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Machine learning algorithms have been widely applied in diagnostic tools for autism
spectrum disorder (ASD), revealing an altered brain connectivity. However, little is
known about whether an magnetic resonance imaging (MRI)-based brain network is
related to the severity of ASD symptoms in a large-scale cohort. We propose a graph
convolution neural network-based framework that can generate sparse hierarchical
graph representations for functional brain connectivity. Instead of assigning initial
features for each node, we utilized a feature extractor to derive node features and the
extracted representations can be fed to a hierarchical graph self-attention framework
to effectively represent the entire graph. By incorporating connectivity embeddings
in the feature extractor, we propose adjacency embedding networks to characterize
the heterogeneous representations of the brain connectivity. Our proposed model
variants outperform the benchmarking model with different configurations of adjacency
embedding networks and types of functional connectivity matrices. Using this approach
with the best configuration (SHEN atlas for node definition, Tikhonov correlation for
connectivity estimation, and identity-adjacency embedding), we were able to predict
individual ASD severity levels with a meaningful accuracy: the mean absolute error (MAE)
and correlation between predicted and observed ASD severity scores resulted in 0.96,
and r = 0.61 (P < 0.0001), respectively. To obtain a better understanding on how to
generate better representations, we investigate the relationships between the extracted
feature embeddings and the graph theory-based nodal measurements using canonical
correlation analysis. Finally, we visualized the model to identify the most contributive
functional connections for predicting ASD severity scores.
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INTRODUCTION

Autism spectrum disorder (ASD) is a complex
neurodevelopmental disorder with increasing prevalence, with
most recent statistics reporting that an estimated 1 out of every
59 children in the US has some form of ASD (Baio et al., 2018).
Previous studies on the neurobiology underling the etiology
and symptom presentation of ASD have been as heterogeneous
and diverse as the behavioral phenotypes of ASD (Minshew and
Williams, 2007). Recent neuroimaging studies have delineated
the ASD brain as a representation of a typical organization of
structural and functional brain networks (Uddin et al., 2013;
Wadhera, 2021), affected not only by ASD core symptomatology
but also by age, sex, ethnicity, and cognitive profile (Dosenbach
et al., 2010; Tomasi and Volkow, 2012). ASD symptom severity
has been reported to be associated with symptom trajectory,
intensity of school services (e.g., number of services required),
treatment response, and comorbidities (Zachor and Ben Itzchak,
2010; Adams et al., 2014; Andersen et al., 2017; Rosen et al.,
2019). Therefore, determination of ASD severity may assist in
planning individualized treatment plans, tracking treatment
effects or disease progression, and providing insight into the
neural substrates underlying ASD phenotypic heterogeneity
(Moradi et al., 2017; Liu and Huang, 2020; Wadhera and Kakkar,
2021). Machine learning-based predictive modeling has recently
been utilized to decode symptom severity from neuroimaging
data (Sui et al., 2020; Wadhera et al., 2021); however, compared to
binary classification, severity prediction may be more challenging
as it requires the quantitative estimation of specific scores along
a continuous behavioral measure, over a wide range, rather
than just determining group membership (Shen et al., 2017;
Sui et al., 2020). Although these models used neuroimaging
measures like cortical thickness (Sato et al., 2013; Moradi et al.,
2017), surface area (Pua et al., 2019), and functional connectivity
(Uddin, 2014; Yahata et al., 2016; Lake et al., 2019; D’Souza
et al., 2020; Liu and Huang, 2020; Pua et al., 2021) as features,
putative findings have demonstrated a lack of consistency and
reproducibility among them.

The recent success of convolutional neural networks (CNNs)
in predicting problems associated with neurodevelopmental
disorders has received significant attention (Khosla et al., 2019;
Ronicko et al., 2020; Sherkatghanad et al., 2020). The convolution
and pooling layers of the CNN models are mainly used to exploit
the local meaningful features and spatial context, which are
based on the spatial distribution of the Euclidean data [e.g., a
2-dimensional (2D)/3-dimensional (3D) grid image, and text].
CNN models are also applied to graph-structured data (e.g.,
functional/structural brain network), which can be considered
as a generalized case of Euclidean data (LeCun et al., 2015).
For example, Phang et al. (2019) applied a 2D CNN to brain
connectivity data to investigate individuals with schizophrenia,
and Al-Hiyali et al. (2021) classified ASD subtypes by using
a CNN model with dynamic functional connectivity-based
features. Ronicko et al. (2020) employed a one-dimensional CNN
model as a diagnostic classifier using a flattened functional brain
connectivity matrix.

Although brain connectivity data can be partially addressed
by CNN, graph neural networks (GNNs), which consist of more

generalized convolution and pooling operations, are considered
more suitable for leveraging the topological locality of graphs
(Kawahara et al., 2017; Lee et al., 2019; Wu et al., 2020). Several
approaches have been suggested for generalizing convolution
operations for graph data (Lee et al., 2019; Wu et al., 2020). Kipf
and Welling (2016) proposed a simplified propagation rule using
a graph convolutional network (GCN) layer via a localized first-
order approximation of the Chebyshev filters on graphs (Kipf
and Welling, 2016). Kawahara et al. (2017) modified conventional
grid-shaped convolution filters into an edge-to-edge (E2E) filter
that enabled spatial feature aggregation over a line graph with
a K-hop of 1 (Kawahara et al., 2017). More recently, Ying
et al. (2018) proposed an end-to-end graph differential pooling
(Diff-Pool) method by training soft assignment vectors, thereby
leveraging the hierarchical structure in graph data (Ying et al.,
2018). Although the application of Diff-Pool to graph data
has been well-established for some graph applications, a major
limitation of Diff-Pool is the quadratic computational complexity
of its soft assignment (Cangea et al., 2018). Alternatively, Lee et al.
(2019) introduced a hierarchical self-attention graph pooling
mechanism, which could compute nodal self-attention scores
using GCN layers and adopt the top-rank selection method as a
node-pooling strategy.

