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ABSTRACT
Background. Left unchecked, pre-diabetes progresses to diabetes and its complications
that are important health burdens in the United States. There is evidence of geographic
disparities in the condition with some areas having a significantly high risks of the
condition and its risk factors. Identifying these disparities, their determinants, and
changes in burden are useful for guiding control programs and stopping the progression
of pre-diabetes to diabetes. Therefore, the objectives of this study were to investigate
geographic disparities of pre-diabetes prevalence in Florida, identify predictors of the
observed spatial patterns, as well as changes in disease burden between 2013 and 2016.
Methods. The 2013 and 2016 Behavioral Risk Factor Surveillance System data were
obtained from the Florida Department of Health. Counties with significant changes in
the prevalence of the condition between 2013 and 2016 were identified using tests for
equality of proportions adjusted for multiple comparisons using the Simes method.
Flexible scan statistics were used to identify significant high prevalence geographic
clusters. Multivariable regressionmodels were used to identify determinants of county-
level pre-diabetes prevalence.
Results. The state-wide age-adjusted prevalence of pre-diabetes increased significantly
(p ≤ 0.05) from 8.0% in 2013 to 10.5% in 2016 with 72% (48/67) of the counties
reporting statistically significant increases. Significant local geographic hotspots were
identified. High prevalence of pre-diabetes tended to occur in counties with high
proportions of non-Hispanic black population, low median household income, and
low proportion of the population without health insurance coverage.
Conclusions. Geographic disparities of pre-diabetes continues to exist in Florida
with most counties reporting significant increases in prevalence between 2013 and
2016. These findings are critical for guiding health planning, resource allocation and
intervention programs.

Subjects Diabetes and Endocrinology, Epidemiology, Public Health
Keywords Pre-diabetes, Spatial epidemiology, Geographic disparities, Florida, Geographical
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INTRODUCTION
People with pre-diabetes are considered to be at higher risk of developing diabetes
and subsequent complications than those that do not have the condition. In 2015, an
estimated 33.9% of adults had pre-diabetes in the United States, and the percentage of
pre-diabetics among seniors aged 65 years and older was estimated to be 48.3% (CDC,
2017). Lifestyle modifications targeting physical activity level and obesity are among the
most important interventions used to prevent pre-diabetes and potential progression to
diabetes (Tabák et al., 2012). However, many adults with pre-diabetes in the United States
remain undiagnosed. Among those with glycemic parameters consistent with the condition,
only 11.6% had been diagnosed by a health professional (CDC, 2017).

Like many other chronic conditions, there are geographic disparities in the prevalence of
pre-diabetes. Previous studies investigating these disparities have been limited in that they
have been descriptive in nature and very few have used rigorous statistical/epidemiological
spatial cluster investigation techniques to identify these disparities and disease hotspots
at sub-state levels and yet findings from such investigations are critically important
for guiding health planning and resource allocation. Moreover, many of them have
focused on diabetes and not pre-diabetes. However, one of our previous studies, that
used rigorous statistical/epidemiological cluster investigation techniques and data from
the 2013 Florida Behavioral Risk Factor Surveillance System (BRFSS), detected multiple
high-prevalence clusters of both pre-diabetes and diabetes across the state (Lord, Roberson
& Odoi, 2020). Moreover, that study also found that predictors of pre-diabetes and
diabetes at the individual level differed based on whether individuals lived inside or
outside a hotspot county. This suggests that detailed investigations at sub-state levels, using
rigorous statistical/epidemiolocal approaches, are critically important to guide needs-based
planning, resources allocation, service provision, prevention and control strategies as well as
policy. Unfortunately, similar analyses of pre-diabetes distribution and its determinants are
currently lacking in the published literature. Ongoing monitoring and rigorous assessment
of the spatial distribution of pre-diabetes, as well as identifying determinants of observed
disparities using rigorous epidemiological approaches, are necessary to guide evidence-
based health planning at the sub-state levels. Therefore, the objectives of this study were
to: (1) investigate spatial patterns and clustering of pre-diabetes prevalence at the county
level in Florida in 2016; (2) investigate county-level predictors of the spatial distribution
of pre-diabetes, and (3) identify temporal changes, if any, in the geographic distribution of
pre-diabetes between 2013 and 2016.

MATERIAL AND METHODS
Ethics approval and consent to participate
This study was approved by the University of Tennessee, Knoxville Institutional Review
Board (Number: UTK IRB-19-05440-XM).

