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Abstract: Hypertrophic differentiation of chondrocytes is a main barrier in application of 

mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs 

occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent 

literature describing signal pathways in the hypertrophy of MSCs-derived in vitro 

differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between 

these pathways. Insight into the exact regulation of hypertrophy by the signaling network is 

necessary for the efficient application of MSCs for articular cartilage repair and for 

developing novel strategies for curing OA. We focus on articles describing the role of the 

main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies 

report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and 

experimental OA. Chondrocyte hypertrophy is not under the strict control of a single 

pathway but appears to be regulated by an intricately regulated network of multiple signaling 

pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β 

(TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast 

growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). 

This comprehensive review describes how this intricate signaling network influences  

tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves 

understanding of the disease stages and cellular responses within an OA articular joint. 
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1 Introduction 

Osteoarthritis (OA) is a multifactorial complex and chronic disease characterized by progressive 

degradation of joint cartilage. The underlying molecular mechanisms involved in the pathogenesis and 

progression of OA are still largely unknown, and currently no disease-modifying therapy is available  

for OA. 

In cell-based cartilage regeneration therapies, the use of mesenchymal stem cells (MSCs) has shown 

promising results. Evidence showed that MSCs can be differentiated into chondrocytes (marked by Sex 

determining region Y box 9 (SOX9); Aggrecan (ACAN); Collagen type II (Col2A1)) after a condensation 

state (marked by Cyclic adenosine monophosphate (cAMP), Transforming growth factor-β (TGFβ), 

Fibronectin, Neural cell adhesion molecule (N-CAM) and N-cadherin) in vivo and in vitro [1–3] (Figure 1a). 

However, in the application of human MSCs for cartilage repair in vivo, hypertrophic differentiation 

towards the osteogenic lineage is observed. Prevention of hypertrophy is becoming increasingly 

important for clinical application of MSCs in cartilage tissue engineering [1,4]. Interestingly, recent  

data indicate that the healthy chondrocyte phenotype switches toward a hypertrophic phenotype in 

degenerated cartilage [4–6]. Phenomena such as proliferation of chondrocytes, hypertrophic differentiation 

of chondrocytes, remodeling and mineralization of the extracellular matrix (ECM), invasion of blood 

vessels and apoptotic death of chondrocytes correspondingly also occur during OA [7]. In addition, 

transgenic mouse models have shown that deregulated hypertrophic differentiation of articular 

chondrocytes may be a driving factor in the onset and progression of OA [4]. Therefore, control of 

hypertrophic differentiation can be exploited as an effective strategy for cartilage repair, and used in 

bone regeneration, where hypertrophic cartilage could act as a template for endochondral bone formation [1]. 

However, the exact molecular mechanism underlying hypertrophic differentiation is not understood. 

Despite numerous studies about the function of single signaling pathways in hypertrophy, studies which 

explore comprehensive signaling pathways in hypertrophic differentiation of MSCs and chondrocytes 

have not been published in recent years. Here we discuss how signaling pathways are involved in 

hypertrophy of MSCs and chondrocytes, how these signaling pathways interplay, and how signal factors 

changed in OA disease. 

1.1. Hypertrophy in Chondrogenesis of MSCs in Vitro 

MSCs are promising candidate cells for cartilage tissue engineering, as they are present in large 

quantities in adipose tissue, bone marrow, synovium and cartilage [8] and can be expanded for a number 

of passages without losing their ability to undergo chondrogenic differentiation. Unfortunately,  

the phenotype of MSCs in cartilage repair is unstable [9,10]. The expression of cartilage hypertrophy 

markers (e.g., collagen type X) by MSCs undergoing chondrogenesis, raises concern for a tissue 

engineering application of MSCs, since chondrocyte hypertrophy in neocartilage could ultimately lead 

to apoptosis and ossification [11]. 
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1.2. Hypertrophy in Articular Chondrocytes during OA Progression 

Studies have shown that the development of OA may be caused by activation of hypertrophic 

differentiation of articular chondrocytes [12]. As Figure 1 shows, during hypertrophic differentiation of 

chondrocytes in OA, chondrocytes lose the stable phenotype and the expression of Runt-related 

transcription factor 2 (RUNX2), Collagen type X, Matrix metalloproteinase 13 (MMP13), Indian 

hedgehog (IHH) and Alkaline phosphatase (ALPL) is detected [13]. Healthy articular cartilage (AC) is 

a stable tissue that has the potential to resist hypertrophic differentiation and maintain the normal 

phenotype through an unknown mechanism [14]. The interplay of multiple signaling pathways regulates 

the fate of chondrocytes, i.e., to remain within cartilage or to undergo hypertrophic differentiation. 