Two important aspects of GNNs, the initial node feature
assignment and the graph pooling method, should be carefully
considered when they are applied to the brain network domain.
For feature assignment, previous studies of brain networks have
suggested nodes as correspondences to the brain regions with
inherently inconsistent initial features such as correlation profiles
(Ktena et al., 2018), the coordinates of center voxels (Kim and
Ye, 2020; Li et al., 2020) and one-hot encoded vectors (Kim and
Ye, 2020). However, Kim and Ye (2020) showed that training
a model with different node initialization strategies results in
inconsistent latent representation, which affects its prediction
performance (Van der Maaten and Hinton, 2008; Kim and Ye,
2020). Kawahara et al. (2017) proposed a CNN-based framework
that automatically learns the appropriate assignment of node
features to alleviate this issue of inconsistent representations
(Kawahara et al., 2017). In their framework, the connectivity-
based features were first embedded on the line graph by an E2E
operation using the brain network matrix and then aggregated
by the edge-to-node (E2N) layer for a subset of the line graph
nodes (edges in the original graph) that were related to a specified
node to obtain the corresponding nodal features. For the graph
pooling method, conventional 2D convolution filter approaches
such as the node-to-graph (N2G) layer, which globally pool all
the nodal features in an inherently flat way, potentially ignore
any sparse and hierarchical structures of graph-based data (Ying
et al., 2018). As mentioned earlier, the progressive graph pooling
method in GNNs is more effective with the hierarchical structures
of brain networks. Moreover, some researchers argue that the
node representation mechanism of E2N in the feature extractor
is similar to that of the node embedding in Diff-Pool. The
trainable soft assignment vector in Diff-Pool effectively learns
node features and generates a coarsened adjacency embedding,
thereby representing the relationship between each pair of nodes.
Therefore, a better graph representation can be expected with a
learning strategy that estimates the adjacency embedding among
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the nodes. To the best of our knowledge, no previous work
has simultaneously applied automatic feature initialization and
hierarchical pooling strategies to brain network data.

We hypothesized that the combination of an automatic
nodal feature extractor and a sparse hierarchical self-attention
graph pooling layer could learn an effective representation of
brain network data related to ASD symptom severity, and
that our graph-based deep learning model could identify the
predictive edges that contribute the most to ASD symptom
severity estimation based on large-sample data from multiple
sites. We constructed a GNN that combined a feature extractor
consisting of E2E and E2N layers to automatically assign
node-level features and a hierarchical self-attention graph
pooling network. Our proposed frameworks were tested on
the Autism Brain Imaging Data Exchange (ABIDE), a multi-
site resting-state functional magnetic resonance imaging (fMRI)
database, to predict ASD symptom severity (ABIDE I and
II)1 (Di Martino et al., 2014; Di Martino et al., 2017). We
employed the Autism Diagnostic Observation Schedule (ADOS)
to calibrate the severity score, Autism Diagnostic Interview–
Revised (ADI-R) social, verbal, and restricted, repetitive,
and stereotyped patterns of behavior (RRB) scores. We
explored the effects of brain atlas by comparing various
atlases (Shen et al., 2013; Schaefer et al., 2018; Khosla et al.,
2019; Nozais et al., 2020), and we calculated the empirical
covariance of the time series for each subject using the
Pearson correlation coefficient and the ridge-regularized partial
correlation (Tikhonov) (Pervaiz et al., 2020). To investigate
whether the feature extractor represented the nodal features
effectively, we performed a correlation analysis between the
node features extracted by the feature extractor and the graph
theory-based node measures. Because there are no existing gold
standards that can be used to determine good performance in
GNNs, we developed a canonical correlation analysis (CCA)-
based multi-level analysis to investigate deep node feature
representations (Hotelling, 1992). Finally, we visualized the
results using the saliency map method to identify the predictive
edges which are most useful for predicting ASD symptom severity
(Simonyan et al., 2013).

MATERIALS AND METHODS

Autism Brain Imaging Data Exchange
Dataset and Participants
We utilized T1-weighted and resting-state fMRI data from an
open-source ASD dataset named the Autism Brain Imaging
Database Exchange (ABIDE I and II; see text footnote 1).
The ABIDE databases, which consist of multisite protocols
with a calibrated diagnostic status, are suitable for verifying
the generality of the prediction model (Ronicko et al., 2020).
ABIDE I yielded 539 individuals with ASD (age 7–64 years)
recruited from across 17 international sites, and the ABIDE
II has collected data from 521 individuals with ASD (age 5–
64 years) across 19 sites (Di Martino et al., 2014; Di Martino
et al., 2017). Of these samples, after visual verification of

1http://fcon_1000.projects.nitrc.org/indi/abide/

preprocessing quality and applying several criteria for clarifying
the result (only right-handed individuals were included in this
study), we were left with 196 and 249 quality MRI data with
phenotypic information of ADOS severity and ADI-R scores,
respectively (see the MRI Data Preprocessing section for the
detailed procedure). The diagnostic methods, inclusion and
exclusion criteria of participants, and sequence parameters for
each site are available on the Supplementary Material, and the
ABIDE website (Supplementary Tables 1, 2 and Supplementary
Figure 1). All sites contributing to the ABIDE are required to
confirm that their local ethics committee have approved the
data collection, and data were fully anonymized by the Health
Insurance Portable and Accountability Act (HIPAA) guidelines.

Clinical Assessment of Autism Severity
As a score representing symptom severity, we used
the calibrated severity score (CSS) of ADOS-G
(“ADOS_GOTHAM_SEVERITY” column in ABIDE-I) and the
Comparison Scores of ADOS-2 (“ADOS_2_SEVERITY_TOTAL”
column in ABIDE-II). As the ADOS scores are highly correlated
with age, cognitive abilities, and/or language skills, and the
raw ADOS scores are not directly comparable across ADOS
modules, Gotham et al. (2009) developed a standardized metric
of ADOS, named CSS (Gotham et al., 2009), and the CSS has
been incorporated into the updated ADOS-2 as comparison
scores (Venker et al., 2014). A score of 1–2 indicates minimal
to no evidence of ASD, whereas scores of 3–4 correspond to
low, 5–7 to moderate, and 8–10 to high levels of ASD severity
(Venker et al., 2014). We also utilized the subscale scores of
the Autism Diagnostic Interview-Revised (ADI-R) (Rutter
et al., 2003), namely the reciprocal social interaction total score,
abnormalities in communication verbal score, and the restricted,
repetitive, and stereotyped patterns of behavior score. Although
the ADI-R scores have not been normalized according to age or
sex, ADI-R and ADOS have been considered the “gold standard”
in symptom evaluation of ASD (Lefort-Besnard et al., 2020), and
a combination of ADOS and ADI-R assessments has been shown
to improve diagnostic validity (Kim and Lord, 2012). Although a
discrepancy in the ability of the ADOS to capture ASD symptoms
cataloged in the DSM-5 has been suggested, the ADI-R is more
relevant than the ADOS for encompassing the breadth of ASD
symptoms as defined by DSM-5 (Mazefsky et al., 2013).

