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Abstract

White matter pathways between neurons facilitate neuronal coactivation patterns in

the brain. Insight into how these structural and functional connections underlie com-

plex cognitive functions provides an important foundation with which to delineate

disease-related changes in cognitive functioning. Here, we integrate neuroimaging,

connectomics, and machine learning approaches to explore how functional and struc-

tural brain connectivity relate to cognition. Specifically, we evaluate the extent to

which functional and structural connectivity predict individual crystallised and fluid

cognitive abilities in 415 unrelated healthy young adults (202 females) from the

Human Connectome Project. We report three main findings. First, we demonstrate

functional connectivity is more predictive of cognitive scores than structural connec-

tivity, and, furthermore, integrating the two modalities does not increase explained

variance. Second, we show the quality of cognitive prediction from connectome mea-

sures is influenced by the choice of grey matter parcellation, and, possibly, how that

parcellation is derived. Third, we find that distinct functional and structural connec-

tions predict crystallised and fluid abilities. Taken together, our results suggest that

functional and structural connectivity have unique relationships with crystallised and

fluid cognition and, furthermore, studying both modalities provides a more compre-

hensive insight into the neural correlates of cognition.
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1 | INTRODUCTION

Tens of billions of neurons interconnect in the human brain. Direct

and indirect structural white matter connections between these neu-

rons facilitate the flow of functional activation between distinct brain

regions. Together, these functional and structural connections give

rise to human behaviour and cognition. Insight into multimodal neural

correlates of cognitive abilities in the healthy brain provides an

important foundation with which to delineate the mechanisms under-

lying age-, injury-, and disease-related changes in cognitive function-

ing. Furthermore, a thorough understanding of specific functional and

structural connections that are associated with cognition can guide

the investigation of causality, can inform interventions to maintain

and optimise cognitive health for specific cognitive abilities at distinct

stages of the ageing/injury process, and can guide the development of

targeted neuromodulatory treatments for cognitive dysfunction.

Received: 4 December 2020 Revised: 3 March 2021 Accepted: 10 March 2021

DOI: 10.1002/hbm.25420

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

3102 Hum Brain Mapp. 2021;42:3102–3118.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0002-8253-6962
https://orcid.org/0000-0001-7139-6661
https://orcid.org/0000-0003-4307-5742
https://orcid.org/0000-0003-0370-4284
https://orcid.org/0000-0002-5050-8342
mailto:elvisha@gmail.com
mailto:amk2012@med.cornell.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm


Functional connectivity (FC) represents temporal dependency pat-

terns between regional blood-oxygenation-level dependent signals as

measured via functional magnetic resonance imaging (fMRI), and struc-

tural connectivity (SC) represents the integrity of inter-regional white

matter pathways estimated from diffusion MRI (dMRI). FC and SC

have individually been linked to cognitive functioning and used to pre-

dict cognitive measures in healthy individuals (Bassett et al., 2011; He

et al., 2020; Kelly, Uddin, Biswal, Castellanos, & Milham, 2008; Klein

et al., 2016; Kong et al., 2018; Li et al., 2019; Liégeois et al., 2019;

Matejko, Price, Mazzocco, & Ansari, 2013; Menon & Uddin, 2010;

Moeller, Willmes, & Klein, 2015; Pamplona, Santos Neto, Rosset, Rog-

ers, & Salmon, 2015; Seeley et al., 2007; M. Song et al., 2009; M. Song

et al., 2008; Uddin, Supekar, Ryali, & Menon, 2011; Willmes, Moeller, &

Klein, 2014; Zimmermann, Griffiths, & McIntosh, 2018). Although neu-

ral function and structure are inexorably linked, most studies analyse

their contribution to behaviour independently.

Most studies to date have focused on using resting-state FC to

study relationships between connectivity and cognition. FC is associ-

ated with performance variability in executive control (Seeley

et al., 2007) and intellectual functioning (van den Heuvel, Stam,

Kahn, & Hulshoff Pol, 2009), and can successfully predict a range of

cognitive measures: Kong et al. (2018) used spatial topography of cor-

tical functional networks to predict behaviour; Li et al. (2019) found

global signal regressed resting-state FC improves behavioural predic-

tion; and He et al. (2020) showed that machine learning and deep

learning methods are equally effective in predicting behavioural, cog-

nitive, and demographic measures from resting-state FC.

While less studied, the mapping between SC and cognition has

also been examined. Morphometric similarity networks capturing neu-

roanatomical properties from structural and diffusion images

(e.g., fractional anisotropy, grey matter volume, surface area, cortical

thickness, intrinsic curvature, and folding index) can explain up to 40%

of the variability in general intellectual function using a partial least

squares approach (Seidlitz et al., 2018), and SC is associated with cog-

nitive abilities (Zimmermann et al., 2018).

In the most similar study to date, Zimmermann et al. (2018) inves-

tigated connectome-cognition relationships in 609 genetically

unrelated subjects from the Human Connectome Project (van Essen

et al., 2013). They generated three main components from 11 cogni-

tive measures, including working memory, cognitive flexibility,

processing speed, fluid intelligence, episodic memory, and attention/

inhibitory control, and used partial least squares analyses to identify

four latent variables that describe the connectome-cognition relation-

ships: two captured FC-cognition associations and two captured SC-

cognition associations. They found FC and SC uniquely map onto cog-

nitive functions: a large set of corticocortical and corticosubcortical

functional connections, and a limited set of short-range structural

connections distinctively map onto cognitive function. While this

study addressed the relationship between both connectivity modali-

ties and cognition, it did not compare whether one modality explained

more variance than the other or integrate the two modalities into a

single predictive model.

To this end, Amico and Goñi (2018) combined FC and SC into a

single “hybrid” connectome that allowed extraction of patterns from

both task-based and task-free fMRI data. They showed this “hybrid”
connectome's fingerprint captures individual differences, that is, they

were individually identifiable; however, its relationship with cognitive

function has not yet been explored. Here, we sought to determine if

FC, SC, or integration of the two (Amico & Goñi, 2018) into hybrid

connectivity (HC) best predicts cognition in order to compare

connectome-cognition mapping across modalities. Given that func-

tional and structural connections, and the relationship between them,

can be altered by ageing, injury, and illness (Jaywant, DelPonte,

Kanellopoulos, O'Dell, & Gunning, 2020; Pievani, Filippini, van den

Heuvel, Cappa, & Frisoni, 2014; Ramanoël et al., 2019; J. Song

et al., 2014), insight into the shared and distinct functional and struc-

tural connections that underlie individual differences in cognitive abili-

ties, and the strength of those relationships, will advance our

understanding of the baseline neuroanatomical and neurophysiologi-

cal bases of cognition. Quantifying the importance of distinct func-

tional and structural connections as they relate to cognition can pave

the way for the development of personalised tools to predict changes

in cognitive abilities as a result of age-, injury-, or illness- related

connectomic alterations along with targeted and efficacious interven-

tions to optimise healthy cognitive function and to prevent or mini-

mise cognitive dysfunction.