 

Figure 1. Chondrogenesis of MSCs and hypertrophic differentiation. (a) Chondrogenesis is 

initiated by the condensation of MSCs, and cell-cell contact. The expression of cAMP, 

TGFβ, Fibronectin, N-CAM and N-cadherin is involved in this process and these factors are 

necessary for chondrogenic induction, marked by the expression of chondrogenic genes: 

SOX9, ACAN, COL2A1. Mature chondrocytes begin secreting cartilage matrix primarily 

consisting of collagen II and GAGs, which are the main components of cartilage;  

(b) Chondrocytes from in vitro chondrogenesis of MSCs or in vivo cartilage could undergo 

hypertrophic differentiation, which is characterized by an increase in cell volume and  

the expression of hypertrophic markers (RUNX2, Collagen X, MMP13, IHH and ALPL).  

In vivo, physiological endochondral ossification and pathological osteoarthritis could be 

initiated after remodeling, mineralization of the extracellular matrix, and apoptotic death  

of chondrocytes. 
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Figure 2. Signal pathways of chondrocyte hypertrophy. (a) In normal chondrocytes, signal 

pathways like WNT, BMP, IHH, etc. are regulated by their antagonists (DKK1 and FRZB 

for WNT, GREM1 for BMP) or other signal factors to get a fine balance to maintain  

the chondrocyte normal phenotype. The most important transcription factor regulating 

chondrocytes is SOX9, which is responsible for the expression of main chondrocyte makers 

including collagen type II and aggrecan. Striked through arrows indicate that the signaling 

pathway is inhibited by its antagonists; (b) In hypertrophic chondrocytes, signal pathways, 

such as WNT, BMP, IHH, etc. are deregulated by their inhibitors or other signal factors, 

which consequently leads to overexpression of these pathways. Subsequently, the effects of 

cascade pathways result in activating the transcription factor RUNX2, which regulates the 

transcription of hypertrophic markers like collagen X, MMP-13, VEGF and IHH. 
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2. Signaling Pathways in Hypertrophy 

Multiple signaling pathways have been involved in regulation of hypertrophy-like changes in 

chondrogenesis of MSCs and chondrocytes. Based on recent literature, the most important related 

pathways are WNT, Bone morphogenetic protein (BMP)/TGFβ, Parathyroid hormone-related peptide 

(PTHrP), IHH, Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible 

factor (HIF) signaling pathways [15], Figure 2. In each single pathway, several distinct subtypes are 

involved in the regulation of chondrocyte differentiation and hypertrophy, Table 1. 

Table 1. The subtypes involved in multiple signal pathways (WNT, BMP/TGFβ, PTHrP, 

IHH, FGF, IGF and HIF) and their main functions in the regulation of chondrocyte 

differentiation and hypertrophy. 

Signal Subtypes Main Functions 

WNT 

WNT3a Promotes chondrogenic differentiation; delays chondrocyte hypertrophy 
WNT4 Blocks chondrogenic differentiation; promotes chondrocyte hypertrophy 
WNT5a Promotes chondrogenic differentiation; delays chondrocyte hypertrophy 
WNT5b Promotes chondrogenic differentiation; delays chondrocyte hypertrophy 
WNT8 Blocks chondrogenic differentiation; promotes chondrocyte hypertrophy 
WNT9a Blocks both chondrogenic differentiation and chondrocyte hypertrophy 
WNT11 Promotes chondrogenic differentiation; stimulates RUNX2 and IHH expression
WNT16 Upregulation is accompanied by the downregulation of FRZB 

BMP/TGF-β 

BMP2 Induces chondrocyte hypertrophy 
BMP4 Induces chondrocyte hypertrophy 
BMP7  Maintain chondrogenic potential and prevents chondrocyte hypertrophy;  

TGF-β Promotes chondrogenic differentiation; inhibits chondrocyte hypertrophy 

PTHrP Blocks hypertrophy by stimulating Nkx3.2 and prevent RUNX2 expression 

IHH 
Promotes chondrocyte hypertrophy;  

Stimulates proliferating chondrocytes to produce PTHrP 

FGF 

FGF2 Promotes expression of RUNX2 
FGF8 Catabolic mediator with a pathological role in rat and rabbit articular cartilage 
FGF9 Promotes chondrocyte hypertrophy 

FGF18 
Promotes chondrocyte proliferation and differentiation  

in the early stages of cartilage development 

IGF IGF-1 
Promotes chondrocyte proliferation and maturation;  

augments chondrocyte hypertrophy 

HIF 
HIF-1α 

Potentiates BMP2-induced SOX9 expression and cartilage formation,  
while inhibiting RUNX2 expression and endochondral ossification 

HIF-2α Increases expression of collagen X, MMP13 and VEGF 

2.1. WNT Signaling 

WNT signaling pathways are highly evolutionarily conserved pathways with crucial roles in 

embryonic development, patterning, tissue homeostasis, growth, as well as in the onset and progression 

of a variety of diseases [16]. There are three distinct intracellular signaling cascades well known so far: 

the canonical WNT/β-catenin pathway, the c-Jun N-terminal kinase (JNK) pathway, and the WNT/Ca2+ 
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pathway [17]. The canonical WNT/β-catenin pathway is the most-elucidated pathway, mediated by  