MRI Data Preprocessing
To remove artifactual sources of resting-state fMRI data such
as head motion, and hardware and physiology anomalies,
preprocessing was performed using the Analysis of Functional
NeuroImages (AFNI)2 toolkit (Cox, 1996). The first five volumes
were discarded for each subject, and despiking was performed to
ensure continuous data. Slice timing correction was performed,
and rigid-body transformation was used to align all the scans to
a base image, yielding six displacement parameters (translations
and rotations for x-, y-, and z-axes). Additionally, the T1-
weighted images were segmented into white matter (WM), gray
matter (GM), cerebrospinal fluid, and background voxels using a
neural network classifier framework and the derived tissue masks

2http://afni.nimh.nih.gov/afni
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and the T1 volumes were co-registered to the fMRI using affine
linear registration (Collins et al., 1995). In this step, 163 subjects
with poor quality alignments and 104 subjects with inaccurate
tissue masks were excluded. All the masks and volumes of
the native space were spatially normalized to a standard MNI
152 template and resampled with an isotropic 2 mm size. The
normalized fMRI volumes were smoothed using a 6 mm full
width at half maximum (FWHM) Gaussian kernel. Anatomy-
based regressors from the eroded WM, large ventricle mask, and
motion parameters were used to remove the nuisance signal for
each voxel (Jo et al., 2010). Specifically, the signals from the
eroded WM regions were extracted from the local neighborhood
of the voxel with a radius of 15 mm. Finally, the time scans that
had the Euclidian norm of the first derivative of head motion
(>0.25) was censored, and a bandpass filter (0.009 < f < 0.08)
was applied to reduce noise. We excluded 481 samples which had
a number of functional volumes with a motion norm >0.25 over
the entire scan time.

Functional Connectivity Matrix
Construction
To define the functional brain network, we first extracted the
average BOLD signals from each brain parcel after preprocessing
the MRI data. Existing brain parcellations, including the AAL,
SHEN, FIND, and MMP atlases, were used to derive the ROIs
to evaluate the robustness of our prediction. Functional edge
values can be calculated by constructing a covariance structure
of time-series signals from the ROIs for each subject. First, we
used Pearson’s correlation coefficients to estimate the pairwise
covariance values among the ROIs, yielding a correlation between
–1 and+1, as follows:

cPearsoni,j = (̃ti)
T
t̃j/
√
(ti)T ti

√
(tj)T tj

cPearsoni,j is the connectivity value between node i and node j. ti

and t̃i is the time series and the demeaned time series of node
i. The Tikhonov partial correlation, which implements inverse
covariance estimation subject to a regularized l2 norm, was also
used to define the functional connectivity as follows:

PTikhonov = (C + ρI)−1

PTikhonov and C are the estimated precision matrix and the
empirical covariance of the time series. Here, the regularization
parameter ρ was set to 0.1, in a heuristic manner. I is an identity
matrix with a size of n × n (n is the number of nodes). The
estimated covariance matrix was proportionally thresholded with
a sparsity of 5% to remove noisy elements and normalized to
zero mean and unit variance to reduce bias, resulting in an
undirected and weighted matrix. Prior to training, the inter-site
variability and the covariate effect of sex and age at MRI scan were
removed using element-wise Combat harmonization3 and linear
regression methods (Fortin et al., 2018).

3https://pypi.org/project/pycombat/

Sparse Hierarchical Representation of
the Functional Brain Networks
To specify the proposed ASD severity prediction model, we
required four layers: a feature extractor, a graph attention
network, an adjacency embedding network, and a prediction
network (Figure 1A).

Fully Automatic Node Feature Extractor
First, the feature extractor consisted of two E2E layers and
an E2N layer and represented nodal features using the input
functional connectivity matrix (g). The hidden connectivity
features were embedded by aggregating the adjacent node [over
L(g), representing the line graph of g] features using a cross-
shaped E2E convolution kernel (Figure 1B). Formally, each E2E
layer was a convolution operation, as follows:

f l + 1,b
i,j = lReLU

 dl∑
a = 1

n∑
k = 1

rl,a,bk f l,ai,k + cl,a,bk f l,ak,j

 ,
∀ b ∈ {1, , dl + 1}

where f is a b′th connectivity feature representation between
node i and node j for layer l. lReLU(·) is the leaky rectified
linear unit activation function with a leaky slope of 1/3. d is the
number of feature maps in layer l, and n is the number of ROIs.[

rl,a,b, cl,a,b
]
= wl,a,b

∈ R2n × 1 are the kernel parameters of
the b′th convolution filter for layer l. Thus, the number of
extracted feature maps does not change. The E2N layer further
aggregated the embedded connectivity features of the subgraph
related to the corresponding node to extract the node feature
representation el + 1,b

∈ Rn × 1 (Figure 1B).

el + 1,b
i = lReLU

 dl∑
a = 1

n∑
k = 1

wl,a,b
k f l,ai,k

 ,∀ b ∈ {1, ..., dl + 1}

where e is the b′th feature vector for node i, and similar to E2E,
wl,a,b

∈ Rn × 1 are the kernel parameters of the b′th convolution
filter for layer l.

Hierarchical Graph Self-Attention Pooling
Second, the extracted node features were forwarded to a graph
attention network by leveraging two stacks of graph self-attention
layers. For each graph self-attention layer, we calculated the node
self-attention scores by utilizing the GCN layers and selectively
performing the pooling and attention methods for graphs, based
on the scores using top-rank selection (Figure 1C). Specifically,
given the input matrixXl

∈ Rn × m with m−dimensional node
features, the attention layer for calculating the self-attention score
Sl at layer l can be formulated as follows:

Sl =

sigmoid
(
GCN

(
lReLU

(
GCN

(
Xl,Al

;W l,0
))
,Al
;W l,1

))
,

∀ l ∈ {1, , L}

GCN (X,A;W) = D̃−1/2ÃD̃−1/2XW
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FIGURE 1 | Overall framework of the proposed model and the toy example for the feature extractor. (A) Schematic of the model architecture. This model accepts
the brain connectivity matrix as input and predicts the ASD severity score of all subjects. We employed the feature extractor followed by hierarchical self-attention
graph pooling layers, embedding network, and fully connected network. The embedding network learned the adjacency embedding, which imposes information
about the relationships among extracted node representations of the preceding feature extractor. (B) A toy example of the proposed feature extractor. With a sample
graph (consisting of five nodes and five undirected-, and unweighted-edges), a stack of E2E layers embeds the connectivity features over a line graph of the original
connectivity matrix. An E2N layer then aggregates the features to extract the node representations. Using input connectivity or embedded connectivity-based
features, the embedding network define the adjacency matrix. There are three variants with the embedding layer: Identity, single E2E, and averaging method. (C) The
self-attention graph pooling layer accepts the node-level features and embedded adjacency as input and learns a sparse graph representation. The GCN layers
calculate the self-attention scores and then the scores were used to select the top k nodes. After selecting the nodes, the attention mechanism was performed using
the survived nodes.