Study area
This study was performed in Florida, which has 67 counties. Based on the American
Community Survey (ACS) 5-year estimates for 2012–2016, the state had a population of
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Figure 1 Urban-rural classification and geographic distribution of counties andmajor cities in the
state of Florida, USA.

Full-size DOI: 10.7717/peerj.10443/fig-1

19.9 million people (US Census Bureau, 2016a). The most populated county was Miami-
Dade, with 2.66 million people, and the least populated was Liberty County, with 8,285
people (Fig. 1).

Data sources and data preparation
This retrospective study used secondary data and hence did not involve obtaining consent.
A list of data sources used in the study is summarized in Table 1. The county-level
cartographic boundary file, used as foundation data for mapping, was obtained from the
United States Census Bureau TIGER Geodatabase (US Census Bureau, 2016b).

Diagnostic criteria for pre-diabetes is either a fasting plasma glucose (FPG) level
between 100 mg/dL and 125 mg/dL, a two hour plasma glucose level between 140 mg/dL
and 199 mg/dL during an oral glucose tolerance test (OGTT), or glycated hemoglobin
(A1C) level between 5.7% and 6.4% (American Diabetes Association, 2019). Pre-diabetes
data for 2013 and 2016 were extracted from the Behavioral Risk Factor Surveillance
System (BRFSS) database, which was obtained from the Florida Department of Health.
The BRFSS is conducted by state health departments, with technical, methodological
and financial assistance from the Centers for Disease Control and Prevention (CDC)
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Table 1 Data sources and variables used in the study of geographic disparities, determinants and tem-
poral changes in prevalence of pre-diabetes in Florida.

Source Data obtained

United States Census Bureau
TIGER Geodatabase

County-level cartographic boundary shapefile

2013 and 2016 Florida Behav-
ioral Risk Factor Surveillance
System (BRFSS)

Respondent prediabetes status (self-reported)
Respondent diabetes status (self-reported)
Respondent’s county of residence
Age of respondent
Body mass index of respondent (BMI)
Physical activity level of respondent
Respondent arthritis status
Respondent disability status
Respondent health insurance status

Li et al. (2014) 2010 US Standard Population for age adjustment
United States Census Bureau
American Community Survey 5-
year estimates (2012–2016 and
2009–2013)

Median household income
Percent of the population 16 years
and older who are unemployed
Percent of the population living
below the federal poverty level
Percent of the population 25 years and
older with less than a high school education
Percent of the population 16
years and older who are Hispanic
Percent of the population 16 years
and older who are non-Hispanic black
Percent of the male population
Percent of workers 16 years and
older that walked or biked to work
Percent of workers 16 years and older that commuted
to work for longer than 60 min one way

2013 National Center for Health
Statistics classification scheme

County rural–urban classification data

2016 Health Resources and
Services Administration Area
Health Resource Files (AHRF)

Number of primary care physicians per county

County Health Rankings and
Roadmaps project

Percent of the population with limited access to healthy
foods

(Centers for Disease Control and Prevention, 2019). This study used data for 2013 and 2016
because every 3 years, the Florida Department of Health conducts large sampling that allows
for county-level estimates to be computed from the BRFSS. At the time this study was
conducted, the most recent Florida BRFSS datasets for which these county-level estimates
could be computed were the 2013 and 2016 datasets. Although the data collection for
2019 had been completed, the dataset was still under embargo at the time this study
was conducted. Pre-diabetes status was based upon self-reports from adult (18 years and
older) respondents who reported having been told by a doctor that they had pre-diabetes,
unrelated to pregnancy. Additional data obtained for each respondent included county of
residence, age, body mass index (BMI), physical activity level, arthritis, disability (defined
as an activity limitation due to health problems), and health insurance status. Missing
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responses and those in which the respondent refused to answer were excluded from
the analysis. All data were aggregated to the county level using SAS (Statistical Analysis
System (SAS) Version 9.4; SAS Institute. Cary, NC, USA). Pre-diabetes prevalence were
age-adjusted to the 2010 United States standard population using the following age groups:
18–44, 45–64, and 65 years and older (Li et al., 2014).

County-level socioeconomic, demographic, and commute data were obtained from the
2012-2016 ACS 5-year estimates (US Census Bureau, 2016a). Socioeconomic characteristics
included:median household income, percent of the population 16 years and older whowere
unemployed, percent of the population living below the federal poverty level, and percent
of the population 25 years and older with less than a high school education. Demographic
characteristics included percentage of Hispanic population, percentage of non-Hispanic
black population, and percentage of male population. Commute data included percent of
the population that walked or biked to work and those that commuted to work for longer
than 60 min one way.