β-catenin accumulation in nucleus, having strong correlation with chondrocyte hypertrophy. As shown 

in Figure 2b, in most cases, the presence of WNTs that bind to the WNT receptor Frizzled, results in 

formation complex of Adenomatous polyposis coli protein (APC), Glycogen synthase kinase 3β (GSK3β) 

and Axis inhibitor (AXIN), which leads to the release of β-catenin from the complex, followed by  

β-catenin accumulating in the cytoplasm, and then translocation into the nucleus. There β-catenin forms 

a complex with T cell-specific factor (TCF)/lymphoid enhancer binding protein (LEF) transcription 

factors to activate the transcription of target genes [17]. However, in the absence of a WNT ligand,  

β-catenin is phosphorylated by the destruction complex and subsequently ubiquitinylated and targeted 

for proteasomal degradation. 

Numerous studies have revealed a central role of WNT signaling in cartilage homeostasis. In cartilage, 

moderate activity of WNT is essential for chondrocyte proliferation and maintenance of their typical 

characteristics [18], but excessive activity increases chondrocyte hypertrophy and expression of cartilage 

degrading metalloproteinases [19]. For example, the conditional activation of the β-catenin gene in 

articular chondrocytes in adult mice leads to premature chondrocyte differentiation with collagen type 

X expression and the development of an OA-like phenotype [20]. However, ablation of β-catenin in  

the superficial zone of articular cartilage also strongly increases the expression of aggrecan and collagen 

type X [18]. SOX9 is the master transcription factor and thus a typical marker of chondrocytes, while 

RUNX2 usually is expressed highly in hypertrophic chondrocytes. This hypertrophy may be induced  

by the LEF/TCF/β-catenin complex promoting RUNX2 expression in the redundant WNT signal 

pathway [21]. Much evidence has shown that the switch between SOX9 and RUNX2 expression 

determines the progression of mature chondrocytes into hypertrophy in response to canonical WNT 

signaling [17,22–24]. 

There are several types of WNT ligands, which play different roles in the chondrogenic differentiation 

and cartilage development. Experiments using retroviral misexpression in vivo and overexpression 

methods in vitro suggest distinct roles of different WNTs in the control of chondrogenic differentiation 

and hypertrophy. WNT4 and WNT8 block chondrogenic differentiation but promote hypertrophy [25,26]. 

WNT9a blocks both chondrogenic differentiation and hypertrophy [27]. WNT3a and WNT5b promote 

chondrogenic differentiation but delay hypertrophy [26]. The overexpression of WNT11 in MSCs during 

chondrogenic differentiation promotes chondrogenesis and stimulates RUNX2 and IHH expression [28]. 

WNT16 transient expression was found associated with the activation of the canonical WNT pathway, 

and was present in the early phases of osteoarthritis, its upregulation was accompanied by the downregulation 

of the secreted WNT inhibitor Frizzled-related protein (FRZB) [29]. WNT5a exhibit dual functions 

during chondrogenesis of MSCs. At early stages, WNT5a induces chondrogenesis and hypertrophy 

through intracellular calcium release via G-protein coupled receptor (GPCR) activation [1]. At later 

stages, it can act as an inhibitor of hypertrophy by activating the phosphoinositide 3-kinase (PI3K)/protein 

kinase B (PKB or Akt)-dependent pathway, which in-turn activates nuclear factor κ-light chain-enhancer 

of activated B cells (NF-κB), an inhibitor of RUNX2 [30]. 

Interestingly, the expression of hypertrophy-related markers in chondrogenesis of MSCs is decreased 

in the presence of Dickkopf (DKK1), which acts as WNT signaling inhibitor (antagonist) by binding to 

low density lipoprotein receptor related protein (LRP5/6) through cartilage protective mechanisms [4]. 

Actually, DKK1, FRZB and Gremlin 1 (GREM1) are regarded as natural brakes on hypertrophic 
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differentiation of articular cartilage [4]. Our studies also found increased hypertrophic differentiation  

and mineralization and decreased expression of chondrocyte markers in the absence of the WNT  

inhibitors DKK1 and FRZB during chondrogenesis of hMSCs. In MSC pellet cultures, the inhibition of 

canonical WNT by DKK1 and FRZB increased the expression of collagen II and aggrecan, but did not 

affect collagen X expression [25,31,32]. However, the reduction of WNT antagonist secreted frizzled 

related protein 1 (Sfrp1) in MSCs correlated with an increased amount of cytoplasmic β-catenin and  

an up-regulation of RUNX2 [33]. 