Here, we study the extent to which FC, SC, and HC can predict

individual crystallised and fluid cognitive abilities in 415 healthy young

adults from the Human Connectome Project (van Essen et al., 2013)

dataset. First, we evaluate whether FC or SC can better predict indi-

vidual cognitive abilities, and whether integrating connectivity modali-

ties can improve predictions. Second, we quantify the unique

functional and structural connections that predict crystallised and fluid

abilities.

2 | METHODS

Our experimental workflow is shown in Figure 1 (van Essen

et al., 2013). Codes used to generate the results presented here are

available on GitHub (https://github.com/elvisha/CognitivePredictions).

2.1 | Dataset

We used publicly available high resolution, preprocessed MRI data

from the Human Connectome Project – Young Adult S1200 (van

Essen et al., 2013) in this study. HCP MRI data were acquired on a

Siemens Skyra 3 T scanner at Washington University in St. Louis.

HCP scanning included T1-weighted and T2-weighted anatomical

images (0.7 mm isotropic), functional MRI (2.0 mm isotropic,

TR/TE = 720/33.1 ms, 8x multiband acceleration), and diffusion

MRI (1.25 mm isotropic, TR/TE = 5520/89.5 ms, 3x multiband

acceleration, b = 1,000; 2,000; 3,000 with 90 directions/shell).
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F IGURE 1 Experimental workflow. First, we generated functional, structural, and hybrid connectivity (a–c). We derived functional
connectivity using Pearson correlation of regional global signal regressed blood-oxygen-level-dependent (BOLD) functional magnetic resonance
imaging (MRI) time series (a) and Fisher's z-transformed the upper triangular part of the matrix. We derived structural connectivity using
probabilistic tractography from diffusion weighted MRI (b). We concatenated the upper triangular functional and lower triangular structural
connectivity to generate hybrid connectivity (c). Second, we compiled cognitive scores for all subjects (d). The National Institutes of Health (NIH)
Toolbox Cognition Battery assesses five cognitive domains using seven tests. The crystallised cognition composite (blue) reflects language

(vocabulary, reading decoding). The fluid cognition composite (green) reflects executive function (cognitive flexibility, inhibitory control, and
attention), episodic memory, working memory, and processing speed. The total cognition composite (dotted) combines the crystallised and fluid
composite scores. Third, we predicted each cognitive score from each of the connectivity matrices (e) using linear ridge regression (f). We
randomly shuffled and split the data into train (80%) and test (20%) subsets. For each training subset, we performed five shuffled iterations of
nested cross validation with threefold inner and outer loops. The model hyperparameter was optimised in the inner loop and validated in the
outer loop. The median optimised hyperparameter from five iterations of nested cross validation was used to train the final model on the entire
training set and evaluated on the test hold-out set. This was repeated for 100 unique train/test splits
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Functional and diffusion MRI were collected with both left–right

and right–left phase encoding. We examined resting-state func-

tional MRI (rfMRI) time series and dMRI from 415 unrelated

healthy adults (213 males; ages 22–37). The subset of the HCP

dataset used in this analysis were those subjects that had four

complete rfMRI runs, a dMRI scan, and crystallised and fluid cogni-

tive scores.

2.2 | Parcellation

We performed all analyses using two separate parcellations. We

parcellated the brain using (a) an 86 region atlas derived from

FreeSurfer (FS 86), and (b) an in-house 439 region atlas (CoCo 439).

FC and SC were extracted using both of these atlases to allow

comparisons.

2.2.1 | FS 86

As part of the HCP preprocessing workflow (M. F. Glasser

et al., 2013), FreeSurfer's recon-all pipeline (Dale, Fischl, &

Sereno, 1999; Fischl et al., 2002; Fischl et al., 2008; Fischl, Liu, &

Dale, 2001; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, &

Dale, 1999; Segonne, Grimson, & Fischl, 2005) was optimised for the

high-resolution HCP anatomical data. The 68 region Desikan-Killiany

gyral atlas (aparc.annot, 34 cortical regions per hemisphere) was com-

bined with the 16 bilateral subcortical structures (aseg.mgz, excluding

brainstem) and 2 cerebellar structures to produce an 86 region whole

brain anatomically defined parcellation for each subject (Desikan

et al., 2006; Fischl et al., 2002).

2.2.2 | CoCo 439

This parcellation was developed in-house by combining parts of sev-

eral atlases. The parcellation includes 358 (of 360) functionally

derived cortical regions from HCP multimodal parcellation (Glasser

et al., 2016) (two regions were excluded as they were identified as

parts of the hippocampus and included in separate subcortical ROIs);

12 anatomically defined subcortical regions derived from FreeSurfer's

aseg.mgz, adjusted by FSL's FIRST tool (Patenaude, Smith, Kennedy, &

Jenkinson, 2011); 12 anatomically defined subcortical nuclei from

AAL3v1 (Rolls, Huang, Lin, Feng, & Joliot, 2020); 30 anatomically

defined subcortical nuclei from FreeSurfer 7 (Iglesias et al., 2018)

(50 nuclei were merged down to 30 to remove the smallest nuclei, as

with AAL3v1); and 27 anatomically defined cerebellar regions from

the SUIT atlas (Diedrichsen, Balsters, Flavell, Cussans, &

Ramnani, 2009). Similar to FS 86, this 439-region atlas is a subject-

specific parcellation. Additional details and corresponding files for this

parcellation are available on GitHub (https://github.com/kjamison/

nemo#parcellations).

2.3 | FC extraction

Each subject underwent four gradient-echo EPI rfMRI runs of ~15 min

each over two sessions. The data consisted of 1,200 volumes per

rfMRI for a total of 4,800 volumes for each subject over the four runs.

The minimal preprocessing pipeline performed by the HCP consor-

tium included motion and distortion correction, registration to subject

anatomy and standard MNI space, and automated removal of noise

artefacts by independent components analysis (M. F. Glasser

et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We

regressed the global signal and its temporal derivative from each

rfMRI time series and concatenated the four scans. We then com-

puted the zero lag Pearson correlation to derive the FC from the

concatenated time series, which we then Fisher's z-transformed. We

used the vectorised upper triangular of this FC to predict cognition.

