Chl content, resulting
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in abnormal leaf coloration [7]. For instance, the RNA silencing of HEMA in barley caused
varying degrees of inhibition of Chl biosynthesis, and as a result the plant showed an
albino and yellow phenotype [8]. In rice, mutations in the CHLI and CHLD genes lead
to a decrease in enzyme activity and Chl content [9]. Chl degradation is also one of the
main reasons for leaf discoloration. Generally, the biosynthesis and degradation of Chl are
in dynamic equilibrium within the metabolic process, which is essential for green plants;
once the Chl degradation pathway related genes are abnormal, the plant will show the
corresponding abnormal leaf color [10]. In rice, NYC1 and NOL can form a complex and
act as a Chl b reductase to catalyze Chl degradation [11]. The high expression of NYE1
in A. thaliana causes yellowing and even albino leaves, and it was confirmed that NYE1
intervenes with the regulation of PAO activity during the Chl degradation process [12].

Paphiopedilum, also known as the Venus slipper orchid and Cinderella, has a high orna-
mental value due to its unique flower type, gorgeous flower color, long-lasting flowering
period, and elegant, upright leaves. It has long become a very popular upscale flower in the
international flower market [13]. In orchids, leaf variations such as striped leaves, yellow
leaves, and spotted leaves have recently gained increased popularity among breeders and
customers. Accordingly, these extraordinary traits significantly improve the economic and
horticultural value of the plants [14–18]. Presently, large-scale production of Paphiopedilum
seedlings is mainly performed through tissue culture [19]. A Paphiopedilum hybrid variety
named P. SCBG COP15 has a small probability of developing golden leaves during its tissue
culture process; however, the understanding of the underlying molecular mechanisms in
the yellow leaf mutation remains limited. This phenotype is stably inherited; therefore, we
obtained this yellow leaf mutant of P. SCBG COP15 for further investigation.

In this research paper, photosynthetic pigments and chloroplast ultrastructure, to-
gether with transcriptomics, were compared between yellow mutant leaves and the green
normal leaves of P. SCBG COP15. We identified differentially expressed genes (DEGs)
and transcription factors (TFs) related to Chl metabolism, and evaluated the expression
levels of some key unigenes by quantitative real-time polymerase chain reaction (qRT-PCR)
to validate their involvement in leaf variation. Our findings illustrate the physiological,
cytological, and bioinformatic aspects of yellow leaf mutants of P. SCBG COP15, and they
lay the foundation for further understanding of yellow leaf coloration and the facilitation
of molecular breeding in Paphiopedilum.

2. Materials and Methods
2.1. Plant Material and Sample Preparation

One-year-old seedlings of the Paphiopedilum hybrid named P. SCBG COP15, along
with the yellow leaf variety which formed through the tissue culture by using lateral bud
explants were used in present study. P. SCBG COP15 was a combination between P. Mau-
diae as female parent and P. SCBG Yunzhijun as male parent, The experimental materials
were grown in the tissue culture laboratory and greenhouse of the South China Botani-
cal Garden, Chinese Academy of Sciences, Guangzhou, China (Supplementary Table S1).
Fresh and mature leaves were collected for physiological observation, determination of
photosynthetic characteristics, and detection of Chl fluorescence parameters. The samples
were stored at −80 ◦C for biochemical experiments and RNA extraction.

2.2. Pigment Content Measurement

Approximately 0.1 g fresh leaf tissue was extracted with 80% acetone overnight at 4 ◦C,
and the absorbance was measured at 646.8 nm, 663.2 nm, and 470 nm in a 96-well plate
with a microplate reader (Tecan Infinite, Männedorf, Switzerland). The Chl and carotenoid
content was calculated according to Lichtenthaler [20].

2.3. Photosynthetic Characteristics and Chlorophyll Fluorescence Parameter Measurement

An LI-6800 portable photosynthesis system (Li-cor, Lincoln, NE, USA) was used to
measure photosynthetic characteristic parameters, including intercellular CO2 concentra-
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tion (Ci), stomatal conductance (Gs), and net photosynthetic rate (Pn). The fluorescence
parameters were measured using a Chl fluorescence spectrometer (Heinz Walz GmbH,
Effeltrich, Germany), with the leaves left in the dark for approximately 30 min. Finally, Fo,
Fm, NPQ, qN, and Y(II), along with Fv/Fm, were measured.