2.2. Bone Morphogenetic Protein (BMP)/Transforming Growth Factor-β (TGFβ) Signaling 

2.2.1. BMP Signaling 

BMPs are multi-functional cytokines that belong to the transforming growth factor-β (TGF-β) 

superfamily. BMP signaling is mediated primarily through the canonical BMP-Smad pathway in 

chondrocytes [34]. The pathway will be activated when BMPs bind to receptors BMPR-I and II, which 

phosphorylate Sma and Mad related proteins (Smad) 1, Smad5, and Smad8 (R-Smads). The R-Smads 

form complexes with Smad4 and translocate into the nucleus, where they bind to regulatory regions of 

target genes to regulate their expression [35]. BMP has multiple roles during embryonic skeletal 

development, in addition to mesenchymal condensation and chondrogenic differentiation of MSCs, 

BMPs induce early cartilage formation [36] and are crucial local factors for chondrocyte proliferation 

and maturation in endochondral ossification [37,38]. 

Although BMPs have a protective effect in articular cartilage, they are also involved in chondrocyte 

hypertrophy and matrix degradation [39–42]. It was reported that the BMP signaling pathway was 

primarily activated during fracture healing via endochondral ossification and was detected in 

hypertrophic chondrocytes [43]. Steinert et al. showed that BMP2 and BMP4 induce hypertrophy during 

the chondrogenic differentiation of human MSC in vitro [37]. In another study, BMP2 was found to 

induce chondrocyte hypertrophy during chondrogenesis of progenitor cells ATDC5, whereas BMP-7 

appeared to increase or maintain chondrogenic potential and prevent chondrocyte hypertrophy [44].  

In vivo studies showed that overexpression of BMP4 in cartilage of transgenic mice resulted in  

an increased hypertrophic zone, indicating increased differentiation of hypertrophic chondrocytes [45]. 

As the BMPs also played role in the skeletal development, it may be that BMPs drive the chondrocytes 

to form bone after ossification, rather than to remain as articular chondrocytes [46]. Therefore, BMPs 

can be protective for articular cartilage but may have harmful effects on AC by inducing chondrocyte 

terminal differentiation and contributing to OA progression [31]. Our previous study has shown that 

addition of GREM1, the inhibitor of BMP signaling was able to slow down the hypertrophic 

differentiation and decrease the mineralization in the process of chondrogenesis of hMSCs [4].  

In addition, another BMP inhibitor, Noggin, can block thyroid-induced hypertrophy by inhibiting BMP4 

during MSC chondrogenesis [47]. 

2.2.2. TGF-β Signaling 

TGFβ is a potent inducer of chondrogenesis in vitro [48,49]. During chondrogenesis of MSCs,  

TGFβ is the main initiator of MSC condensation. After aggregation, TGFβ signaling further stimulates 
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chondrocyte proliferation while it inhibits chondrocyte hypertrophy and maturation [50–55]. Conversely, 

the activation of the Smad1/5/8 pathway is able to stimulate hypertrophic differentiation with  

the consequent expression of the hypertrophic markers collagen X, MMP13 and ALPL during 

chondrogenesis of MSCs [56]. Although TGFβ is clearly crucial in inhibiting chondrocyte hypertrophy 

during early phases of mesenchymal condensation and chondrocyte proliferation, its addition to 

chondrocyte differentiation medium in pellet cultures of MSCs was not sufficient to suppress the onset 

of hypertrophy [9–11]. 

Most recently, several lines of evidence have suggested that the TGFβ/Smad pathway played  

a critical role in the regulation of articular chondrocytes hypertrophy and maturation during OA  

development [57–59]. Zuscik and colleagues have shown that treatment of articular chondrocytes with 

5-azacytidine (5azaC), an anti-tumor agent that functions by blocking DNA methylation, resulted in  

a shift of regulatory dominance from maturation suppression via TGFβ signaling to maturation 

acceleration by BMP-2 signaling, which confirms that a shift in signaling dominance from TGFβ to 

BMP is sufficient to induce AC maturation [60]. This study also raised the possibility that a similar shift in 

signaling dominance occurs when these cells progresses inappropriately, such as in osteoarthritis, where 

the balance between TGFβ and BMP signaling pathways may be broken. It has been suggested that 

TGFβ inhibits terminal hypertrophic differentiation of chondrocyte and maintains normal articular 

cartilage through Smad2/3 signals [58,61]. The Smad3 pathway can be activated by TGF-β directly  

to stabilize the Sox9 transcription complex and inhibits RUNX2 expression through epigenetic 

regulation [62,63]. Homozygous mutant mice of targeted disruption of Smad3- exon 8 developed 

degenerative joint disease resembling human OA, characterized by progressive loss of articular cartilage, 

and abnormally increased numbers of collagen type X expressing chondrocytes in synovial joints [58]. 

However, TGFβ1 administration has been shown to redirect expanded human articular chondrocytes 

towards hypertrophy [64]. Moreover, TGFβ can induce synovial lining cells to produce inflammatory 

factors, such as IL1β and TNFα, which further stimulates articular chondrocyte terminal hypertrophy, 

depositing collagen type X instead of collagen type II and aggrecan The TGF-β superfamily and its 

downstream phosphorylation of Smads were reported to exhibit both stimulatory and inhibitory effects 

on chondrocyte hypertrophy [65]. 