where the W l,0
∈ Rm × p, and the W l,1

∈ Rp × 1 are the trainable
parameters in layer l. The Ã = A + I, and the D̃ represent a
self-connected adjacency matrix and a diagonal degree matrix,
respectively. After deriving the self-attention score, the top-k
selection algorithm was applied to coarsen the graph structure
using the score S:

Ẋl
= Index

(
Xl
; Sl, k

)
, Ȧl

= Index
(
Al
; Sl, k

)
, Ṡl

= Index
(
Sl; Sl, k

)
Xl + 1

= Ẋl
� Ṡl + Ẋl, Al + 1

= Ȧl

The indexing function Index
(
·; S, k

)
utilizes the top k score

indices and selects the k nodes using the self-attention score S.
The residual learning framework was used to leverage gradient
flow using the proposed deep network (Woo et al., 2018). The
residual output of the attention-pooling layer is calculated by
applying the selected attention scores to the feature vector with
element-wise multiplication �, and is then added to the identity
mapping of the input. To obtain optimized hyperparameters,
such as the number of hidden feature maps p, the number
of GCN layers L, and the selection ratio k, we implemented
the replicated models with different values and evaluated the
prediction performances (Supplementary Tables 3, 4). As a
result, we set the hyperparameters as follows: p = 1, L = 2,
and k = 1/2. Finally, the outputs of the stack of graph attention

layers are summarized using the readout mechanism as follows:

z =
L∑

l = 1

1/nl
nl∑

i = 1

xli ‖ max
1 ≤ i ≤ nl

xli


where ‖ denotes the concatenation operator and L is the number
of last attention layers. nl is the number of selected nodes, and xli
is the feature vector of the i′th node in layer l.

Adjacency Embedding
The inputs to the sparse hierarchical self-attention graph pooling
network were the two folds: (1) nodal feature vectors, and (2)
an adjacency matrix representing the association among the
nodes. To embed the adjacency matrix for the graph attention
network, we suggested three possible strategies: identity, E2E, and
averaging mapping methods. The adjacency embedding methods
were formulated, respectively, as follows:

Ai,j =

{
1, if sigmoid

(
Ri,j
)
≥ 0.5

0, if otherwise

Ridentityi,j = f 1
i,j, R

E2E
i,j =

dL∑
a = 1

n∑
k = 1

rL,ak f L,ai,k + cL,ak f L,ak,j , R
averaging
i,j

= 1/dL
dL∑

a = 1

f L,ai,j
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The latent adjacency matrix A between node i and node j
was represented by thresholding the connectivity-based feature
map R, after applying sigmoid non-linearity. dL is the number
of feature maps in layer L, and

[
rL,a, cL,a

]
= wL,a

∈ R2n × 1

are the kernel parameters of the E2E convolution filter for layer
L. L is the index of the last E2E layer (in this study, L = 2).
Intuitively, we first used input functional connectivity to define
the adjacency. The input functional connectivity matrix f 1 can
be used to embed the adjacency after applying the sigmoid
non-linearity and thresholding with a value of 0.5 (identity-
embedding method, Figure 1B). Furthermore, in line with the
E2N framework of the preceding feature extractor, we developed
two novel adjacency embedding variants that reflect the node
feature representations with reasonable complexity (Figure 1B).
The first adjacency embedding strategy is the E2E-embedding
method, which applies an E2E kernel to the hidden connectivity
features from the final E2E layer of the feature extractor to
represent the relationships RE2E

i,j among the nodes. The main
concept of E2E-embedding is that high-level adjacency can
be learned in a data-driven manner by aggregating feature
representations of the subgraphs related to the corresponding
node pair over the L(g). Second, we introduced the averaging-
embedding method to derive adjacency Raveragingi,j by averaging
the hidden connectivity features in the final E2E layer of the
feature extractor. This was done because the hidden connectivity
features were already aggregated by applying the stacked E2E
layers to the input connectivity matrix, and we expected that
latent adjacency among nodes could be obtained by simply
averaging it, even without any additional free parameters.
Similar to the identity-embedding, the obtained adjacency of the
two other methods (both E2E- and averaging-embedding) was
used in the graph attention network by applying the sigmoid
function and thresholding mechanisms. As a result, the graph
attention network represented the graph features in a sparse
hierarchical manner by using the embedded adjacency and the
calculated node features.

Prediction Layer
Finally, the outputs of each self-attention graph layer were
summarized in the readout layer, and the summation of the
outputs of each readout layer was fed to the prediction network
which consisted of fully connected layers (Figure 1A). The
output vector of the hierarchical graph self-attention pooling
z ∈ R2dL × 1 was used to predict the severity score in the fully
connected layers consisting of two hidden layers with sizes of 128
and 64, respectively.

Experimental Setting
We reported the mean absolute error (MAE), Pearson correlation
coefficient (r), and corresponding statistical significance (p-
value) between the predicted and observed ASD severity scores
across various adjacency embedding networks. We used the
BrainNetCNN, originally proposed by Kawahara et al. (2017) as a
benchmarking model (26). The hyperparameters for the number
of layers and dimension of the hidden representations for the
BrainNetCNN are defined accordingly to match parameter which

were used in our proposed models. We used a stochastic gradient
descent (SGD) optimizer with an initial learning rate (α0) of
0.00001, which gradually decreased from the initial value to 0
each epoch using the following cosine function and a momentum
of 0.9.

αt = 1/2(1 + cos(tπ/T))α0

where α is the learning rate at t′th training epoch, and T is the
total number of epochs (here, T = 1000). We evaluated the
prediction performance using a 5-fold cross validation strategy.
In each fold, 80% of the outer loop of the data was allocated to
the training set, and the remaining 20% was used as the test set.
In addition, we used an inner loop consisting of 90% training and
10% validation using the training set of the outer loop to optimize
the hyperparameters of the model. The mini-batch size was eight,
and we utilized the mean square error (MSE) as the loss function.
All weights were initialized using the method described by He
et al. (2015), and we used the standard weight decay algorithm
with a regularization parameter of 0.0001 (He et al., 2015).