Rural–urban classification data for each county were obtained from the 2013 National
Center for Health Statistics (NCHS) classification scheme (Ingram & Franco, 2014). This
classification scheme has a total of six categories within the broad categories ofmetropolitan
or nonmetropolitan (Fig. 1). Metropolitan categories include large, medium and small
metro counties. Large metro counties have 1 million residents or more (Ingram & Franco,
2014). Large metro counties are categorized into large central and large fringe metro
counties. Medium metro counties have 250,000–999,000 inhabitants, while small metro
counties have fewer than 250,000 people (Ingram & Franco, 2014). Nonmetropolitan
categories include micropolitan counties, which contain urban cluster populations
comprising 10,000–49,999 people, and noncore counties, which are rural areas that
do not qualify either as metropolitan or micropolitan counties (Ingram & Franco, 2014).

The number of primary care physicians per county was obtained from the 2016 Area
Health Resource Files (AHRF) from the Health Resources and Services Administration
(HRSA) (Health Resources and Services Administration, 2020). The 2016 county population
estimate was used to calculate the number of primary care physicians per 1,000. The
percent of the population with limited access to healthy foods was obtained from the
County Health Rankings and Roadmaps project. The percent of the population with
limited access to healthy foods was defined based upon annual family income (200% of
the federal poverty level or less), and distance from a grocery store (further than 10 miles
in rural areas, or one mile in non-rural areas) (University of Wisconsin Population Health
Institute, 2019). All data obtained as percentages were converted to proportions for analysis.
County-level data were imported in ArcGIS for mapping (ESRI, 2017).

Descriptive analyses
All descriptive analyses were performed in SAS 9.4 (SAS Institute, 2016). Shapiro–Wilk test
was used to assess for normality of distribution of continuous county-level variables. When
continuous variables were not normally distributed, medians and interquartile ranges were
used to summarize the data, otherwise means and standard deviations were used.
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2013 and 2016 comparisons
A one-tailed test of equality of proportions was performed in Stata version 15 (StataCorp,
College Station, TX,USA) to identify significant changes in pre-diabetes prevalence between
2013 and 2016, using the Stata command prtesti. The Simes method was used to adjust for
multiple comparisons. This method was also used to identify differences in county-level
characteristics between the two time periods. County level median household incomes
between 2013 and 2016 were considered significantly different if their 90% confidence
intervals did not overlap.

Cluster investigation and identification
Tango’s flexible spatial scan statistic (FSSS) was implemented in FleXScan (Tango &
Takahashi, 2005) to investigate and identify high-risk spatial clusters of pre-diabetes. The
statistic imposes a large number of overlapping, flexibly shaped scanning windows of
variable sizes over the study area in order to detect both circular and irregularly shaped
clusters, up to a specified maximum size (Tango & Takahashi, 2005). If the scanning
window encloses the centroid of a county, that entire county is included in the window.
The number of cases within this window are compared with the number of cases that
would be expected under the null hypothesis of complete spatial randomness (Tango &
Takahashi, 2005).

In this study, the maximum spatial scanning window size was set at 10 counties,
specifying binomial probability model. Restricted log-likelihood ratio (LLR) and 999
Monte Carlo replications were used for statistical inference. The most likely clusters were
ordered on the basis of the restricted log-likelihood ratios. The primary or most likely
cluster was identified as the cluster with the largest value of the restricted log-likelihood
ratio. The null hypothesis of complete spatial randomness was rejected when the simulated
p-value was ≤0.05. Only secondary clusters with a prevalence ratio (PR) greater or equal
to 1.2 were reported to avoid reporting clusters with very low risk.

Assessment of correlations among predictor variables
To avoid multicollinearity during investigation of predictors of pre-diabetes prevalence,
Spearman’s rank correlation coefficient was used to identify highly correlated potential
predictor variables. Only one of a pair of highly correlated (r ≥ 0.7) potential predictors
of pre-diabetes prevalence was assessed for potential association with the outcome. The
choice of the variable to retain was based on biological and statistical considerations.

Investigation of predictors of geographic distribution of pre-diabetes
Global multivariable regression modeling was performed using SAS 9.4 (SAS Institute,
2016). The multivariable model with county-level age adjusted pre-diabetes prevalence as
outcomewas built in two steps. In the first step, univariable associations were assessed using
a liberal p-value of 0.15. Variables with significant univariable associations were considered
for multivariable modeling in step two. During step two, the multivariable model was fit
to the data using the generalized linear model procedure in SAS, using manual backwards
elimination and a critical p-value of ≤0.05 (SAS Institute, 2016). Non-significant variables
were considered potential confounders if their removal from the model resulted in a
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change of greater than 20% in the estimated regression coefficients of any of the remaining
variables in the model.