2.3. The Crosstalk between BMP/TGFβ and WNT Signaling in Regulating Hypertrophy 

β-catenin crosstalk with TGFβ was reported in hypertrophy regulation in MSCs [66]. In the process 

of TGFβ-induced chondrogenesis of MSCs, temporal activation of β-catenin led to enhanced chondrogenic 

induction, further developed into hypertrophy and mineralization phenotype in vivo. However,  

the continuous co-activation of two signaling pathways resulted in hypertrophy inhibition, characterized 

by the suppressed expression of collagen type X, RUNX2, and ALPL, and did not lead to ossified tissue 

in vivo [66]. 

It was demonstrated that the crosstalk between WNT and BMP plays key roles in regulating 

chondrocyte activity in pathogenesis of osteoarthritis, which may be cell type-specific [67]. Papathanasiou 

and colleagues reported the function and crosstalk between BMP2 and canonical WNT/β-catenin 

signaling in regulating chondrocyte hypertrophy and matrix metalloproteinase (MMP)/aggrecanolytic 

ADAMTS (a disintegrin like and metalloproteinase with thrombospondin type I motif) synthesis in  
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OA [68]. In this study, they showed human end-stage OA chondrocytes can produce BMP2 and BMP4. 

Interestingly, only BMP2, but not BMP4, can drive the expression of low-density lipoprotein receptor 5 

(LRP5), which is one of most important co-receptors for WNT signaling that leads to β-catenin 

stabilization, accumulation, nuclear translocation, and activation of target genes. It can be concluded that 

the BMP-2-induced WNT/β-catenin signaling pathway activation through LRP-5 induces chondrocyte 

catabolic action and hypertrophy [68]. 

This report adds to the accumulating evidence that increased or excessive activation of canonical 

WNT signaling in chondrocytes is detrimental and contributes to OA cartilage degradation. Recently, 

studies from our group also indicated that the natural WNT and BMP antagonists DKK1, FRZB and 

GREM1 inhibit hypertrophic differentiation of hMSCs during chondrogenesis by blocking WNT and 

BMP pathways [4]. Therefore therapeutic approaches to block or suppress canonical WNT and BMP2 

pathways using their natural antagonists may protect cartilage damage in end-stage OA. 

2.4. Parathyroid Hormone-Related Peptide (PTHrP)/Indian Hedgehog (IHH) Signaling 

PTHrP is a member of the parathyroid hormone (PTH) family that blocks hypertrophy by stimulating 

NK3 homeobox 2 (Nkx3.2) [69] and preventing RUNX2 expression [70]. Huang supposed SOX9 is  

a target of PTHrP signaling in the growth plate and that the increased activity of SOX9 might mediate 

the effect of PTHrP in maintaining the cells as non-hypertrophic chondrocytes [71]. IHH is an important 

factor involved in endochondral ossification and expressed in prehypertrophic chondrocytes [72]. In IHH 

knockout mice, the proliferation and hypertrophy of chondrocytes are significantly reduced [73]. 

Evidence has shown that IHH can positively regulate the transcription and expression of collagen type 

X via Runx2/Smad interactions through downstream transcription factors GLI-Kruppel family members 

(Gli) 1/2 [74]. Both IHH and PTHrP signaling play crucial roles in regulating the onset of chondrocyte 

hypertrophy. Vortkamp and colleagues [75] found that IHH stimulated proliferating chondrocytes to 

produce PTHrP, which in turn accelerated the proliferation of periarticular cells and prevented the onset 

of chondrocyte hypertrophy, thereby keeping chondrocytes in a proliferating state. This negative 

feedback loop regulates the balance between proliferation and maturation of chondrocytes, ensuring 

orderly bone formation [75]. On the other hand, resting chondrocytes at the ends of long bones secrete 

PTHrP, subsequently suppressing IHH production in the proliferating zone. Chondrocytes outside of this 

paracrine signaling range produce IHH and undergo hypertrophy [1]. PTHrP forms a feedback loop with 

IHH to regulate the proliferation and onset of hypertrophic differentiation [76–78]. During endochondral 

bone formation, PTHrP-dependent IHH signaling inhibiting chondrocyte hypertrophy is dominant, 

thereby obscuring the promoting effect of PTHrP-independent IHH signaling. Other researchers reported 

that IHH can also function independently of PTHrP to promote chondrocyte hypertrophy [79]. In PTHrP 

knockout mice, the absence of PTHrP caused diminished chondrocytes and accelerated hypertrophic 

differentiation, and led to premature mineralization of extracellular matrix and apoptosis [75,80]. 