2.4. Anatomy Observations

Leaf samples of the normal wild type of P. SCBG COP15 (G), and its yellow mutant
(Y), were cut into approximately 1 mm × 2 mm pieces and were fixed with 0.1 M phos-
phate buffer (pH = 7.2), containing 2.5% glutaraldehyde and 2% paraformaldehyde. After
washing the leaf samples six times with the 0.1 M phosphate buffer, the samples were
postfixed in 1% osmium tetroxide for 4 h and subsequently washed again with 0.1 M
phosphate buffer. Ultrathin sections (80 nm) were cut using an ultramicrotome (Leica UC7,
Leica Microsystems, Wetzlar, Germany), which were then stained with 4% uranyl acetate
and 2% lead citrate. Ultrathin sections of the leaf ultrastructures were observed using
transmission electron microscopy (TEM) (transmission electron microscope JEOL JEM-1010,
Tokyo, Japan), operating at 100 kV. For the characterization of the leaf architecture, fresh
leaf samples from G and Y were first fixed in 4% agar, and then cut into 200 µm tissue slices
using a vibratome (Leica VT 1200, Leica Microsystems, Wetzlar, Germany) at 1.00 mm/s
speed and 3.00 mm amplitude. The slices were observed under a Leica DVM6 ultra-depth
field microscope (Leica Microsystems, Wetzlar, Germany).

2.5. RNA Extraction, Library Construction, Sequencing

The leaf samples were ground into a fine powder in liquid nitrogen. Total RNA was
isolated using an RNA kit (Polysaccharides & Polyphenolics-rich) (Hua Yueyang, Beijing,
China), with the use of RNase-free DNase I (Takara Bio, Shiga, Japan) to remove genomic
DNA contamination. The integrity and purity of the total RNA was determined using a
2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) and quantified using
the ND-2000 NanoDrop (Thermo Scientific, Wilmington, DE, USA). Only high-quality
RNA samples were used to prepare RNA-seq libraries. Independent quadruplication
of whole-leaf materials from P. SCBG COP15 and its yellow leaf variety were used to
construct the libraries and sequences with a Illumina TruSeqTM RNA sample preparation
Kit (San Diego, CA, USA) and the Illumina HiSeq™ 6000 sequencing platform (Illumina,
San Diego, CA, USA) by Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai,
China), respectively.

2.6. Transcriptome Assembly and Annotation

The total clean reads from the eight libraries were assembled de novo using Trinity soft-
ware (http://trinityrnaseq.sourceforge.net/ 10 November 2021), with the use of the default
parameters. The assembled unigenes were searched against the public databases, including
the NCBI non-redundant protein (NR) database (http://www.ncbi.nlm.nih.gov), Swiss-
Prot (http://www.expasy.ch/sprot/), Clusters of Orthologous Groups (COG) database
(http://www.ncbi.nlm.nih.gov/COG), Gene Ontology (GO) functional annotation (http:
//www.blast2go.com/b2ghome) [21], and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [22].

2.7. DEGs Identification and Functional Enrichment Analysis

DEGs were identified using DESeq2 [23] and unigenes. A fold change (FC) >2 or
<−2 and an adjusted p-value ≤ 0.05, considered the transcripts per million reads (TPM)
significantly differentially expressed. All DEGs were then mapped to GO terms and KEGG
pathways in the respective databases using Goatools (https://github.com/tanghaibao/
Goatools) and KOBAS (http://kobas.cbi.pku.edu.cn/home.do) [24].

http://trinityrnaseq.sourceforge.net/
http://www.ncbi.nlm.nih.gov
http://www.expasy.ch/sprot/
http://www.ncbi.nlm.nih.gov/COG
http://www.blast2go.com/b2ghome
http://www.blast2go.com/b2ghome
https://github.com/tanghaibao/
http://kobas.cbi.pku.edu.cn/home.do
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2.8. Validation of DEGs by qRT-PCR

A total of 1 µg of high quality total RNA (the same sample used in RNA-Seq) was
reverse-transcribed to first-strand cDNA using TransScript® One-Step gDNA Removal
cDNA Synthesis SuperMix (Transgen, Beijing, China) to perform qRT-PCR. Twelve unigenes
related to Chl biosynthesis and degradation were selected for further validation. Specific
primers were designed with the Primer Premier software (version 5.0), and qRT-PCR was
performed in a 384-well block with PerfectStart Green qPCR SuperMix (Transgen, Beijing,
China) on a LightCycler 480II (Roche, Mannheim, Germany). The reaction conditions
were set as follows: 95 ◦C for 30 s, 40 cycles at 94 ◦C for 5 s, and 60 ◦C for 30 s. Cq
values were analyzed using the LightCycler® 480 software. The relative unigene expression
levels of target genes were determined by the 2−∆∆CT method [25], with the actin gene
(TRINITY_DN13664_c0_g3) as the internal control.