Cartographic displays
All geographic information system (GIS) manipulations and cartographic displays were
performed in ArcGIS (ArcGIS Desktop 10.6.1; ESRI, Redlands, CA, USA). Age-adjusted
pre-diabetes prevalence for 2013 and 2016 were displayed in choropleth maps. The critical
intervals used in the choropleth maps of 2013 were determined using Jenk’s optimization
classification scheme. For consistency and to facilitate comparisons, the intervals used to
display the 2013 prevalence data were also used in the choropleth maps for 2016 data.

Significant spatial clusters of high pre-diabetes prevalence were also displayed using
ArcGIS. In addition, statistically significant changes in county-level pre-diabetes prevalence
estimates between 2013 and 2016 weremapped at the county level using ArcGIS. Significant
predictors of pre-diabetes were also displayed in choropleth maps, as were significant
changes in these characteristics between 2013 and 2016.

RESULTS
Descriptive analyses
A total of 36,955 respondents participated in the 2016 Florida BRFSS Survey of whom
584 had missing age data and were excluded from analysis, leaving 36,371 for analysis.
Respondents ranged in age from 18 to 99 years, with a median of 60 and an interquartile
range of 45 to 71 years. Among respondents who reported race/ethnicity, the most
commonly represented group was non-Hispanic white (57.9%), followed by Hispanic
(23.4%), non-Hispanic black (14.1%), and Asian (2.7%). Those who identified as American
Indian or AlaskaNative represented 0.3%of the populationwhile 1.6% identified as ‘‘other’’
race or ethnicity.

The state-wide age-adjusted pre-diabetes prevalence in 2013 was 8.0%. This increased to
10.5% in 2016, but varied from 4.5% (DeSoto County) to 20.2% (CalhounCounty) (Figs. 1,
2A–2B). Overall, more counties had high prevalence proportions of pre-diabetes in 2016
than in 2013. In 2013, counties in the eastern panhandle extending to northern and inland
central Florida tended to have high pre-diabetes prevalence. A larger swath of counties
with high prevalence proportions in 2016 spanned the central to eastern panhandle and
extended south through central Florida. High pre-diabetes prevalence was not limited to
rural counties but also occurred in some large central and large fringe metropolitan areas
such as the Jacksonville region (Duval County) and Palm Beach County (Figs. 1, 2A–2B).

Comparison of 2013 and 2016 prevalence estimates
The state-wide age-adjusted prevalence of pre-diabetes increased significantly (p< 0.0001)
between 2013 and 2016. Significant changes between 2013 and 2016 were identified for
all but six counties (Clay, Hamilton, Hardee, Liberty, Nassau, and Okaloosa) (Figs. 1 and
3A–3B). Of the 61 counties with significant changes in pre-diabetes prevalence between
2013 and 2016, significant increases were observed in 78.7% (48/61), while significant
decreases were observed in 21.3% (13/61) of the counties. Palm Beach County had the
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Figure 2 Age-adjusted county-level pre-diabetes prevalence in Florida, (A) 2013 and (B) 2016.
Full-size DOI: 10.7717/peerj.10443/fig-2

Figure 3 Statistically significant changes in pre-diabetes prevalence in Florida between 2013 and 2016.
(A) Absolute change, (B) relative change.

Full-size DOI: 10.7717/peerj.10443/fig-3

highest relative increase (9.0%, a relative increase of 226.6%), while Hendry County had
the highest relative decrease (7.5%, a relative decrease of 60.7%).

Clusters of pre-diabetes
Six significant high-prevalence pre-diabetes spatial clusters were identified in 2013, and four
were identified in 2016 (Table 2 and Figs. 4A–4B). In 2013, the primary high-prevalence
spatial cluster of pre-diabetes consisted of five mostly metropolitan counties in central
Florida near Orlando (Lake, Orange, Polk, Sumter, and Volusia counties). In 2016,
however, the primary pre-diabetes cluster was located in the southern portion of the state,
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Table 2 Purely spatial significant clusters of pre-diabetes in Florida, 2013 and 2016.