However, targeted overexpression of PTHrP under the control of the cartilage-specific collagen type II 

promoter resulted in the opposite effect of chondrodysplasia through delay of the terminal differentiation 

of chondrocytes, inhibition of apoptosis and disruption of endochondral ossification [81]. A co-culture 

model from Jiang and colleagues [82] demonstrated that in healthy articular cartilage PTHrP, secreted 

by chondrocytes from surface layers, inhibits the hypertrophic potential of chondrocytes residing in  
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the deep layer so as to maintain the homeostasis of articular cartilage, but the effect was not confirmed 

in vivo. In another cell study, it was demonstrated that PTHrP from human articular chondrocytes inhibits 

hypertrophy of MSCs during chondrogenesis in co-culture, and intermittent supplementation of PTHrP 

also improves chondrogenesis of MSCs and reduces the hypertrophy [83,84]. A similar phenomenon 

was observed in MSCs pellet studies, it was shown that PTHrP treatment leads to suppression of hypertrophy 

but also down-regulates collagen II [49]. However, when cultured under hypertrophy-enhancing 

conditions, PTHrP could not diminish the induced enhancement of hypertrophy in the MSC pellets [85]. 

However, other researchers observed a selective hypertrophic inhibition upon PTHrP treatment with 

stable or even up-regulated expression of collagen II [86,87]. This discrepancy might be linked to  

the existence of both PTHrP receptor 1 (PTH1R)-dependent and PTH1R-independent pathways [1]. 

PTH1R knockout mice showed accelerated hypertrophy and were unaffected by treatment with PTHrP, 

indicating that the inhibition on hypertrophy is dependent on PTH1R receptor binding [88]. The choice 

of the PTHrP isoform has further been shown to affect the suppressive action on hypertrophy, with isoform 

1-34 being the most effective in promotion of chondrogenesis as well as inhibition of hypertrophy [89]. 

Cell studies have shown that FGF2 combined with PTHrP inhibited the TGFβ responsive COL2A1 

and COL10A1 expression and ALPL induction. However, calcification of implanted pellets was not 

prevented by PTHrP in vivo [49]. In another study, the combined delivery of TGF-β3 and PTHrP in nude 

mice reduced calcification [90]. In addition, the canonical Wnt pathway is known to promote 

chondrocyte hypertrophy via inhibition of the PTHrP signaling activity [91]. Therefore, PTHrP represses 

hypertrophic cartilage differentiation whereas WNT and IHH promote hypertrophy of chondrocytes. 

Hence, the fine balance of the crosstalk between signal pathways is a requirement for the normal 

phenotype of chondrocytes. 

2.5. Fibroblast Growth Factor (FGF) Signaling 

FGF signaling plays a critical role in controlling chondrocyte differentiation [92]. Specifically,  

four members of the fibroblast FGF family, FGF2, FGF8, FGF9 and FGF18, have been implicated  

as contributing factors in cartilage homeostasis [92–96]. FGF2 has been shown to be expressed  

in proliferating and prehypertrophic chondrocytes, periosteal cells and osteoblasts [97]. In human 

articular chondrocytes, the binding of FGF2 to FGFR1 activates Ras and Protein kinase C delta (PKCδ), 

which transfer the signals into the nucleus to positively regulate the expression of RUNX2 by  

the Raf-MEK1/2-ERK1/2 cascade [98]. Under experimental OA conditions, FGF8 has been identified 

as a catabolic mediator with a pathological role in rat and rabbit articular cartilage [99]. However,  

little is known about the precise biological function of FGF8 on human adult articular cartilage.  

In developing stylopod elements, FGF9 promotes chondrocyte hypertrophy at early stages and regulates 

vascularization of the growth plate and osteogenesis at later stages of skeletal development. Fgf9−/− mice 

have normal limb bud development and mesenchymal condensations, but show decreased chondrocyte 

proliferation in stylopod elements, delayed initiation of chondrocyte hypertrophy and abnormal 

osteogenesis in skeletal vascularization [95]. In the early stage of cartilage development, FGF18 is 

expressed in the perichondrium and joint spaces to promote chondrocyte proliferation and differentiation. 

In Fgf18−/− mice, the phenomenon of delayed mineralization was observed, which was found to be 

closely associated with delayed initiation of chondrocyte hypertrophy, decreased chondrogenesis 
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proliferation of early stages, delayed skeletal vascularization and delayed osteoclast and osteoblast 

recruitment to the growth plate [100]. Further studies have shown that FGF18 is necessary to induce 

VEGF expression by signaling to FGFR 1 and 2 in hypertrophic chondrocytes [100]. The FGF receptor 

3 (FGFR3) is a tyrosine kinase receptor, expressed in proliferating chondrocytes and early hypertrophic 

chondrocytes in the growth plate. Both FGF9 and FGF18 are the major ligands of FGFR3 in the growth 

plate [101]. Recently, Shung and coworkers found that FGFR3 expression increases the expression of 

SOX9 and decreases β-catenin levels in cultured mesenchymal cells [102]. 