3. Results
3.1. Leaf Anatomical Characteristics and Ultrastructure

As shown in Figure 1D, Chl was present throughout the whole mesophyll cell, and
no pigment was observed in the leaf epidermis in neither the green nor yellow leaves.
The mutant leaves showed a light-yellow color compared to the green color in the normal
leaves. Furthermore, we found that chloroplasts showed the typical structures of green
leaf mesophyll cells, with normal grana and thylakoids present. However, only a few
thylakoids remained in the chloroplasts of yellow mutants and showed damaged thylakoid
membranes, absent stromal lamellae, and a large number of irregularly arranged round
vesicles (Figure 2). Additionally, the average number of chloroplasts in each cell in normal
green leaves was 1.89-fold higher than that in yellow mutant leaves (Figure 3B). This result
indicates that the variation in the leaf color of the yellow mutant might be a consequence of
damage from chloroplast development.
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Figure 1. Phenotype of P. SCBG COP15 and the yellow mutant. (A) Phenotype of P. SCBG COP15.
(B) Phenotype of the yellow mutant. (C) One year old seedling of P. SCBG COP15 (right) compared
with the yellow leaf variety (left). (D) The anatomical distribution of pigments in P. SCBG COP15
(below) and the yellow mutant leaves (above). (E) Seedlings of the P. SCBG COP15 (below) and the
yellow leaf variety (above) growing in the Orchid greenhouse.
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Figure 2. Transmission electron micrograph of chloroplasts from P. SCBG COP15 and the yellow
mutant. (A–C) Chloroplast ultrastructures in the green leaves were intact, clearly visible, and well-
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vesicles, and are filled with many plastid spheres. Ch: chloroplast; CW: Cell Wall; GL: grana lamella.
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Figure 3. Pigment accumulation and the average number of chloroplasts per cell in P. SCBG COP15
and the yellow mutant. (A) Chlorophyll a, chlorophyll b, chlorophyll, and total carotenoid contents
between Y (yellow mutant) and G (green normal leaves). (B) The average number of chloroplasts per
cell decreased by 47.16% in the mutant leaves.

3.2. Photosynthetic Characteristics and Chlorophyll Fluorescence Parameters

Six Chl fluorescence parameters were ascertained in the present study, and it was
obvious that all parameters of the normal green leaf were higher than those of the yellow
mutant; specifically, the Fv/Fm value of yellow leaves was only 41.7% of the green leaves’
value (Figure 4), indicating that light absorption and energy transfer of the light-harvesting
complexes were more efficient in the normal green leaf than in the yellow mutant. Next, the
photosynthetic characteristic parameters, including intercellular CO2 concentration (Ci),
stomatal conductance (Gs), and net photosynthetic rate (Pn), were determined for further
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analysis. The Ci, Gs, and Pn values of the green leaves were approximately 35.93, 73.36,
and 60.24% higher than those of the yellow leaf (Figure 4B–D), respectively, suggesting a
stronger photosynthetic capacity in green leaves compared to the mutant.
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3.3. Library Construction and De Novo Assembly

To reveal the molecular mechanism of the yellow-leaf phenotype in P. SCBG COP15,
high-quality RNA samples extracted from the leaves of G and Y were applied to construct
the sequencing library with four biological replicates (Supplementary Figures S2 and S3).
The number of clean reads for each library ranged from 40,802,964 to 53,349,426, with a
mapped ratio of 67.95% to 71.91%. A total of 79,129 unigenes were identified from the
mapped libraries, as well as 113,567 transcripts obtained, with an N50 length of 1590 bp.
The GC content ranged from 47.77% to 49.43%, and the Q30 base percentage was ≥94.71%,
which indicated a high read confidence level (Supplementary Tables S2–S4).
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3.4. Functional Annotation and Classification