Cluster Population Observed cases Counties included PRa p-value

2013
1 1,803,072 199,681 Lake, Orange, Polk, Sumter, Volusia 1.39 0.001
2 1,042,432 111,467 Alachua, Baker, Bradford, Clay, Columbia, Duval, Gilchrist,

Putnam, Union
1.34 0.001

3 99,858 11,650 Calhoun, Franklin, Gadsden, Jefferson, Liberty, Taylor,
Wakulla

1.46 0.001

4 12,671 1,617 Dixie 1.60 0.001
5 18,128 2,161 Washington 1.49 0.001
6 13,948 1,523 Hardee 1.37 0.001

2016
1 2,260,022 279700 Broward, Charlotte, Collier, Glades, Palm Beach 1.18 0.001
2 1,014,571 136768 Clay, Duval, Marion, Putnam 1.28 0.001
3 322,559 43629 Calhoun, Gadsden, Gulf, Jefferson, Leon, Madison, Taylor,

Wakulla
1.29 0.001

4 112,503 15421 Baker, Columbia, Dixie, Gilchrist, Union 1.30 0.001

Notes.
aPrevalence ratio.

Figure 4 High-risk purely spatial clusters of pre-diabetes in Florida, (A) 2013 and (B) 2016.
Full-size DOI: 10.7717/peerj.10443/fig-4

and included five counties, both rural and metropolitan (Broward, Charlotte, Collier,
Glades, and Palm Beach). The prevalence of pre-diabetes in this cluster was 18% higher
than that of the state overall (Prevalence Ratio [PR]= 1.18, p= 0.001). In contrast, in 2013,
some of these southern Florida counties were among those with the lowest prevalence of
pre-diabetes in the state. Each of the five counties within the cluster exhibited an increase in
pre-diabetes prevalence between 2013 and 2016. Three secondary clusters with prevalence
ratios ≥1.2 were identified in 2016, spanning from north-central Florida to the more rural
eastern and central panhandle.
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Table 3 Summary statistics of potential predictors of county-level pre-diabetes prevalence in Florida, 2016.

Predictor variable Mean SDa Median Min. (county) Max. (county) IQRb

Proportion that walk or bike to work* 0.021 0.015 0.019 0.005 (Washington) 0.111 (Monroe) 0.013
Proportion obese 0.313 0.065 0.306 0.143 (Martin) 0.457 (Union) 0.081
Primary care physicians per 1,000 persons* 0.548 0.335 0.506 0 (Liberty) 2.076 (Alachua) 0.429
Proportion with less than high-school education* 0.135 0.062 0.124 0.044 (St. Johns) 0.326 (Hendry) 0.087
Proportion with arthritis 0.282 0.062 0.290 0.152 (Wakulla) 0.463 (Glades) 0.075
Proportion non-Hispanic black* 0.143 0.093 0.117 0.028 (Citrus) 0.536 (Gadsden) 0.104
Proportion Hispanic* 0.122 0.120 0.078 0.017 (Holmes) 0.673 (Miami-Dade) 0.109
Median household income (in $10,000)* 4.521 0.838 4.422 2.981 (Madison) 6.952 (St. Johns) 1.369
Proportion with a commute >60 min.* 0.083 0.035 0.078 0.020 (Hamilton) 0.183 (Bradford) 0.049
Proportion physically inactive* 0.326 0.070 0.311 0.211 (Martin) 0.572 (Dixie) 0.102
Proportion without health insurance coverage* 0.169 0.048 0.159 0.080 (Sumter) 0.346 (DeSoto) 0.054
Proportion with limited access to healthy foods* 0.093 0.057 0.090 0 (Gilchrist, Wakulla) 0.310 (Glades) 0.060
Proportion below the federal poverty line* 0.111 0.032 0.108 0.043 (Sumter) 0.204 (DeSoto) 0.036
Proportion reporting a disability 0.236 0.046 0.236 0.127 (Miami-Dade) 0.342 (Levy) 0.064
Proportion unemployed 0.092 0.021 0.087 0.049 (Monroe) 0.150 (Lafayette) 0.026
Proportion male* 0.507 0.045 0.488 0.423 (Okeechobee) 0.607 (Franklin) 0.055
NCHSc urban-rural classification* 3.746 1.627 3 1 6 2

Notes.
aStandard deviation.
bInterquartile range.
cNational Center for Health Statistics.
*Non-normally distributed variables.