The interplay of WNT and FGF signaling is important to determine the fate of MSCs and their 

subsequent differentiation. FGFR1 appears to act downstream of the β-catenin pathway and serves as  

a key determinant in the lineage decision of skeletal precursors [103]. Hypertrophic maturation of 

chondrocytes is highly regulated by the interplay of the FGF, IHH, BMP, and WNT signaling pathways. 

More specifically, FGF signaling accelerates the speed of terminal hypertrophic differentiation, and acts 

in an antagonistic relationship with IHH expression [104]. Another study suggests that the FGF and 

BMP pathways collaborate to promote aspects of hypertrophic chondrocyte maturation [105]. However, 

cartilage of mice carrying a targeted deletion of Fgfr3 is characterized by increased regions of proliferating 

and hypertrophic chondrocytes [106]. A study from Weiss and colleagues also showed that FGF2, 

together with PTHrP, may inhibit chondrocyte hypertrophic differentiation and is therefore necessary to 

obtain stable chondrocytes [49]. 

2.6. Insulin Like Growth Factor (IGF) Signaling 

IGF-1 has been identified as an important growth factor for skeletal development by promoting 

chondrocyte proliferation and maturation, while inhibiting apoptosis to form bones with appropriate size 

and strength. IGF-1 transmits signals via the type 1 IGF-1 receptor (IGF1R), which is expressed in  

the proliferating and prehypertrophic zone chondrocytes of growth plates [107]. Evidence shows that 

IGF-1 stimulates growth plate chondrocytes at all stages of differentiation [108]. High level of IGF-1 

was detected in osteoarthritic human articular cartilage [109]. The local infusion of IGF-1 in rabbit tibial 

growth plate increased the numbers of both proliferative and hypertrophic chondrocytes and promoted 

hyperplasia of bony trabeculae within the epiphysis [110]. It has been shown that IGF-1 stimulates  

the chondrogenic differentiation of MSCs into chondrocytes, and into pre-hypertrophic and hypertrophic 

chondrocytes [111]. Recombinant adeno-associated virus (rAAV)-mediated IGF-I overexpression 

delayed terminal differentiation and hypertrophy in the newly formed cartilage, which may be due to 

contrasting effects upon the osteogenic expression of RUNX2 and β-catenin [112]. Another study 

demonstrates that IGF-1 enhances chondrocyte hypertrophy by insulin-like actions, and that terminal 

hypertrophic chondrocytes are reduced in Igf1 null mice [113]. Repudi’s study showed that WNT 

induced secreted protein 3 (WISP3) inhibits IGF-1 induced collagen X induction, reactive oxygen 

species (ROS) accumulation and ALPL activity, all of which are associated with the induction of 

chondrocyte hypertrophy [114]. In addition, Mushtaq also found that IGF-1 stimulated chondrocyte 

hypertrophy and reversed the growth-inhibitory dexamethasone effects in mouse metatarsal [115]. 

However, evidence shows that chick embryo chondrocytes maintained their normal phenotype and were 

prevented to undergo hypertrophic differentiation in the presence of IGF-1 [116]. Clearly, the IGF-I 
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mediated improvement in growth was performed by altering the balance between proliferating and 

hypertrophic chondrocytes. 

IGF-1 signaling also is involved in the interaction between the thyroid hormone and the WNT/β-catenin 

signaling pathways in regulating growth plate chondrocyte proliferation and differentiation. Evidence 

showed that IGF-1 and the IGF-1 receptor (IGF1R) stimulate Wnt-4 expression and β-catenin activation 

in growth plate chondrocytes. Chondrocyte proliferation and terminal differentiation induced by 

IGF-1/IGF1R can be partially inhibited by the Wnt antagonists FRZB and DKK1 [117]. The IGF-1/IGF1R 

signaling and IGF-1 dependent PI3K/Akt/GSK-3β signaling can be activated by triiodothyronine (T3)  

in the growth plate, and the chondrocytes undergo proliferation and differentiate to prehypertrophy.  

It seems that chondrocyte proliferation may be triggered by the IGF-1/IGF1R-mediated PI3K/Akt/GSK3β 

pathway, while cell hypertrophy is likely due to activation of Wnt/β-catenin signaling, which is at least 

in part initiated by IGF-1 signaling or the IGF-1-activated PI3K/Akt signaling pathway [117]. The fact 

that IHH expression was reduced in Igf1−/− mice long bones, whereas expression of PTHrP was 

increased, suggested that IGF-1 signaling is also required to maintain the IHH-PTHrP loop during 

skeletogenesis [118]. 

2.7. Hypoxia-Inducible Factor (HIF) Signaling 

Healthy articular cartilage is a typical avascular tissue, and chondrocytes are able to survive in low 

oxygen environments [119]. Hypoxia is considered to be a positive influence on the healthy chondrocyte 

phenotype and cartilage matrix formation. A recent study from our group has shown that the articular 

cartilage-enriched gene transcripts of GREM1, FRZB, and DKK1, which are established inhibitors of 

hypertrophic differentiation, were robustly increased in chondrogenic hMSCs pellets under  

hypoxic conditions, whereas under normoxia conditions these genes did not increase markedly [120]. 