Canonical Correlation Analysis
For the correlation analysis, we calculated a total of eight
node measures based on graph theory to investigate the
relationships between the two domains (Figure 2A): nodal
degree, clustering coefficient, local efficiency, betweenness
centrality, eigenvector centrality, subgraph centrality, flow
coefficient, and k core centrality. The CCA is useful in
compactly investigating the linear relationship between two
sets of multivariate features X1 ∈ Rn × p, and X2 ∈ Rn × q,
by estimating the weight vectors w1 ∈ Rp × 1, and w2 ∈

Rq × 1 which maximize the correlation between the orthogonal
linear combinations of the variables (Grellmann et al., 2015):

max
w1,w2

corr(X1w1,X2w2)

where corr (·) denotes the Pearson correlation operator. We
assessed the node features extracted from the proposed feature
extractor using three different methods to establish trust in
the proposed model. First, the pairwise univariate correlations
between the graph theory-based node measures Xgm ∈ Rn × p

and the extracted node feature representation Xnf ∈ Rn × q were
calculated, and the representative association r ∈ Rp × 1 was
selected for each graph measure (Figure 2B):

ri = max
1 ≤ j ≤ q

corr
(
xigm, x

j
nf

)
, ∀ i ∈

{
1, ..., p

}
xigm = Xgm[:, i] is the graph measure vector of the i′th

dimension, and xjnf = Xnf
[
:, j
]

is the extracted feature vector
of the j′th dimension. The result of the above analysis does not
consider the high-level node feature representations of domain
1. Thus, we investigated the multivariate association between the
node measures of domain 2 and the node features of domain 1
using CCA to distill the higher-level node feature information
of domain 1. First, orthogonal linear combinations for the node
features of domain 1 were calculated to maximize the correlation
for each node measure of domain 2. Then, the distributions of
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FIGURE 2 | Graphical illustration of analysis on investigating the relationship between the extracted features (domain 1) and graph theory-based nodal
measurements (domain 2). (A) Example of the analysis for identifying association between a sample graph data (consisting of five nodes and five undirected-, and
unweighted-edges). In this figure, the number of nodal measurements and the number of extracted features were set to eight. At each domain, we calculate a linear
combination to obtain the canonical variables. (B) First, we calculate pairwise univariate Pearson correlation coefficients between domains and select a most
correlation variable for each nodal measurement. (C) Second, we calculate the Pearson correlation coefficients between the canonical variable of domain 1 and the
measurements of domain 2. (D) Last, we derive the Pearson correlation coefficient between the canonical variables among domains. In the distribution plot, x-axis
and y-axis indicate the correlation value and corresponding density, respectively. In the scatter plot of panel (C), gray circles, solid lines, and shaded region
demonstrate subject samples, linear regression line, and standard error for all samples, respectively.

Pearson correlation coefficients between the derived canonical
variable and the corresponding node measures of domain 2 were
obtained (Figure 2C). The canonical mode for node feature Xnf
was calculated by estimating the canonical weight wnf ∈ Rq × 1,
and the relationships rc1 ∈ Rp × 1 were investigated for each
graph measure xigm:

rc1i = corr
(
xigm,Xnf ŵnf

)
, where ŵnf

= max
wnf

corr
(
xigm,Xnfwnf

)
, ∀ i ∈ {1, ..., p}

Finally, we built an association between the orthogonal
linear combination vectors of the graph measures Xgm, and the

extracted features Xnf (Figure 2D). Thus, the scalar rc2 is given by

rc2 = corr
(
Xgmŵgm,Xnf ŵnf

)
, where [ŵgm, ŵnf ]

= max
wgm,wnf

corr
(
Xgmwgm,Xnfwnf

)
, ∀ i ∈ {1, ..., p}

RESULTS

Evaluation of Performance for Autism
Spectrum Disorder Symptom Severity
Prediction
The sparse hierarchical graph representation framework for
functional brain networks was built by stacking the feature
extractor and hierarchical self-attention graph pooling networks.
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Figures 3A,B show the prediction results for different ASD
severity scores of the benchmark model [BrainNetCNN;
Kawahara et al. (2017), Figure 3A] and the proposed model
with the baseline configuration (AAL atlas for node definition,
Tikhonov correlation for connectivity estimation, and identity-
adjacency embedding, Figure 3B), respectively. We observed that
the proposed model achieved a MAE of 1.01, and 1.04, and an
r = 0.61, and r = 0.79, p < 0.0001 for both cases, better than
the benchmark model (MAE of 1.30, and 1.36, and r = 0.43,
and r = 0.63, p < 0.0001 for both cases), for predicting the
ADOS severity, and ADI-R RRB, respectively. Similarly, the
proposed model performed better than the benchmark model
(MAE of 3.15, and r = 0.50, p < 0.0001), which yielded a
(MAE of 2.97, and r = 0.58, p < 0.0001) for predicting the
ADI-R verbal. The same observation was made for predicting
the ADI-R social score, which yielded a MAE of 4.02, with
r = 0.59, p < 0.0001. In this case, the benchmark model achieved
a MAE of 4.51, and an r = 0.50, p < 0.0001. In the above
results, one consistent finding was that the proposed models
always outperformed the benchmark model for ASD severity
prediction tasks.

Comparison of Prediction Performance
Across Configurations of the Adjacency
Embedding Network
Figures 3B–D show the prediction results of the proposed model
with different adjacency embedding networks. We found that
the proposed model with identity-embedding achieved the best
performance for predicting both the ADOS severity score and the
ADI-R RRB score (the MAE between the predicted and observed
ADOS severity was 1.01, r = 0.61, p < 0.0001; MAE between
predicted and observed ADI-R RRB score was 1.04, r = 0.79,
P < 0.0001; Figure 3B, first two rows). Using the proposed
model with E2E-embedding, we were able to accurately predict
the ADI-R verbal scores with the same experimental setting
(MAE = 2.07, r = 0.74, P < 0.0001; Figure 3C, third row). For
predicting the ADI-R social score, the proposed model with the
averaging-embedding framework achieved the best performance
(MAE between predicted and observed ADI-R social was 2.54,
r = 0.64, p< 0.0001; Figure 3D, fourth row).

Comparison of Prediction Performance
Across Methods to Define the Atlas and
Edge for the Functional Brain Networks
We replicated these findings in the prediction analysis, wherein
we defined the node parcels by using the AAL, FIND, SHEN,
and MMP atlases (Figure 3 and Supplementary Figures 2–4).
Our model achieved the highest prediction performance with the
SHEN node atlas, Tikhonov connectivity, and identity adjacency
embedding for predicting ADOS severity scores (MAE between
predicted and observed ADOS severity was 0.96, r = 0.61,
p < 0.0001). Similarly, we found that with respect to ADI-R
RRB scores, the model achieved the best prediction performance
with the AAL node atlas, Tikhonov connectivity, and identity
adjacency embedding (MAE between predicted and observed
ADI-R RRB was 1.04, r = 0.79, p < 0.0001). In the case
of the ADI-R verbal and ADI-R social scores, our proposed

models were associated with improvements in the prediction
performances when utilizing the different adjacency embedding
networks (the MAE between the predicted and observed ADI-
R verbal was 1.84, r = 0.79, p < 0.0001, with HCP node
atlas, Pearson connectivity, and E2E adjacency embedding;
the MAE between the predicted and observed ADI-R social
was 3.17, r = 0.69, p < 0.0001, with the SHEN node atlas,
Tikhonov connectivity, and averaging adjacency embedding).
In most cases, we found that the prediction performance of
the proposed network variants outperformed the BrainNetCNN
benchmark for all ASD severity scores across distinct adjacency
embedding techniques, indicating that the functional brain
network data were effectively represented using our sparse
hierarchical model. Note that the proposed model variants
required only a minor increase in the number of trainable
parameters as compared to the BrainNetCNN benchmark model.
This is because the network consumes a reasonable number of
free parameters in the attention layers consisting of GCN layers
(Lee et al., 2019).