Summary statistics of potential predictors of pre-diabetes
Summary statistics of the investigated potential predictor variables are shown in Table 3.
These variables exhibited geographic variation across the state. For instance, counties
with low median household income levels were concentrated in three regions: the eastern
panhandle, the most rural portion of the state, the central panhandle just west of the
Tallahassee region, and inland south-central Florida. Counties with the lowest numbers of
primary care physicians per capita overlapped with many of the counties with low median
household income levels, and tended to be concentrated in the rural eastern panhandle.
Several counties with relatively high proportions of residents without health insurance
coverage were also located across the panhandle, as well as inland central Florida and the
southernmost portion of the state.

Overall, 14.1% of the state population was non-Hispanic black, but this also varied
across counties. The highest proportions of non-Hispanic black residents tended to be in
counties in the central to eastern panhandle along the state’s northern border with Georgia,
as well as in counties with urban centers such as the Miami area, Jacksonville, and Tampa.

There was also geographic variation in the unemployment rate, with relatively high
levels of unemployment in rural areas such as the inland-south central region as well
as the northeastern and north-central panhandle. Higher proportions of the population
with limited access to healthy foods also tended to be located in the inland south-central
portion of the state, as well as along the central Atlantic coast. Counties with relatively
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Table 4 Univariable associations between county-level characteristics and age-adjusted pre-diabetes
prevalence in Florida, 2016.

Variable β (95% CIa) p-value

Proportion that walk or bike to work −0.5446 (−1.036,−0.535) 0.030
Proportion obese 0.136 (0.023, 0.250) 0.019
Proportion overweight or obese 0.080 (−0.038, 0.198) 0.185
Primary care physicians per 1000 persons −0.0086 (−0.031, 0.014) 0.460
Prop. with less than high-school education 0.0059 (−0.118, 0.129) 0.925
Proportion with arthritis 0.0989 (−0.023, 0.221) 0.111
Proportion non-Hispanic black 0.1132 (0.035, 0.191) 0.004
Proportion Hispanic −0.0628 (−0.125,−0.001) 0.048
Median household income (in $10,000) −0.0091 (−0.018,−0.0003) 0.044
Proportion with a commute >60 min. −0.0666 (−0.284, 0.151) 0.547
Proportion physically inactive 0.0678 (−0.040, 0.176) 0.218
Proportion without health insurance coverage −0.1674 (−0.321,−0.014) 0.033
Proportion with limited access to healthy foods 0.0406 (−0.093, 0.174) 0.550
Proportion under the federal poverty line −0.0298 (−0.266, 0.207) 0.805
Proportion reporting a disability 0.0371 (−0.128, 0.202) 0.660
Proportion unemployed 0.1449 (−0.226, 0.516) 0.444
Proportion male −0.0101 (−0.180, 0.160) 0.907
NCHSb urban-rural classification 0.0001(−0.005, 0.005) 0.953

Notes.
aConfidence interval.
bNational Center for Health Statistics.

high proportions of the population reporting physical inactivity tended to be located in
the rural eastern panhandle and the central panhandle counties just west of the Tallahassee
region, as well as in the inland south-central region. Central Florida counties surrounding
the Orlando area tended to have high proportions of the population with arthritis, as did
several of the rural counties in south-central Florida, while low prevalence proportions of
arthritis were observed in Miami-Dade County, the Tallahassee area, and the Jacksonville
area.

Predictors of pre-diabetes
Results of the univariable associations of county-level characteristics with age-adjusted
county-level pre-diabetes prevalence are displayed in Table 4 while results of the final
multivariable model are shown in Table 5, and the geographic distributions of significant
explanatory variables are displayed in Figs. 5A–5C. There were significant negative
associations between county pre-diabetes prevalence and median household income
(p= 0.0113) and proportion of the population without health insurance coverage
(p= 0.0007), but a significant positive association with proportion of non-Hispanic
black population (p= 0.0215).
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Table 5 Final multivariable regressionmodel results showing statistically significant predictors of pre-diabetes prevalence at the county level
in Florida, 2016.

Predictor variable β (95% CIa) SEb χ2 p-value

Median household income (in $10,000) −0.012 (−0.021,−0.003) 0.005 6.41 0.011
Proportion without health insurance coverage −0.257 (−0.406,−0.108) 0.030 39.4 0.001
Proportion non-Hispanic black 0.088 (0.013, 0.164) 0.038 5.29 0.022

Notes.
aConfidence interval.
bStandard error.

Figure 5 Distribution of significant predictors of county-level pre-diabetes prevalence in Florida,
2016. (A) Median household income, (B) percent without health insurance coverage, (C) percent non-
Hispanic black population.