Evidence shows that hypoxia enhances chondrogenesis and prevents terminal differentiation through 

a PI3K/Akt/FoxO dependent anti-apoptotic effect [121]. The hypoxic response is mainly mediated by 

HIF, which includes three family members, HIF-1α, -2α, -3α [122], particularly HIF-1α and HIF-2α, 

play an active role in chondrocyte development. 

Under hypoxic conditions, the transcription factor HIF-1α accumulates and activates the transcription 

of genes, which are involved in energy metabolism, angiogenesis, vasomotor control, apoptosis, 

proliferation, and matrix production. In subcutaneous stem cell implantation studies, HIF-1α was  

shown to potentiate BMP2-induced SOX9 and cartilage formation, while inhibiting RUNX2 and 

endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and 

BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited 

chondrocyte hypertrophy and endochondral ossification [123]. However, HIF-2α, encoded by Epas1, 

was identified as a regulator of endochondral bone formation, and appears to be a central positive 

regulator of collagen X, MMP13 and VEGF expression by enhancing promoter activities through 

specific binding to the hypoxia-responsive elements [124]. Inflammatory factors like IL-1β and TNF-α 

can increase the HIF-2α expression by NF-κB signaling in chondrocytes [124,125]. Further experiments  

have shown HIF-2α participates in crosstalk with the β-catenin and NF-κB pathways to promote  

chondrocyte apoptosis and endochondral ossification [126]. RUNX2 and IHH were identified as the  

possible transcriptional targets of HIF-2α related to endochondral ossification; both of them are 
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involved inthe regulation of hypertrophic differentiation of chondrocytes [124,127]. The gene 

corresponding to nicotinamide phosphoribosyltransferase (NAMPT) is also a direct target of HIF-2α, and 

plays an essential catabolic role in OA pathogenesis and acts as a crucial mediator of osteoarthritic 

cartilage destruction caused by HIF-2α or destabilisation of the medial meniscus (DMM) surgery [128]. 

There is evidence that HIF-2α causes cartilage destruction by regulating crucial catabolic genes [125] 

and potentiating Fas-mediated chondrocyte apoptosis [129]. However, Lafont and coworkers found  

that hypoxia promotes cartilage matrix synthesis specifically through HIF-2α but not HIF-1α mediated 

SOX9 induction of key cartilage genes [130]. The seemingly conflicting effects of HIF-2α to 

chondrocyte or cartilage could be induced through different pathways and the differences in experiments 

performed in vivo and in vitro, which need to be clarified. The balance between HIF-1α/HIF-2α activities 

clearly contributes to the control of cartilage homeostasis. 

3. Conclusions 

Chondrocyte differentiation is regulated by multiple signal transduction pathways. Maintaining  

a normal chondrocyte phenotype and avoiding hypertrophy is important for cartilage repair. SOX9 and 

RUNX2 are two typical markers in chondrocyte development. SOX9 is expressed in chondrocytes, while 

RUNX2 is highly expressed in hypertrophic chondrocytes. In most cases, a hypertrophic phenotype was 

accompanied by high expression of RUNX2 through activation of either of the WNT, BMP, IHH, FGF 

and HIF signaling pathways. However, TGFβ, IGF-I and PTHrP promote the proliferation of chondrocytes. 

Here we propose a model in which the balance of these signal pathways adjusts the state of chondrocyte 

proliferation or hypertrophy through the shifting between SOX9 and RUNX2 transcriptional activities. 

In the WNT pathway, the LEF/TCF/β-catenin complex can promote RUNX2 expression. BMP/TGF-β 

signaling has a dual role in the chondrocyte development. TGF-β induces collagen II and SOX9 

deposition through Smad2/3 phosphorylation pathway, while BMP2/4 promotes chondrocyte hypertrophy 

and cartilage mineralization via Smad1/5/8 phosphorylation. PTHrP represses hypertrophic cartilage 

differentiation whereas IHH signaling positively regulates the hypertrophic phenotype by high transcription 

and expression of collagen type X and RUNX2. IGF-1 signaling stimulates chondrocyte proliferation by 

the IGF-1/IGF1R-mediated PI3K/Akt/GSK3β pathway, while cell hypertrophy is likely due to activation 

of Wnt/β-catenin and IHH signaling by IGF-1. HIF-1α and HIF-2α have a distinct role in the chondrocyte 

development. The former inhibits the RUNX2 expression, while the latter enhances the expression of 

collagen X, MMP13 and RUNX2 and promotes the hypertrophic differentiation of chondrocytes.  

The fine balance of the crosstalk between these signaling pathways is a requirement for normal 

chondrocyte differentiation and cartilage development. 
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