In total, 34,492 unigenes were annotated in the NR, Nt, SwissProt, KEGG, COG,
Pfam, and GO databases using BLASTX, which accounted for 43.59% of the assembled
unigenes. In the NR annotated species distribution, the top three matched species were
Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica (Supplementary
Figure S4). Of these annotated unigenes, 28,116 (35.53%) were categorized as contributing
to a biological process, cellular component, or molecular function in the GO database.
Binding, catalytic activity, and cellular processes were the three prominent subclasses. A
total of 9364 unigenes were annotated in the KEGG functional classification, and unigenes
accounted for the highest percentage of translation, carbohydrate biosynthesis and folding,
sorting, and degradation (Supplementary Figures S5 and S6).

3.5. DEGs Analysis and Verification

DEGs of Y and G were analyzed based on the TPM values of the unigenes. A total of
1835 DEGs were identified (P adj. ≤ 0.05, FC ≥ 2) by pairwise comparison, with 697 up-
regulated and 1138 downregulated DEGs observed. To obtain a functional categorization
of the DEGs, they were annotated for GO analysis. Next, 1104 DEGs were categorized in
three main GO classification categories, among which polysaccharide metabolic process,
polysaccharide catabolic process, and extracellular region were the three most frequently
identified terms (Figure 5). In addition, KEGG annotation was performed to identify the
specific biochemical pathways involved in leaf variegation, with 463 DEGs successfully
assigned to 111 KEGG pathways. The top 20 enriched KEGG pathways are displayed
in Figure 6, and the most frequently represented pathways were plant hormone signal
transduction, phenylpropanoid biosynthesis, and starch and sucrose metabolism, with
29, 21, and 17 DEGs observed, indicating that plant hormones appear to be playing an
important role in the formation of plants leaf yellowing.
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3.6. Expression Pattern of the Genes Involved in Chlorophyll Biosynthesis and Degradation

In the present study, 15 unigenes related to Chl biosynthesis and 11 unigenes associated
with Chl degradation were identified based on RNA-seq annotation. HEMA(TRINITY_DN
6358_c0_g1), the first structural gene in the Chl biosynthesis pathway, was significantly
downregulated in the mutant, indicating that its decreased expression might contribute to
the low Chl biosynthetic efficiency of Glutamate-1-semialdehyde (GSA). Furthermore, the
protein and enzymatic chloroplastic precursor coding genes CRD (TRINITY_ DN2556_c0_
g1) and CAO (TRINITY_DN1555_c0_g1), respectively, also showed low expression in
the yellow leaves. In contrast, the Chl degradation genes, especially NYC1-1 (TRIN-
ITY_DN221_c0_g1) and PPH3 (TRINITY_DN3203_c0_g1), showed significantly increased
mRNA levels in the yellow leaves (Figure 7). This result indicates that the downregulation
of key Chl biosynthesis genes, along with the upregulation of Chl degradation genes, may
directly cause the decrease of Chl and consequently lead to the yellow leaf phenotype.
We also identified that a unigene for the probable transcription factor GLK1 (ID: TRIN-
ITY_DN5163_c0_g1, D. catenatum) was upregulated 2.11-fold in the normal green leaves
compared with the mutant, which also indicates the important role of GLK (Golden 2-like)
in leaf coloration. Moreover, the GLK gene family acts as a vital transcription factor to
regulate chloroplast development, leaf color, hormone signal transduction, biological and
abiotic stress and plant senescence, etc [26–28]. CDS and protein sequences that partici-
pated in Chl biosynthesis and degradation were screened from RNA-Seq data and cloned
with the assistance of PCR to confirm the accuracy of the analysis and for further study
(Supplementary Table S5).
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3.7. TFs Involved in Leaf Coloration

TFs regulate the complex transcription network and therefore play a crucial role in
regulating gene expression in a series of plant biological processes. In the present study,
we identified 102 differentially expressed TFs belonging to 25 TF families, and the top five
abundant TF families were the MYB superfamily (16, 15.6%), NAC (16, 15.6%), C2C2 (12,
11.7%), bHLH (10, 9.8%), and AP2/EPF (7, 6.8%). We analyzed 20 DEGs that exhibited
highly significant downregulation or upregulation between yellow and green leaves and
found that bHLH TFs were downregulated in the yellow mutant leaves, while most MYB
superfamily TFs showed an upregulation trend in the mutant compared to normal green
leaves. This suggests the TF’s vital function in leaf coloration (Figure 8; Supplementary
Table S6).
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Expression profiles and RNA-seq description of 20 DEGs which exhibited highly significant down or
upregulation between yellow and green leaves.