Full-size DOI: 10.7717/peerj.10443/fig-5

Figure 6 Statistically significant changes in predictors of county-level pre-diabetes prevalence in
Florida between 2013 and 2016. (A) Median household income, (B) percent without health insurance
coverage, (C) percent non-Hispanic black population

Full-size DOI: 10.7717/peerj.10443/fig-6

Changes in county-level characteristics between 2013 and 2016
Relative changes in significant county-level predictor variables between 2013 and 2016 are
displayed in Figs. 6A–6C. Significant increases in median household income were observed
in 19 counties. None of the counties exhibited statistically significant decreases in median
household income. Counties that did not have significant increases in median household
income tended to be in more rural areas, frequently overlapping with counties that had
high pre-diabetes prevalence as well as increases in prevalence of the condition between
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2013 and 2016. Of the 61 counties with significant changes in proportion of the population
with health insurance coverage, the majority (90.2%) were decreases in the proportion of
the population with coverage.

Significant changes in the proportion of non-Hispanic black population between
2013 and 2016 occurred in 36 (53.7%) counties, with many of these counties exhibiting a
relative change of less than 5%. The proportion of non-Hispanic black population increased
in most of the counties surrounding Orlando, but otherwise there were no clear geographic
patterns or obvious overlap with changes in pre-diabetes prevalence.

DISCUSSION
This study investigated county-level geographic disparities of pre-diabetes prevalence in
Florida, identified predictors of the observed disparities as well as changes in disease burden
between 2013 and 2016. The findings are useful for guiding the allocation of resources for
the continued implementation of targeted prevention and control programs.

Spatial patterns and clusters of pre-diabetes prevalence
The results indicated that geographic disparities in pre-diabetes prevalence continue to
exist in Florida. While previous studies have investigated the geographic distribution
of this condition, few have used rigorous spatial statistical/epidemiological techniques to
investigate and identify these disparities. To best inform needs-based health planning, there
is need for continuousmonitoring and rigorous assessments to characterize the distribution
of pre-diabetes and identify predictors of high-risk areas so as to target intervention
programs. The existence of spatial disparities of pre-diabetes prevalence observed in this
study is consistent with findings from the Reasons for Geographic and Racial Differences in
Stroke (REGARDS) study, which reported that the odds of pre-diabetes among adults≥45
years old living in the ‘‘stroke belt’’ were higher than for those living outside this region
(Barker et al., 2011; Lee et al., 2014).

Spatial clustering of county-level pre-diabetes prevalence has previously been described.
However, no rigorous epidemiological approaches have been consistently used in these
investigations. The current study mitigates this problem by using Tango’s flexible spatial
scan statistic (FSSS) which is a rigorous approach that is robust and does not have the
problem of multiple comparisons that other methods such as Moran’s Local Indicators of
Spatial Association (LISA) do have. Moreover, application of this approach can be scaled
to other states to provide useful information to guide evidence-based health planning.
Additionally, Tango’s FSSS identifies clusters without the need for pre-specification of
the suspected cluster location or size and thus eliminates pre-selection bias. An additional
advantage of using Tango’s FSSS is the flexibly shaped scanning window, which has high
power for the detection of clusters that are not circular in shape (Tango & Takahashi,
2005).

It is worth pointing out that other studies have used FSSS to identify spatial clusters
of other health outcomes such as measles (Tang et al., 2017), cancer (Katayama et
al., 2014; Amin, Nelson & McDougall, 2018), suicide mortality (Yamaoka et al., 2020),
and cardiovascular diseases (Roberson et al., 2019; Odoi et al., 2019). Recent research
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in Florida has demonstrated that FSSS is a useful technique for the identification of
geographic disparities in stroke prevalence (Roberson et al., 2019) and hospitalizations due
to myocardial infarction (Odoi et al., 2019). Suffice it to say that populations living within
the identified pre-diabetes clusters identified in the current study have disproportionately
high risks of the condition and, therefore, control efforts should focus on these areas in
order to reduce the observed disparities.

Predictors of pre-diabetes
Pre-diabetes awareness reportedly varies with factors such as age, level of educational
attainment, health insurance coverage, and food security (Li et al., 2013; Ding et al., 2014).
Data from the National Health and Nutrition Examination Survey (NHANES) indicated
that while the condition is common among American adults, with approximately one-third
estimated to have pre-diabetes, only 11% were aware that they had the condition (Li et
al., 2013). Detection of those at high risk is important so that interventions aimed at
preventing the progression of pre-diabetes to diabetes may be pursued. The fact that the
proportion of the population without health insurance coverage was negatively associated
with pre-diabetes prevalence may, to some extent, suggests that these prevalence estimates
might be proxymeasures of access to healthcare services. Indeed, several counties to thewest
of the Tallahassee region in the panhandle that had relatively high rates of un-insurance,
were part of a high-prevalence diabetes cluster, but were not part of a pre-diabetes cluster.