Toward Explainable Graph
Representation of the Proposed Model:
The Feature Extractor
Figure 4 shows examples of our analysis investigating the
relationship between the extracted node features (domain 1)
and the graph theory-based node measurements (domain 2).
First, we obtained the pairwise univariate Pearson correlations
among the domains for each individual and derived the
distributions of the most highly correlated variables for each
node measure (the maximal correlation coefficients). Regarding
ADOS severity and ADI-R verbal scores, some node features
of domain 1 showed comparatively high correlations with the
nodal degree (mean ± std; 0.4913 0.1029 for ADOS severity
and 0.3776 ± 0.1055 for ADI-R verbal; Figure 4A, left) and the
eigenvector centrality (0.4963 ± 0.1080 for ADOS severity and
0.3794± 0.1115 for ADI-R verbal; Figure 4C, left). Furthermore,
we observed that all the node measures of domain 2 had
moderate correlations with the node features of domain 1 for
the ADI-R RRB and social scores (Figures 4B,D, left). Second,
we performed CCA to investigate the association between
the linear combination of the extracted node embeddings
and the node measures of domain 2. With regard to ADOS
severity, we found that some node measures of domain 2,
such as k-core centrality, nodal degree, eigenvector centrality,
and subgraph centrality (0.5375 ± 0.0906, 0.5750 ± 0.0880,
0.5850 ± 0.0909, and 0.5712 0.0930, respectively) was highly
correlated with the canonical variable of domain 1 (Figure 4A,
middle). Similarly, for the models predicting the ADI-R RRB,
verbal and social scores, nodal degree (0.2717 ± 0.0723 for
RRB, 0.4846 ± 0.0876 for verbal, and 0.2539 ± 0.0618 for
social), and some centrality measures of domain 2 revealed
high linear associations with the canonical variable of domain 1
(Figures 4B–D, middle). Thus, Figures 4A–D (right) summarize
the multivariate canonical correlations between the latent
variables among domains for predicting ASD severity scores
and thus provide a comprehensive overview of the extracted
feature representations (0.6429 ± 0.0771 for ADOS severity,
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FIGURE 3 | Prediction performances for the proposed model. Comparison of ASD prediction results for benchmarking BrainNetCNN model [Kawahara et al. (2017):
panel (A)] and different configurations of proposed model [panels (B–D)] under two functional connectivity settings based on the Pearson correlation coefficient
(diamond markers and dashed line of best fit) and the Tikhonov covariance (circle markers and solid line of best fit). MAE is the mean absolute error between
predicted severity scores and observed severity scores. R and p indicate the Pearson correlation coefficient and corresponding statistical significance between
predicted severity scores and observed severity scores, respectively. The colors of the markers and lines mean the increase (red) or decrease (gray) MAE of prediction
compared with the benchmarking model. Black solid line in each panel indicates the line with slope of 1. The AAL atlas were used to define the node regions.

0.3868 ± 0.0747 for ADI-R RRB, 0.5837 ± 0.0809 for ADI-R
verbal, and 0.3664± 0.0694 for ADI-R social, respectively).

Toward Explainable Graph
Representation of the Proposed Model:
Visualization
We performed a saliency visualization method to map the
most predictive functional brain connectivity values that were
identified by our proposed model (Simonyan et al., 2013).
A saliency map can be derived by calculating the gradient
values of the prediction output with respect to the input
connectivity. The partial derivatives were calculated for each

subject and then averaged to obtain the group representative
contribution matrix. For clarity, we empirically thresholded
the edge contribution scores with a maximum intensity of
10% for each ASD severity score, as shown in Figure 5,
Table 1, and Supplementary Video 1. The semicircular edges
show the connections for each pair of regions (identified most
contributing regions were listed in Table 1) which have a
large contribution score. The labels in horizontal axis show
the list of node regions. We found that the fronto-temporal
and fronto-caudate connections, as well as interhemispheric
connections within the limbic system including the left and right
posterior cingulate cortex and amygdala, were selected to predict
the ADOS severity score. Intrahemispheric connections in the
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FIGURE 4 | Results of analysis on investigating the relationship between the extracted features (domain 1) and graph theory-based nodal measurements (domain 2).
For each analysis, we obtain and show the distribution of the correlations for (A) ASD severity score, (B) ADI RRB, (C) ADI verbal, and (D) ADI social. In the
distribution plot, x-axis and y-axis indicate the correlation value and corresponding density, respectively.

temporal lobe and also temporo-angular connections, as well
as connections between the precentral and postcentral gyrus,
interhemispheric and intrahemispheric connections within the
occipital gyrus were found to predict ADOS scores. Similarly,
functional edges from the precuneus to cuneus, fronto-insular
connections, interhemispheric connections of the thalamus of
limbic system were selected for prediction of ADI-R RRB scores,
edges from the anterior cingulate gyrus, temporal pole and
paracentral lobule were selected for predicting ADI-R verbal
scores. These results are consistent with those of previous studies
suggesting that areas such as the fronto-limbic and the social
brain play the most important role in analyzing ASD patients
(Koshino et al., 2008; Perez et al., 2016)

DISCUSSION

Potential Reasons Why the Proposed
Model Accurately Predicts Autism
Spectrum Disorder Severity
We predicted ASD symptom severity using the ABIDE database,
utilizing the fully automatic nodal feature extractor and the
sparse hierarchical graph representation framework to encode
the brain’s functional connectivity. In the proposed frameworks,
there are two key factors which may have led to the proposed
models’ reliable prediction performances. First, the automatic
feature extractor seems to play a significant role in the prediction
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FIGURE 5 | Most predictive connections for ASD severity score (Red), ADI RRB (Blue), ADI verbal (Green), and ADI social (Yellow), learned by our proposed model.
For each severity score, the connections that have the top 10% magnitude were shown for clarity. Thickness of the line represents the magnitude of partial derivative.