2.4 | SC extraction

The HCP minimally preprocessed diffusion data have been processed

to correct for motion, EPI and eddy-current distortion, and registered

to subject T1 anatomy (M. F. Glasser et al., 2013). We then used

MRtrix3 to estimate a voxel-wise multi-shell, multi-tissue constrained

spherical deconvolution model and then compute whole brain

tractography for each HCP subject (Jeurissen, Tournier, Dhollander,

Connelly, & Sijbers, 2014). We computed separate whole-brain

tractograms using both probabilistic (iFOD2 (Tournier, Calamante, &

Connelly, 2010) with anatomically constrained tractography (Smith,

Tournier, Calamante, & Connelly, 2012)) and deterministic

(SD_STREAM (Tournier, Calamante, & Connelly, 2012)) tractography

algorithms. Each method produced 5 million streamlines per subject,

using dynamic seeding, and computed streamline weights to reduce

known biases in tractography algorithms and better match the whole

brain weighted tractogram to diffusion properties of the observed

data (SIFT2, (Smith, Tournier, Calamante, & Connelly, 2015)). We

parcellated the tractograms to produce ROI-volume normalised

pairwise SC matrices, where each pairwise connection is the sum of

the SIFT2 weights of streamlines connecting those regions, divided by

the sum of the grey matter volume of those regions. We generated

two SC matrices for each subject: one using deterministic

tractography and another using probabilistic tractography. We used

the vectorised lower triangular portion of the SC matrices to predict

cognition. To quantify the effect of tractography algorithm type on

the accuracy of cognitive prediction, we evaluated the difference in

model performance metrics for all three cognitive scores using SC

derived from deterministic versus probabilistic tractography for the FS

86 parcellation. Specifically, we performed two-tailed t tests for each

cognitive metric and corrected for multiple comparisons using

Bonferroni correction. SC derived from probabilistic tractography sig-

nificantly outperformed SC derived from deterministic tractography in

the prediction of crystallised, fluid, and total cognitive abilities

(Figure S1), see Supplementary Materials for a detailed discussion of
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these results. All results presented in the main paper use SC derived

from probabilistic tractography.

2.5 | Hybrid connectome

We concatenated the upper triangular of the FC and the lower trian-

gular of the SC matrices to generate HC (Amico & Goñi, 2018). We

used the vectorised HC to predict cognition.

2.6 | Cognition

The NIH Toolbox Cognition Battery is an extensively validated battery

of neuropsychological tasks (Carlozzi et al., 2017; Gershon

et al., 2013; Heaton et al., 2014; Mungas et al., 2014; Tulsky

et al., 2017; Weintraub et al., 2013; Weintraub et al., 2014; Zelazo

et al., 2014) that assesses five cognitive domains: language, executive

function, episodic memory, processing speed, and working memory

through seven individual test instruments (Heaton et al., 2014). The

specific tasks include Dimensional Change Card Sort Test (executive

function – cognitive flexibility), Flanker Inhibitory Control and Atten-

tion Test (executive function – inhibitory control and attention), Pic-

ture Sequence Memory Test (episodic memory), Picture Vocabulary

Test (language – vocabulary), Oral Reading Recognition Test (language

– reading decoding), List Sorting Working Memory Test (working

memory), and Pattern Comparison Processing Speed Test (processing

speed) (Heaton et al., 2014). Three composite scores were derived

from participants' scores on the NIH Toolbox Cognitive Battery tasks:

crystallised cognition composite, fluid cognition composite, and total

cognition composite (Heaton et al., 2014). The crystallised cognition

composite comprises the picture vocabulary and oral reading recogni-

tion tests and assesses language and verbal skills. The fluid cognition

composite comprises scores on the dimensional change card sort,

flanker inhibitory control and attention, picture sequence memory, list

sorting working memory, and pattern comparison processing speed

tests. It is a composite that broadly assesses processing speed, mem-

ory, and executive functioning. The total cognition composite com-

bines the crystallised and fluid cognition composites. We used the

crystallised, fluid, and total cognition composites in this study, rather

than the individual scores from the tasks, because they are likely to

have a higher signal-to-noise ratio. Composite scores also tend to be

more reliable/stable and are less susceptible to variability in individual

tasks (Heaton et al., 2014). Finally, by using the composite scores, we

greatly reduce the number of models that need to be trained, thus

reducing the number of multiple comparisons.

2.7 | Prediction of cognitive performance

We used three distinct inputs (FC, SC, and HC) to predict three dis-

tinct outputs (crystallised, fluid, and total cognition): a separate linear

ridge regression model was trained for each input/output

combination. For each model, we randomly shuffled and split the data

into 100 distinct training (80%) and testing (20%) splits. We fit a linear

ridge regression model on Scikit-learn (Pedregosa et al., 2011) using

the training subset and tuned the regularisation parameter with five

iterations of nested cross validation with threefold inner and outer

loops. We optimised the regularisation parameter in the inner loop

and validated it in the outer loop. We took the median optimised

hyperparameters from the five iterations to generate a single final

model. We trained this model on the entire training set, extracted fea-

ture weights, and evaluated the model's explained variance and pre-

diction accuracy on the hold-out test set. We quantify prediction

accuracy as the Pearson correlation between the true and predicted

values (Li et al., 2019). A shared set of 100 distinct, random train/test

splits were used to generate a distribution of performance metrics for

each predictive model.

2.8 | Model significance and comparisons

For each predictive model, we generated a corresponding null distri-

bution for assessing model significance in the following way. We per-

muted the predicted variables (cognitive score) 25,000 times and then

randomly split the data into train and test sets. For each of these

25,000 permutations, we trained and tested the model on the per-

muted data to obtain a null distribution of model performance.

We assessed whether the original model's performance was sig-

nificantly non-zero by comparing the prediction accuracy from each

of the original model's 100 train/test splits to the median prediction

accuracy from the null distribution. Specifically, the p-value for the

model's significance is the proportion of 100 original models that had

prediction accuracies less than or equal to the median performance of

the null model. We then corrected the p-values for multiple compari-

sons over all models using the Benjamini–Hochberg false discovery

rate (q = 0.05) procedure (Benjamini & Hochberg, 1995). We used an

exact test of differences to evaluate prediction performance differ-

ences across the models (MacKinnon, 2009).