3.8. Validation of Gene Expression Profiling

Twelve candidate unigenes involved in Chl biosynthesis and degradation were se-
lected to test the validity of the transcriptomic data using qRT-PCR analysis. HEMA,
CHLE and CAO participated in Chl biosynthesis, their genes showing a significant high
expression level in green leaves, while Chl degradation genes including NYC1-1, HCAR,
PPH1, PPH2, and RCCR were dramatically downregulated in green leaves. The results
showed that the expression patterns revealed by qRT-PCR analysis were consistent with the
transcriptomic data (Figure 9). Primers used in qRT-PCR was provided in Supplementary
Table S7.
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4. Discussion

Paphiopedilum is one of the most fashionable and rare orchid genera because of its
high ornamental value, while wild populations of Paphiopedilum are facing the threat of
extinction due to excessive collection and habitat destruction [29]. Presently, large-scale
in vitro propagation is the main option for producing Paphiopedilum seedlings [30]. It is a
common phenomenon that plant somatic cells undergo somaclonal variation during tissue
culture. Therefore, this method is usually used to induce and obtain mutants in the process
of plant breeding [31], which has been reported in wheat [32], the Chrysanthemum genus [33],
Saintpaulia [34], and the Cymbidium genus [35]. In the present study, the yellow leaf mutant
along with P. SCBG COP15, the green normal leaf hybrid discovered during the tissue
culture process, were used as the materials to study leaf color variation in Paphiopedilum.
Our results not only identified candidate structural and regulatory genes involved in leaf
coloration, but also provided insight into golden leaf formation in Paphiopedilum.

Chl is the main pigment that harvests solar energy in leaf tissues and makes the leaves
appear green. In the present study, the photosynthetic pigment content, including Chl
a, Chl b, and carotenoid, in the green normal leaves was significantly higher than that of
the mutant. Many Chl deficient mutants were reported in maize [36] and A. thaliana [37].
Generally, thylakoid membranes, arranged regularly and stacked into grana in the chloro-
plasts, are vital for chloroplast function, providing a platform for the photosynthetic protein
pigment complexes and the conversion of energy throughout the process of photosynthe-
sis [38,39]. We performed TEM in our study and discovered a strong contrast between
the chloroplast ultrastructure of yellow and green leaves. The ultrastructure of mutant
chloroplasts had serious defects, with some chloroplasts containing broken thylakoid mem-
branes packed with vesicles and filled with a large number of plastid spheres. Furthermore,
the chloroplast number in the mutant leaves decreased in comparison to wild type green
leaves. In contrast, the structures in the chloroplasts of green leaves were intact, clearly
visible, and well-organized. This result indicates that the yellow leaf phenotype might be a
consequence of disordered chloroplast development. Similar results were also reported in
the green leaves of Ginkgo biloba [6], rice [39], Pseudosasa japonica [40], Ilex × altaclerensis [41]
and Anthurium andraeanum [42].

Transcriptomic analysis has been widely used to identify key genes that are dif-
ferentially expressed at different developmental stages, or under various physiological
conditions. However, the genome of Paphiopedilum is still relatively unknown. In this
study, RNA-sequencing analysis on P. SCBG COP15 leaf phenotypes (Y and G) at the
same development stage were sequenced and annotated. Finally, we obtained 113,567
transcripts with N50 lengths of 1800 bp, and 79,129 unigenes with N50 lengths of 1590
bp, similar to those in other orchid species, such as Cymbidium longibracteatum [35] and A.
shenzhenica [43], respectively. Further, a total of 1835 DEGs were identified by TPM, with
463 DEGs successfully assigned to 111 KEGG pathways. The most frequently represented
pathway was the plant hormone signal transduction. The results suggested that plant
hormone is playing an important role in the formation of plants leaf yellowing, which has
also been reported in the Arabidopsis genus [44–46].