tasks. Encouraged by the success of machine learning in the
detection and classification of neurodevelopmental disorders,
a number of methods that leverage machine learning-based
models (Sato et al., 2013; Moradi et al., 2017; Liu and Huang,
2020), artificial neural networks (D’Souza et al., 2020), and
CNNs (Khosla et al., 2019) to encode the neuroimaging data
of ASDs have been developed in parallel. Unfortunately, the
sparse and hierarchical structure of graph data which impose
a topological locality cannot be considered by applying these
methods (Kawahara et al., 2017). Therefore, although these
models achieved a modest range of performance, yielding
a MAE of 1.36∼2.53, and r of 0.36∼0.51 for predicting
the ADOS severity, there remains a need for GNN-based
approaches to improve the overall prediction performance.
To solve this problem, Jiang et al. (2020) proposed a GNN
approach involving two GCNs for modeling the population
graph, which employs an individual node feature as vectorized
functional connectivity data (Jiang et al., 2020). However, the
flat representations of the vectorized functional connectivity
for the node still ignored the graph-structured data and
can result in degradations in the performance of the model
(Ying et al., 2018). Even though research on individual brain
networks considering a split of a parcel on brain regions
as node representation were introduced, they inconsistently
initialized the input node features, potentially ignoring the
major benefit of the deep learning models. We fully addressed
these issues by combining the proposed feature extractor
suggested by Kawahara et al. (2017). Without any unnecessary
feature initialization procedure, our proposed model achieved
favorable prediction performance (MAE of 1.01, and r of 0.61,
p < 0.0001 for predicting the ADOS severity) with reasonable
computational complexity using a combination of the E2E
and E2N networks.

The second key factor contributing to our reliable prediction
performances was the sparse hierarchical self-attention graph-
pooling networks. Recent studies suggest that brain networks
can be substantial biomarkers for ASD and that these networks
exhibit a small-world topology with hierarchical organizations
dominated by a set of network hubs (He and Evans, 2010;
Ronicko et al., 2020). Although the stacking of E2E layers
introduced by Kawahara et al. (2017) enables the learning of
these topology-based patterns, the standard convolutional layer
in an N2G layer over the extracted graph representation does not
consider the hierarchical structure of the brain network in the
BrainNetCNN (Kawahara et al., 2017; Ying et al., 2018). Thus, we
considered these inherent structures of the brain network as we
adapted the sparse hierarchical graph representation paradigm
by combining self-attention layers with the hierarchical readout
method (Cangea et al., 2018; Lee et al., 2019).

Effect of the Adjacency Embedding
Network
We described the need to embed the latent adjacency among
nodes and the frameworks for deriving it, as inspired by
Diff-Pool (Ying et al., 2018). The trainable soft-assignment
vector of Diff-Pool embeds the coarsened node features and
adjacency information simultaneously to create a hierarchical
representation of the graph-structured data. More specifically,
they aggregated the node features from the previous layer to
extract the coarsened node representations. Similarly, the E2N
of our feature extractor aggregated the node embeddings of line
graph L

(
g
)
, which was represented by the preceding E2E layers

to extract the node features. Therefore, we expected to see a
greater advantage of the graph representation when applying
the adjacency embedding network, which learns a meaningful
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TABLE 1 | Most predictive connections for the severity of ASD based on ADOS
and ADI.

Region 1 Region 2 PD value

ADOS

1 Frontal_Inf_Orb_2_R Temporal_Mid_R 0.027

2 Temporal_Pole_Mid_R Temporal_Inf_R 0.026

3 Occipital_Mid_L Occipital_Inf_L 0.026

4 Amygdala_L Amygdala_R 0.026

5 Cingulate_Post_L Cingulate_Post_R 0.025

6 Frontal_Inf_Orb_2_R OFClat_R 0.023

7 Precentral_R Postcentral_R 0.023

8 Angular_R Temporal_Mid_R 0.022

9 Occipital_Mid_L Occipital_Mid_R 0.022

10 Olfactory_R Caudate_R 0.022

ADI-R RRB

1 Frontal_Inf_Orb_2_R Insula_R 0.037

2 Cuneus_L Precuneus_L 0.031

3 Thalamus_L Thalamus_R 0.031

ADI-R verbal

1 Cingulate_Ant_L Cingulate_Ant_R 0.076

2 Temporal_Pole_Mid_L Temporal_Pole_Mid_R 0.073

3 Paracentral_Lobule_L Paracentral_Lobule_R 0.063

4 Angular_L Precuneus_L 0.062

ADI-R social

1 Frontal_Sup_2_R Frontal_Mid_2_R 0.103

2 Paracentral_Lobule_L Paracentral_Lobule_R 0.102

PD value denote the partial derivatives for the saliency map analysis. ASD,
autism spectrum disorder; ADOS, autism diagnostic observation schedule; ADI-
R, autism diagnostic interview-revised; RRB, restricted, repetitive, and stereotyped
patterns of behavior.

structure by embedding a latent adjacency, to our model. The
derivation of latent adjacency using the input connectivity or
embedded connectivity features along the line graph L

(
g
)

were
thus formulated. Furthermore, increased literature on graph-
structured data such as point clouds have demonstrated that
dynamic graph convolution on latent adjacency structure based
on the node features can represent graphs more effectively
(Simonovsky and Komodakis, 2017; Zhao et al., 2022). For
example, Zhao et al. (2022) proposed the functional connectivity-
based diagnostic GNN model to classify the ADHD status by
utilizing the dynamic convolution layer using the top-k Euclidean
distance between nodal hidden representations of functional
brain networks (Zhao et al., 2022). Similarly, the latent adjacency
embedding networks contribute to enhancing the generalizability
and further improving the prediction performance of our model.
Therefore, our sparse hierarchical graph representation model
outperformed the BrainNetCNN benchmark model for ASD
severity prediction and provided rich graph representations of
the brain functional network data.