2.9 | Feature importance

We averaged feature weights obtained over the 100 linear ridge regres-

sion models to get a mean feature weight for each model. We then

reconstructed activation patterns from mean feature weights to increase

their interpretability as described in Haufe et al. (2014). Briefly, for each

iteration of a model, we used the feature weights, W, the covariance of

the connectivity for the training set, Σx, and the covariance of the output

variable (cognitive score), Σy, for the training set to extract the activation

patterns, A, as follows: A=ΣxWΣ−1
y . We then averaged the activation

patterns over the 100 shuffled iterations of each model to get the

mean feature importance from each model. We summarised each

region's importance in the prediction models by taking the sum of

their positive and negative pairwise regional feature importances sep-

arately. In addition, pairwise regional feature importance matrices
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were mapped to a network level by averaging the positive and nega-

tive pairwise regional feature importances separately across function-

ally defined networks. Each cortical region from the two parcellations

was assigned to one of seven networks from the Yeo seven-network

parcellation (Yeo et al., 2011). Subcortical regions were assigned to a

subcortical network, and cerebellar regions to a cerebellar network.

We evaluated the Pearson correlation between feature importances,

at a regional and a network level, obtained from FC and SC models to

predict crystallised, fluid, and total cognitive scores. Regional assign-

ments from the FS 86 and CoCo 439 atlas to the Yeo network are

shown in the Supplemental Materials (Figures S2 and S3).

3 | RESULTS

3.1 | Prediction of cognitive performance

Explained variance from models using FC, SC, and HC predicting

crystallised, fluid, and total cognition are shown in Table 1 and

Figure 2. Prediction accuracy for all models is shown in Figure S4. All

models predicting total cognition performed significantly better than

chance (p < .05 after corrections for multiple comparisons). Models

using FC and HC to predict crystallised cognition performed signifi-

cantly better than chance for both parcellations, but the model using

SC performed better than chance only for the FS 86 parcellation.

Models using FC and HC to predict fluid cognition, but not SC, per-

formed significantly better than chance for both parcellations. We

evaluated differences in model performance (as measured by

explained variance) using exact tests for differences between all

18 models, as shown in Figure 3.

3.2 | Feature importance

Correlations between pairwise regional and network-level feature

importance maps for the prediction of cognitive metrics using FC and

SC were assessed for both parcellations (Figure 4). Within the FC and

SC modalities, pairwise regional feature importances are strongly

TABLE 1 Model performance results. Model performance using FC, SC, and HC to predict crystallised, fluid, and total cognition. Median
explained variance (%) (interquartile range) are shown for the FS 86 atlas and the CoCo 439 atlas.

Connectivity type FS 86 CoCo 439

FC SC HC FC SC HCCognition

Explained

variance

(%)

Crystallised 10.2 (6.7) 8.1 (5.9) 12.8 (7.4) 22.8 (8.6) 5.3 (5.1) 19.8 (7.2)

Fluid 6.2 (5.2) 3.6 (3.3) 7.9 (6.2) 9.8 (6.7) 5.3 (3.1) 10.5 (7.2)

Total 11.2 (9.1) 8.2 (6.7) 13.9 (7.6) 20.7 (9.3) 8.3 (5.6) 20.9 (8.5)

Note: Bold values denote that the model performed better than chance.

Abbreviations: FC, functional connectivity; HC, hybrid connectivity; SC, structural connectivity.

F IGURE 2 Model performance for prediction of cognitive metrics. Explained variance (a,b) violin plots for models using functional (purple),
structural (blue), and hybrid (green) connectivity to predict crystallised, fluid, and total cognition. Results using the FreeSurfer 86 (FS 86)
parcellation are shown on the left (a) and the CoCo 439 parcellation are shown on the right (b). Solid lines indicate the distribution of values,
dashed lines indicate the median, and dotted lines indicate the interquartile range. Solid coloured violin plots indicate model performance that is
better than chance (corrected p < .05)
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F IGURE 3 Differences in model
performance for prediction of
cognitive metrics. Difference in
explained variance between pairs of
models using functional connectivity
(FC), structural connectivity (SC), and
hybrid connectivity (HC) to predict
crystallised, fluid, and total cognition.
Model differences were calculated by

averaging the difference in explained
variance for each of the 100 train/
test splits. Both the FreeSurfer
86 (FS 86) atlas and the CoCo
439 atlas are shown here.
Significance of differences in
explained variance were evaluated
using exact tests for differences. *
denotes corrected p < .05. A positive
difference value indicates that the
model on the y-axis has a greater
explained variance than the model on
the x-axis

F IGURE 4 Correlation between pairwise regional feature importance for models predicting cognitive metrics. Pearson correlation between
pairwise regional feature importance (a,b) from models using functional connectivity (FC) and structural connectivity (SC) to predict crystallised,
fluid, and total cognition using the FS 86 (a) and the CoCo 439 atlas (b). Pearson correlation between pairwise network-level feature importance
(c). Positive and negative network-level feature importances were computed by taking the positive and negative sums of the regional feature
importance. Correlations were evaluated between the concatenated positive and negative network-level feature importances
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F IGURE 5 Regional importance for CoCo 439 functional connectivity models predicting cognitive metrics. Positive and negative regional
feature importances from the CoCo 439 atlas functional connectivity models were computed by taking the sum of all positive and negative
pairwise connections for each region, respectively. Relative regional feature importance measures for predicting crystallised (top), fluid (middle),
and total (bottom) cognition using functional connectivity are shown here. Lateral and medial views of the right (RH) and left (LH) hemispheres
are shown. Warmer colours are used for positive feature importance, and cooler colours for negative feature importance
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F IGURE 6 Network-level feature importance for functional connectivity predicting cognitive metrics. Network-level positive and negative

feature importance for functional connectivity to predict crystallised (top), fluid (middle), and total (bottom) cognition, based on the pair-wise
feature importance matrix from the CoCo 439 atlas. Node radii and colour denote strength of intra-network positive and negative feature
importance. Edge weight and colour denote strength of inter-network positive and negative feature importance. Warmer colours are used for
positive feature importance, and cooler colours for negative feature importance
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correlated across cognitive domains, but across the FC and SC modali-

ties, feature importances are not correlated. Pairwise network-level

features are strongly correlated across cognitive domains and

parcellations within the FC and SC modalities, but not across the

modalities. At a regional level, functional connections involving the

temporal–parietal–occipital junction and the visual cortex are most

important for predicting crystallised and fluid abilities (Figure 5). At a

pairwise network-level, functional and structural connections within

and between cortical, subcortical, and cerebellar networks to predic-

tions of crystallised and fluid abilities to varying extents (Figure 6,

Figures S5–S7). More specifically, functional connections between

visual, somatomotor, dorsal attention, ventral attention, and cerebellar

networks and within dorsal attention and frontoparietal networks are

positively associated with crystallised and fluid abilities. Conversely,

functional connections within visual, somatomotor, and cerebellar net-

works and between visual-dorsal attention, and ventral attention-

default mode networks are negatively associated with crystallised and

fluid abilities. Structural dorsal attention-frontoparietal, dorsal

attention-visual, and limbic-subcortical networks are positively associ-

ated with crystallised and fluid abilities, while structural connections

within cerebellum, visual, and frontoparietal networks are negatively

associated with crystallised and fluid abilities.