Chl biosynthesis is catalyzed by 15 kinds of enzymes, and any disturbance in this
process results in Chl deficiency and leaf color mutation [47]. HEMA is the first structural
gene in Chl biosynthesis, encoding Glutamyl-tRNA reductase which catalyzes the initial
substrate glutamyl-tRNA to glutamate-1-semialdehyde (GSA), with the unstable interme-
diate GSA then being isomerized to 5-aminolevulinic acid by GSA aminotransferase [48].
Previous research has shown that the mutation of the HEMA gene in rice causes the entire
Chl synthesis pathway to be blocked, with the apparent yellow plant leaves visible [49], and
RNA silencing of HEMA in barley showed a similar phenotype [8]. In Arabidopsis, HEMA1
mutants are patchy to completely yellow and cannot grow healthily under normal growth
conditions [50]. From our transcriptomic analysis, a HEMA (TRINITY_DN6358_c0_g1)
gene was identified as a critical structural gene responsible for yellow mutant forma-
tion, due to its decreased expression level. In addition, CRD (TRINITY_ DN2556_c0_ g1),
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CAO (TRINITY_DN1555_c0_g1), and CHLE (TRINITY_DN2556_c0_g1) also showed low
mRNA levels in yellow leaves. In contrast, the Chl degradation genes NYC1-1 (TRIN-
ITY_DN221_c0_g1), PPH (TRINITY_DN16260_c0_g1 and TRINITY_DN3203_c0 _g1), and
HCAR (TRINITY_DN482_c0_g1) had significantly increased expression levels in the yellow
leaves, which indicates that the upregulated degradation genes in the mutant may acceler-
ate Chl breakdown and lead to the yellowing of plant leaves. Specific expression levels of
TPM related to Chl biosynthesis and degradation are provided in Supplementary Table S8.

5. Conclusions

We performed comparative analysis to investigate the differences in coloration be-
tween normal green leaves and yellow mutants of a Paphiopedilum hybrid. The low Chl
content and abnormal ultrastructure of chloroplasts in the leaves of the yellow mutant
suggested that Chl biosynthesis was partially inhibited, which could explain the yellow phe-
notype from both cytological and physiological aspects. Key structural genes related to Chl
biosynthesis and degradation, along with potential transcription factors, were identified by
DEG analysis from transcriptomic data. In summary, from our cytological, physiological,
and transcriptomic analyses, decreasing the amount of photosynthetic pigments, blocking
chloroplast development, and changing the expression levels of genes involved in Chl
biosynthesis and degradation may collectively lead to the yellow leaf phenotype (Figure 10).
Our findings provide an essential genetic resource, not only for the study of molecular
mechanisms involved in leaf color variation, but also for the breeding of new varieties of
Paphiopedilum.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13010071/s1. Table S1: A list of the plant environment,
Table S2: A summary of the quality of the transcriptome, Table S3: A summary of the assemble results,
Table S4: Overview of transcriptome assembly showing length distribution of unigenes, Table S5:
Identification of coding sequences (CDS) and protein sequences of Chl biosynthesis and degradation.
Gene sequences were screened by RNA-Seq date and confirmed by PCR; Table S6: TPM value of
20 DEGs which exhibited highly significant down or up-regulation between yellow and green leaves,
Table S7: Primers used in quantitative real-time polymerase chain reaction (qRT-PCR), Table S8:
Specific expression levels of transcripts per million reads (TPM) value related to Chl biosynthesis
and degradation, Figure S1: Schematic representation of Chl metabolic pathways in higher plants,
Figure S2: The quality of RNA used for qPCR assessed by agarose gel electrophoresis. 1–4: yellow
leaves, 5–8: green leaves, Figure S3: Correlation indices between different samples. Y1-Y4, yellow
leaves; G1-G4, green leaves, Figure S4: Species distribution of NR annotation. The most abundant
annotated species are D. catenatum (15,014 unigenes, 44.21%), Phalaenopsis equestris (3407 unigenes,
10.03%) and Apostasia shenzhenica (3320 unigenes, 9.78%), which all belong to the orchid family,
Figure S5: GO functional annotation of all unigenes. The most abundant functions in terms of
biological processes are cellular processes and metabolic processes. In terms of cellular components,
the most abundant unigenes are related to cell parts and membrane parts, and in terms of molecular
function the most abundant unigenes are related to binding and catalytic activity, Figure S6: KEGG
annotation of all unigenes.
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protoporphyrin IX methyltransferase; CHLM: Mg-protoporphyrin IX methyltransferase;
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