Effect of Defining the Atlas and Edge for
the Functional Brain Networks
The motivation behind using various brain atlases and edges
for constructing functional connectivity is grounded in previous
studies suggesting that the choice of these factors can impact
the prediction performance of models. Shen et al. (2013)
highlighted the importance of defining meaningful, functionally

homogeneous regions as nodes, and Fornito et al. (2010) showed
that there is significant variability across the scales of the regions
of interest (ROIs) (Fornito et al., 2010; Shen et al., 2013). Thus, we
applied four different atlases with various scales and algorithms to
identify ROIs. The AAL atlas is composed of 90 Brodmann-based
regions, and the FIND atlas is composed of 90 functional subunits
based on group independent component analysis (ICA). The
SHEN atlas produces 278 functionally coherent and reproducible
regions using the groupwise clustering algorithm, and lastly the
MMP atlas is composed of 374 regions based on multimodal
imaging. Furthermore, it may be interesting to consider methods
for estimating functional connectivity (edge). Although the
Pearson correlation coefficient is typically used to derive the
network edges, this technique does not adequately distinguish
between direct and indirect connections among nodes (Pervaiz
et al., 2020). We additionally defined the partial correlation by
calculating the regularized Tikhonov connectivity to derive the
functional connectivity matrix (Pervaiz et al., 2020). Therefore,
the proposed models with various configurations perform at
least comparable to, but mostly better than, the benchmark
model for predicting ASD severity. In particular, a simple
averaging-adjacency embedding network is more suitable when
dealing with a small number of ROIs (e.g., AAL and FIND)
for predicting the ADI-R RRB scores. In contrast, embedding
relationships among a large number of ROIs using the E2E-
adjacency embedding network seems to be more effective for
SHEN or MMP atlases. In the case of network edges, the
models using the Tikhonov connectivity almost always yielded
a favorable prediction performance.

Interpretation of the Node
Representation
We also conducted an additional CCA-based analysis focusing on
the represented node features extracted by the feature extractor
to further elucidate the results derived from our proposed model.
Even though our univariate pairwise correlation results showed
the associations between extracted node features and the graph
theory–based node measures in an intuitive manner, this method
may be somewhat disadvantageous because it cannot account
for high-level feature representations. Thus, we adopted CCA
variants to leverage the high-level characteristics of the extracted
node features and showed the linear relationships between the
features and the node measures. Our results showed the inter-
domain relationship between the extracted node embeddings
and the node measures and thus provide insight into the
feature extractor of our model. We believe that these results
provide evidence that our model is an effective strategy to
explain graph neural networks and to reason about their strong
prediction performances.

Visualization of the Model
An important goal of machine-learning tools in neuroimaging
is to generate novel insights linking imaging biomarkers with
disease or phenotypic traits. A detailed summary of previous
studies that focused on prediction of ASD severity using
machine learning or deep learning methods is presented in
Supplementary Table 5. ADOS severity score represents the
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overall severity of ASD and was related to various regions
in the brain, whereas ADI-R subscale scores correlates to
specific symptom domains and the related regions were more
focused. Various temporal-related and frontal-related resting
state functional connections were related to ADOS severity,
ADI-R verbal and social scores, as was consistent to findings
of other studies (Liu and Huang, 2020). The temporal and
frontal lobe are associated with advance cognitive, social and
communication functions (Chomiak and Hu, 2013), whose
functional abnormalities can cause the core symptoms of
ASD (Verly et al., 2014; Yang et al., 2017). Temporal lobe
dysfunction is primarily involved in speech formation and
understanding, supporting social interactions, and higher order
cognitive processing. High predictive values of connections
related to the salience network (SN), default mode network
(DMN), and sensory motor network (SMN) were reported in
this study (see the Table 1), as was the case in several previous
studies (Uddin, 2014; Pua et al., 2019; Liu and Huang, 2020;
Pua et al., 2021). The DMN, which is consisted of the posterior
cingulate cortex (PCC), precuneus and angular gyrus, was related
to ADOS, ADI-R RRB and ADI-R verbal scores. The DMN
plays a vital role in socially relevant stimuli because of its
involvement in the mentation of self-reflective thought and in the
consideration of the perspective of others (Padmanabhan et al.,
2017). Some studies have reported that widely decreased resting
state functional connections in the DMN in ASD contributes
to the core deficit of ASD and also has a great influence on
symptoms severity (Assaf et al., 2010; Weng et al., 2010; Jung
et al., 2014). The SN is consisted of the anterior cingulate cortex
(ACC) and insula, and was related to ADI-R RRB and verbal
scores in this study. Reduced salience to social cues is coupled
with poorer social functioning and increased visual fixation on
inanimate objects (Klin et al., 2002). Atypical increased salience
has been implicated in ASD symptomatology like hypersensitivity
to sensory stimuli, or stereotypic and restricted behavior and
interests (Wiggins et al., 2009). Moreover, regions belonging to
the SN are involved in the maintenance of task sets during goal-
directed behavior (Dosenbach et al., 2007), and an excess can
contribute to restricted and repetitive behaviors. The SMN is a
large-scale network that primarily includes the postcentral and
precentral regions and extends to the supplementary motor area,
and SMN-related connections were found to be related to ADOS
severity and ADI-R social scores in this study. This is in line with
recent studies showing that sensorimotor skills are associated
with ASD symptom severity (Tavassoli et al., 2014; Hannant
et al., 2016). Mosconi and Sweeney (2015) mentioned that
sensorimotor deficits occur before social and communication
deficits and Hannant et al. (2016) mentioned that sensorimotor
deficits can lead to impairment of advanced functions, such as
social, communicative and emotional development.

LIMITATIONS AND CONCLUSION

The results were replicated across the prediction experiments
based on the different strategies of network construction
(e.g., defining the node parcel and edge values), and we

administered multiple variants of the model with respect to
adjacency embedding methods. Further studies are warranted
to identify the optimized guidelines for these variants of
the proposed model to apply them to various prediction
tasks. We can also expand our results by applying these
models to neurological disorders characterized by aberrant
connectivity, such as schizophrenia and ADHD. This study had
a few limitations. First, ADI-R scores were not normalized
according to age or sex. Moreover, recent studies have
suggested differential brain connectivity patterns in individuals
with high-functioning and low-functioning ASD. Although
the majority of participants in the ABIDE database have an
IQ above 70, the IQ level may be a source of bias for
our results. As we did not consider the effect of IQ in
our model, further studies are warranted to decipher the
impact of IQ on ASD severity prediction. Another avenue for
refinement is to leverage anatomical network information, such
as the structural and morphological brain networks. Structural
imaging modalities, including diffusion-weighted imaging and
T1 weighted imaging-based gray matter density maps, are
typically used to derive the above-mentioned brain networks.
Integration of anatomical and functional connectivity will
contribute to shaping a more comprehensive picture of complex
and highly heterogeneous neurodevelopmental disorders, such as
ASD (D’Souza et al., 2020).

In this paper, we propose a sparse hierarchical graph-
representation framework for brain functional connectivity.
To our knowledge, this is the first study to use a graph-
based deep learning model to predict ASD severity. Our
proposed model surpassed benchmarking published models
for the prediction tasks of ASD severity scores without
any explicit feature assignment. We extended the training
of graph representation by applying a sparse hierarchical
self-attention pooling network, and then investigated the
embedded features and predictive components of the
connectivity data. Our approach highlights the potential
of sparsity and hierarchy in the mutually interconnected
brain regions, which may facilitate individualized prediction
of disease progression with increasing precision in various
neurologic disorders.
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