4 | DISCUSSION

In this study, we evaluated the brain–behaviour relationships between

multimodal connectivity and cognition in 415 healthy, unrelated

young adults. Using whole brain resting-state FC, SC, and hybrid

function–structure connectivity (HC), we predicted individual

crystallised, fluid, and total cognition abilities. First, we demonstrate

FC is generally more predictive of cognitive scores than SC and, fur-

thermore, integrating the two modalities does not always increase

explained variance. Second, we show the accuracy of cognitive pre-

diction from connectome measures is influenced by the choice of grey

matter parcellation, and, possibly, how that parcellation is derived.

Third, we find that distinct functional and structural connections con-

tribute to the prediction of individual crystallised and fluid abilities.

Prior studies have implemented machine (He et al., 2020; Kong

et al., 2018; Li et al., 2019) and deep learning (He et al., 2020) algo-

rithms to predict behaviour and cognition using the Human

Connectome Project's FC data. Li et al. reported cross-validated pre-

diction accuracies ranging from approximately 0.1 to 0.4 to predict

Dimensional Change Card Sort, Flanker Inhibitory Control and Atten-

tion, Picture Sequence Memory, Picture Vocabulary, Oral Reading

Recognition, List Sorting Working Memory, and Pattern Comparison

Processing Speed tasks using FC (Li et al., 2019). He et al. demon-

strated that kernel regression, fully connected neural networks, and

BrainNetCNN (Kawahara et al., 2017) achieve comparable prediction

accuracies when used to predict behavioural and cognitive measures

using FC (He et al., 2020). In this study, we predict cognition compos-

ite scores (which are derived from the individual task scores) as they

may be less noisy and more reliable than the individual scores. Our

results, in which we achieve prediction accuracies ranging from 0.25

to 0.47 for the composite scores, support this idea.

White matter pathways and neural coactivation patterns in the

brain produce complex cognitive functions. While brain functional and

structural connections are undeniably related, most studies analyse

their independent contributions to behaviour. Previously, Zimmerman

et al. examined how FC and SC profiles map to cognition

(Zimmermann et al., 2018); however, they did not compare the

strength of the connectivity-cognition mapping between the two

modalities to quantify whether one modality is more predictive of

cognition than the other. Although our exact tests for differences do

not find that models using FC or HC significantly outperform models

using SC, our permutations tests suggest there might be some differ-

ences in how predictive FC, SC, and HC are of individual cognitive

abilities. Models using FC and HC perform above chance levels to pre-

dict all three cognitive scores for both parcellations, while models

using SC only perform above chance levels to predict crystallised and

total cognition for the FS 86 parcellation, and to predict total cogni-

tion for the CoCo 439 parcellation. Hence, we demonstrate, for the

first time, that FC is typically more predictive of individual cognitive

abilities than SC. Additionally, we show that integrating the two

modalities into a single model does not always enhance the predict-

ability of cognitive measures. A technical reason why the FC matrices

may outperform the SC matrices pertains to their sparsity. FC matri-

ces used in our analyses are dense, while SC matrices are sparse—the

FS 86 matrices are approximately 15% sparse within individuals while

the CoCo 439 matrices are approximately 55% sparse within individ-

uals. The sparsity of the SC matrices means a large proportion of the

information the model is using to predict individual abilities at a

subject-level is useless (i.e., zeros) and thus there is less information

available for the SC models to map to cognition. The FC matrices do

not suffer from the same issue and thus might be capturing more rele-

vant information for use in the FC-cognition mapping.

The choice of parcellation when analysing neuroimaging data is a

crucial one that can affect overall results (Lord et al., 2016; Zalesky

et al., 2010). In this work, we use two different parcellations—the FS

86 and the CoCo 439. These two parcellations differ in their number,

spatial distribution, size, and process of node creation. While our

exact tests for differences do not clearly identify one parcellation as

the superior one for predicting individual cognitive abilities, we do

observe general trends in the explained variance suggesting the CoCo

439 parcellation might be better when using FC to predict crystallised

and total cognition. This may be due to two different reasons. The

CoCo atlas has much higher dimensionality (96,141 edges in CoCo

439 compared to 3,655 edges in FS 86) and might be capturing high-

resolution edge-level information that is particularly important for

individual-level cognitive abilities. Furthermore, the CoCo 439 atlas'

cortical regions are functionally defined, compared to the FS 86 atlas

regions that are anatomically defined. An atlas that has regions

defined by grouping areas with similar functional activation patterns is

likely to capture more functionally relevant signal within each region

compared to a structurally defined one which may include regions

with very different functional activation patterns in a single
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anatomical region. Similarly, a functionally defined atlas may not be

optimal for measuring SC. In fact, we observe that the FS 86 SC

models generally perform better than CoCo 439 SC models for predic-

tions of crystallised cognition. Together, this suggests the definition

(functional vs. structural) of the atlases may play a critical role in

determining how strongly the various connectivity modalities map to

cognition. This is consistent with findings and recommendations from

other work (Lord et al., 2016; Messé, 2020; Wu, Xu, Potter, Zhang, &

Alzheimer's Disease Neuroimaging Initiative, 2019).

Interpretation of feature weights from supervised prediction

models, even within a linear framework, can be challenging

(Douglas & Anderson, 2019; Haufe et al., 2014). Here, we transform

the feature weights obtained from our linear models into

corresponding activation patterns, which are thought to more likely

capture meaningful signals and resemble the true underlying relation-

ships (Haufe et al., 2014). The raw feature weights emphasise regions

in subcortical, cerebellar, and limbic networks, particularly ones with

quite small volume that may be noisy (data not shown), whereas the

activation patterns emphasise larger regions within the cortex. Extant

literature has demonstrated that in many cases, noisy features may be

assigned weights that are stronger than (or comparable to) those

assigned to features capturing relevant information in order to maxi-

mise prediction performance (Haufe et al., 2014). The smaller regions

strongly weighted by our feature weights likely represent a lot of

noise as subcortical regions are typically more susceptible to physio-

logical noise compared to cortical regions (Hutton et al., 2011; Kasper

et al., 2017; Viviani, 2016). The transformation into activation vectors

account for this by using information about the covariance of each

feature. Hence, we focus our interpretations on the activation pat-

terns and refer to those as our feature importances.