The significant positive associations observed between county pre-diabetes prevalence
and the proportion of the population that was non-Hispanic black suggests that the
geographic disparities in the prevalence of the conditions in Florida are at least partly
attributable to racial disparities. Significantly higher odds of pre-diabetes have been
reported among black participants in the REGARDS study in comparison to the white
participants, a finding which changed only minimally after adjusting for region (Lee et al.,
2014).

Median household income was a significant predictor of county pre-diabetes prevalence.
Economic stability is a key social determinant of health (Office of Disease Prevention
and Health Promotion, 2019). It is known that income affects access to physical activity
opportunities as well as healthy foods which have been shown to impact development
of pre-diabetes and potential progression to diabetes. Thus, healthy eating habits are an
important aspect of pre-diabetes prevention and management and may be influenced by
purchasing power and accessibility of nutritious foods. Therefore, county and local food
environments may represent potential targets for policies and interventions, in addition to
individual-level programs.

Changes in pre-diabetes prevalence between 2013 and 2016
There was an increase in the statewide prevalence of pre-diabetes as well as among the
majority of counties between 2013 and 2016. However, since prevalence estimates were
based upon self-reports, it is difficult to determine the extent to which the observed
increases are attributable to true increases within the population rather than changes in
diagnostic and reporting practices. However, the overlap in the spatial patterns of improved
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health insurance coverage and increased pre-diabetes prevalence may suggest that these
increases might, in part, be due to increased awareness and reporting of the condition.
Improved diagnosis and reporting may also account for some of the observed increases in
pre-diabetes prevalence.

Temporal changes were also observed in some county-level characteristics that may
have contributed to the changes in pre-diabetes prevalence during the study period. The
findings suggest that areas with indicators of economic stagnation were more likely to
have increases in pre-diabetes prevalence during the study period. For example, the rural
counties in the panhandle and south-central Florida tended not to have significant changes
inmedian household income. The observed temporal changes warrant ongoingmonitoring
of the conditions within Florida. Additionally, county characteristics exhibited changes
that varied from county to county across the state, further emphasizing the importance
of evidence-based planning that recognizes local differences in population characteristics,
disease burden and health needs.

Strengths and weaknesses
This study has used rigorous spatial epidemiological tools to investigate pre-diabetes
disparities and predictors in Florida. Continued use of such approaches is crucial for
guiding evidence-based health planning and service provision. Understanding the local
and regional changes in health conditions is important for guiding the targeting of control
efforts to improve help outcomes for all.

Due to the nature of BRFSS data, pre-diabetes status of respondents was based upon
self-reports and therefore, the exact diagnostic criteria used were not available. The use of
differing definitions of the condition or methodological changes may impact prevalence
estimates at the population level (Selvin et al., 2014), and may limit the ability to make
accurate temporal comparisons. Limited awareness of pre-diabetes among respondents
may have resulted in underestimates of the true burden of the conditions. Other studies
have reported that awareness of pre-diabetes varies based on demographic characteristics
(Li et al., 2013; Selvin et al., 2014). Presumably, awareness of pre-diabetes status may vary
between counties, but the extent to which this occurs is unknown.

CONCLUSIONS
This study confirmed the persistence of geographic disparities in the prevalence of
diagnosed pre-diabetes at the county level in Florida. It demonstrated the usefulness
of Tango’s flexible scan statistic for identifying high prevalence clusters of the condition.
The study also showed an overall, state-wide increase in pre-diabetes prevalence in Florida.
Counties with stagnant median income levels tended to have temporal increases in
pre-diabetes prevalence, highlighting the importance of place-based factors in chronic
disease risk management. Continued monitoring of pre-diabetes distribution is warranted,
with careful attention to factors such as healthcare access and patient awareness of the
condition, which may affect reporting. The identification of high-prevalence clusters of
pre-diabetes with flexible scan statistics is useful for identifying populations at greatest
risk, and informing the allocation of resources within the state. Ongoing monitoring and

Lord et al. (2021), PeerJ, DOI 10.7717/peerj.10443 15/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.10443


epidemiologic analyses are important for identifying trends at county and state levels and
for identifying factors associated with pre-diabetes that may represent potential targets for
health planning and interventions.
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