Our results demonstrate that distinct functional and structural

connections predict individual cognitive abilities, and regional pairwise

feature importance is not correlated between the two modalities. Our

results support and build upon findings from prior work. In their study,

Zimmerman et al. identified a large set of corticocortical and

corticosubcortical functional connections and a smaller set of distrib-

uted structural connections that show relationships with cognition

and conclude that functional and structural connections uniquely map

onto cognition (Zimmermann et al., 2018). Here, we concur that dis-

tinct corticocortical functional and structural connections are impor-

tant to predict cognitive abilities. We also replicate that there are

strong relationships between connectivity and cognitive abilities for a

large set of functional connections, and a smaller set of structural con-

nections. However, we also observe that within modalities (functional

or structural) overlapping connections predict distinct cognitive abili-

ties, and functional and structural connections within the cerebellum

are important for the predictions, which they do not report. These dif-

ferences in results may be attributable to differences in statistical

modelling choice and in parcellation. First, they used a partial least

squares approach that maps SC or FC not to a single cognitive out-

come but to a linear combination of the cognitive scores. This results

in models that are a bit more difficult to interpret, as they represent

mixtures of various cognitive domain scores. In addition, the previous

work parcellated the brain into 34 cortical and 7 subcortical ROIs per

hemisphere plus the brainstem—the cerebellum was not included in

their analyses (Zimmermann et al., 2018). The contribution of cerebel-

lar connections to our models, and the known role of cerebellum in

cognitive function (Buckner, 2013; Schmahmann & Caplan, 2006),

highlight the importance of studying whole-brain FC and SC when

studying relationships with cognition. Overall, our results suggest that

FC and SC capture unique and complementary information.

Cattell and Horn's two-component theory of intellectual develop-

ment proposes a distinction between crystallised and fluid abilities in

how they develop and transform throughout life (Cattell, 1967; Horn &

Cattell, 1966, 1967). Crystallised intelligence is the ability to use

learned knowledge, experience, and skills, and fluid intelligence is the

ability to solve new problems using logic, encode new episodic memo-

ries, and adapt to novel situations in everyday life (Heaton

et al., 2014). In the HCP dataset (van Essen et al., 2013), the NIH Tool-

box Cognition Battery was used to assess crystallised and fluid abili-

ties. Crystallised abilities are thought to be influenced by education

and cultural factors, and fluid abilities, while also dependent on educa-

tional and cultural factors, are thought to be more dependent on bio-

logical processes within neural structures that enable brain function

(Cattell, 1967; Heaton et al., 2014; Horn & Cattell, 1966, 1967). Inter-

estingly, in our results, FC and SC patterns were less predictive of

fluid abilities than of crystallised abilities. In the NIH Toolbox Cogni-

tion Battery, the crystallised cognition composite reflects scores from

tasks measuring vocabulary and reading decoding, while the fluid cog-

nition composite reflects scores from tasks measuring cognitive flexi-

bility, inhibitory control and attention, episodic memory, working

memory, and processing speed. The eloquent nature of the mapping

between brain anatomy/physiology and language, including vocabu-

lary and reading as measured by the crystallised cognition composite,

may explain the higher explained variance of those scores when com-

pared to the fluid cognition composite that may rely on several over-

lapping brain networks involved in several overlapping but distinct

cognitive skills (e.g., inhibition, flexibility, working memory). Another

possible explanation for the higher predictability of crystallised abili-

ties (relative to fluid) lies in the impact of environment on the brain's

connectomes. FC and SC have been shown to be related to learning

and life experience (Johansen-Berg, Scholz, & Stagg, 2010; Peng

et al., 2018; Tooley et al., 2019; Zatorre, Fields, & Johansen-

Berg, 2012). Hence, it is possible that the joint impact of environment

on connectivity networks and crystallised abilities means it is easier to

predict one from the other. Finally, crystallised abilities are more sta-

ble across the lifespan and generally less susceptible to a multitude of

factors such as mood, stress, and sleep, all of which influence execu-

tive functions and memory (Nilsson et al., 2005; O'Neill, Kamper-

DeMarco, Chen, & Orom, 2020; Salthouse, 2010). This may also con-

tribute to the higher predictability of crystallised abilities.

Crystallised cognition, as measured by the NIH Toolbox, mainly

represents language (vocabulary and reading decoding) abilities. Fluid

cognition represents a wide range of cognitive processes: executive
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function (cognitive flexibility and inhibitory control and attention), epi-

sodic memory, working memory, and processing speed. Both

crystallised and fluid cognition rely on a distributed network of con-

nections throughout the brain (Brancucci, 2012). In this work, we find

features underlying predictions for both cognitive domains overlap

within the functional and structural modalities, but are unique across

the modalities. Our predictions based on the functional modality gen-

erally outperform those from the structural modality, and thus we pri-

marily focus our interpretation of feature importances for functional

connections.

Stronger functional connections between visual, somatomotor,

dorsal attention, ventral attention, and cerebellar networks, and within

dorsal attention and frontoparietal networks are indicative of higher

crystallised and fluid abilities. At the same time, stronger functional

connections within visual, somatomotor, and cerebellar networks and

between visual-dorsal attention, and ventral attention-default mode

networks indicate lower crystallised and fluid abilities. The visual net-

work is responsible for visual information processing and thus contrib-

utes to the perception and recognition of stimuli presented across

different cognitive tasks (Gazzaniga, Ivry, & Mangun, 2014). The

somatomotor (or sensorimotor) network is responsible for the

dynamic and continuous coupling between sensory input, neural

processing, and motor output and thus underlies biological informa-

tion processing at a fundamental level (Lungarella & Sporns, 2006;

Respino et al., 2019). The dorsal attention network modulates volun-

tary attention and exerts goal-driven attentional orientation, while the

ventral attention network responds to stimulus novelty and exerts

stimulus-driven attentional orientation (Gazzaniga et al., 2014); Both

dorsal and ventral attention networks are involved in a wide of range

cognitive processes (Bowren et al., 2020; Dixon et al., 2017; Majerus

et al., 2012). The frontoparietal network is implicated in modulating

executive function, cognitive flexibility, and working memory (Cole,

Yarkoni, Repovs, Anticevic, & Braver, 2012; Iidaka, Matsumoto,

Nogawa, Yamamoto, & Sadato, 2006; Marek & Dosenbach, 2018;

Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015). The default mode

network is active during passive rest and mind-wandering, and modu-

lates self-referential thinking, theory of mind, working memory, and

processing speed (Andrews-Hanna, 2012; Jaywant et al., 2020; Leech,

Kamourieh, Beckmann, & Sharp, 2011; Sheline et al., 2009; M. Song

et al., 2009; Spreng & Grady, 2010; Vatansever, Manktelow, Sahakian,

Menon, & Stamatakis, 2018). The cerebellum, traditionally associated

with planning and executing movements, is implicated in a wide range

of cognitive functions such as working memory, linguistic processing,

visual spatial organisation, memory, abstract reasoning, and cognitive

planning (Buckner, 2013; Leiner, Leiner, & Dow, 1993; Schmahmann &

Caplan, 2006).

Structural connections between dorsal attention and

frontoparietal networks, and between limbic and subcortical networks

are indicative of higher crystallised and fluid abilities, while structural

connections within the visual, frontoparietal, and cerebellar networks

predict lower crystallised and fluid abilities. The limbic network is

involved in memory, language processing, decision-making, and rein-

forcement learning (Altmann, Bohrn, Lubrich, Menninghaus, &

Jacobs, 2012; Howett et al., 2019; Pehrs et al., 2017; Wilson,

Takahashi, Schoenbaum, & Niv, 2014). The subcortical network plays

an important role in cognition, emotion, and social function

(Berridge & Kringelbach, 2015; Bickart, Wright, Dautoff, Dickerson, &

Barrett, 2011; Eichenbaum, 2004; Fischi-Gómez et al., 2015;

Johnson, 2005; Koshiyama et al., 2018; Utter & Basso, 2008; van

Schouwenburg, den Ouden, & Cools, 2010).

Taken together, these results emphasise that distinct functional

and structural connections underlie cognitive abilities, and both

modalities should be studied to understand the diverse neural corre-

lates of cognition.

4.1 | Limitations

Machine learning algorithms using neuroimaging data are prone to the

curse of dimensionality. Voxel-wise imaging data, on the order of hun-

dreds of thousands of features, and regional data can have hundreds

or thousands of features. Here, we parcellate the brain into 86 or

439 regions. When taking the upper or lower triangular of the

pairwise FC and SC matrices, this leaves us with 3,655 or 96,141 fea-

tures. Dimensionality reduction through parcellation decreases noise,

reduces computational cost, and enables more interpretable models,

but loses valuable information captured in the voxel-wise data. Future

work performing voxel-wise analyses of very large sample data can

address this issue.

Here, we compare whether integrating FC and SC into HC can

improve predictions of individual cognitive abilities. To generate HC,

we concatenate FC and SC. This results in the dimensionality of HC

being twice as large as that of FC and SC and this may influence

our predictive models. One potential approach to address this dif-

ference in dimensionality would be to implement dimensionality

reduction through principal component analysis and keep the num-

ber of principal components consistent across the models. While

this approach is ideal to optimise model performance, it presents

additional limitations when interpreting the feature weights as it

transforms the data into a different feature space. For the purposes

of this study, we are equally interested in model performance and

the functional and structural connections that drive the perfor-

mance, so we chose to make predictions based on pairwise connec-

tivity. However, future work can examine how additional

dimensionality reduction approaches may improve model perfor-

mance, especially when dealing with differences in dimensionality

across the models.

In this study, we only used data from the Human Connectome

Project. Although we exclusively evaluate our models on test hold-out

sets and perform 100 iterations of each model with unique train/test

splits, the results we report here may not be generalisable to other

datasets. Future work performing out-of-dataset evaluations can

address this limitation.

Age (Damoiseaux, 2017; J. Song et al., 2014), sex (Gong, He, &

Evans, 2011; Gur & Gur, 2017; Ingalhalikar et al., 2014; Jacobs &

Goldstein, 2018; Jacobs et al., 2016; Satterthwaite et al., 2015; Weis
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et al., 2019), and environment/experience (Sripada, Swain, Evans,

Welsh, & Liberzon, 2014; Tooley et al., 2019) influence connectivity.

Hence, it is likely that they, along with other demographic variables

such as gender and ethnicity, may influence the relationship between

connectomics and cognition (Jiang et al., 2020). Future work should

examine how the relationship between connectomics and cognition

varies based on demographics.

5 | CONCLUSIONS

Having a comprehensive map of neural correlates underlying cogni-

tion in healthy individuals is a critical first step towards understand-

ing changes in cognitive functioning as a result of age, injury, and

disease. Here, we integrate neuroimaging, connectomics, and

machine learning approaches to explore brain–behaviour relation-

ships between functional and SC and crystallised and fluid cognition.

We report three main findings. We demonstrate FC is more predic-

tive of individual cognitive abilities than SC and integrating functional

and structural modalities does not generally increase the variance

explained. We show the accuracy of prediction of individual cognitive

abilities from connectomes is influenced by the choice of

parcellation, and, possibly, how the atlas is derived. Finally, we report

that distinct functional and structural connections predict crystallised

and fluid abilities. Specifically, stronger functional connections

between visual, somatomotor, dorsal attention, ventral attention,

frontoparietal, and cerebellar networks, and within dorsal attention

and frontoparietal networks predict higher crystallised and fluid abili-

ties, along with stronger structural connections between dorsal

attention and frontoparietal networks, dorsal attention and visual

networks, and limbic and subcortical networks. Conversely, stronger

functional connections within visual, somatomotor, and cerebellar

networks predict lower crystallised and fluid abilities, along with

stronger structural connections within cerebellum, visual, and

frontoparietal networks. Taken together, this suggests that functional

and SC have unique relationships with individual abilities of

crystallised and fluid cognition, and that both modalities should be

studied to understand neuroanatomical and neurophysiological cor-

relates of cognition.

6 | CITATION GENDER DIVERSITY
STATEMENT

Recent work in neuroscience and other fields has identified a bias in

citation practices such that papers from women and other minorities

are under-cited relative to the number of such papers in the field

(Caplar, Tacchella, & Birrer, 2017; Chakravartty, Kuo, Grubbs, &

McIlwain, 2018; Dion, Sumner, & Mitchell, 2018; Dworkin

et al., 2020; Maliniak, Powers, & Walter, 2013; Thiem, Sealey, Ferrer,

Trott, & Kennison, 2018). Here, we sought to proactively consider

choosing references that reflect the diversity of the field in thought,

form of contribution, gender, and other factors. We used classification

of gender based on the first names of the first and last authors

(Dworkin et al., 2020), with possible combinations including

male/male, male/female, female/male, and female/female. Excluding

self-citations to the first and last authors of our current paper, the ref-

erences contain 57.1% male/male, 17.7% male/female, 18.5%

female/male, and 6.7% female/female. We look forward to future

work that could help us to better understand how to support equita-

ble practices in science.

ACKNOWLEDGMENTS

This work was supported by the following National Institutes of

Health (NIH) grants awarded to A.K. R21 NS104634-01 and R01

NS102646-01A1. A. J. is funded through a K12 Career Development

Award from the National Center of Medical Rehabilitation Research/

Eunice Kennedy Shriver National Institute of Child Health and Human

Development (1K12HD093427-04), via a subaward from Georgetown

University. The sponsors did not have any role in the study design,

the analysis, or interpretation of the data; the writing of the report; or

the decision to submit the manuscript for publication. Data were pro-

vided and made available by the Human Connectome Project, WU-

Minn Consortium (Principal Investigators: David Van Essen and Kamil

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Cen-

tres that support the NIH Blueprint for Neuroscience Research; and

by the McDonnell Centre for Systems Neuroscience at Washington

University. The authors would like to acknowledge Dr Mallar

Chakravarty and Raihaan Patel from McGill University for contribu-

tions to an earlier version of this work.

CONFLICT OF INTEREST

The authors declare no conflict of interests.

AUTHOR CONTRIBUTIONS

Elvisha Dhamala and Amy Kuceyeski: Conceptualization. Elvisha

Dhamala, Keith W. Jamison, and Amy Kuceyeski: Methodology.

Elvisha Dhamala and Sarah Dennis: Software. Elvisha Dhamala and

Sarah Dennis: Investigation. Elvisha Dhamala: Formal analysis. Amy

Kuceyeski: Resources. Elvisha Dhamala and Keith W. Jamison: Data

curation. Elvisha Dhamala: Writing – original draft. Elvisha Dhamala,

Keith W. Jamison, Abhishek Jaywant, Sarah Dennis, and Amy

Kuceyeski: Writing – review and editing. Elvisha Dhamala: Visualisa-

tion. Amy Kuceyeski: Supervision. Amy Kuceyeski: Funding

acquisition.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available

as part of the Human Connectome Project at https://www.

humanconnectome.org/study/hcp-young-adult/document/1200-

subjects-data-release.

ORCID

Elvisha Dhamala https://orcid.org/0000-0002-8253-6962

Keith W. Jamison https://orcid.org/0000-0001-7139-6661

Abhishek Jaywant https://orcid.org/0000-0003-4307-5742

3114 DHAMALA ET AL.

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://orcid.org/0000-0002-8253-6962
https://orcid.org/0000-0002-8253-6962
https://orcid.org/0000-0001-7139-6661
https://orcid.org/0000-0001-7139-6661
https://orcid.org/0000-0003-4307-5742
https://orcid.org/0000-0003-4307-5742


Sarah Dennis https://orcid.org/0000-0003-0370-4284

Amy Kuceyeski https://orcid.org/0000-0002-5050-8342

REFERENCES

Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M.

(2012). The power of emotional valence—From cognitive to affective

processes in reading. Frontiers in Human Neuroscience, 6, 192.

Amico, E., & Goñi, J. (2018). Mapping hybrid functional-structural connec-

tivity traits in the human connectome. Network Neuroscience, 2(3),

306–322.
Andrews-Hanna, J. R. (2012). The brain's default network and its adaptive

role in internal mentation. The Neuroscientist, 18(3), 251–270.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., &

Grafton, S. T. (2011). Dynamic reconfiguration of human brain net-

works during learning. Proceedings of the National Academy of Sciences

of the United States of America, 108(18), 7641–7646.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—

A practical and powerful approach to multiple testing. Journal of the

Royal Statistical Society Series B-Statistical Methodology, 57(1),

289–300.
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain.

Neuron, 86(3), 646–664.
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F.

(2011). Amygdala volume and social network size in humans. Nature

Neuroscience, 14(2), 163–164.
Bowren, M., Adolphs, R., Bruss, J., Manzel, K., Corbetta, M., Tranel, D., &

Boes, A. D. (2020). Multivariate lesion-behavior mapping of general

cognitive ability and its psychometric constituents. Journal of Neurosci-

ence, 40(46), 8924–8937.
Brancucci, A. (2012). Neural correlates of cognitive ability. Journal of Neu-

roscience Research, 90(7), 1299–1309.
Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of

insight from anatomy and neuroimaging. Neuron, 80(3), 807–815.
Caplar, N., Tacchella, S., & Birrer, S. (2017). Quantitative evaluation of gen-

der bias in astronomical publications from citation counts. Nature

Astronomy, 1(6), 1–5.
Carlozzi, N. E., Tulsky, D. S., Wolf, T. J., Goodnight, S., Heaton, R. K.,

Casaletto, K. B., … Heinemann, A. W. (2017). Construct validity of the

NIH toolbox cognition battery in individuals with stroke. Rehabilitation

Psychology, 62(4), 443–454. https://doi.org/10.1037/rep0000195
Cattell, R. B. (1967). The theory of fluid and crystallized general intelli-

gence checked at the 5-6 year-old level. The British Journal of Educa-

tional Psychology, 37(2), 209–224. https://doi.org/10.1111/j.2044-

8279.1967.tb01930.x

Chakravartty, P., Kuo, R., Grubbs, V., & McIlwain, C. (2018). #Com-

municationsowhite. Journal of Communication, 68(2), 254–266.
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012).

Global connectivity of prefrontal cortex predicts cognitive control and

intelligence. The Journal of Neuroscience, 32(26), 8988–8999. https://
doi.org/10.1523/JNEUROSCI.0536-12.2012

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analy-

sis. I. Segmentation and surface reconstruction. NeuroImage, 9(2),

179–194. https://doi.org/10.1006/nimg.1998.0395

Damoiseaux, J. S. (2017). Effects of aging on functional and structural

brain connectivity. NeuroImage, 160, 32–40.
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., … Killiany, R. J. (2006). An automated labeling system for

subdividing the human cerebral cortex on MRI scans into gyral based

regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.
1016/j.neuroimage.2006.01.021

Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009).

A probabilistic mr atlas of the human cerebellum. NeuroImage, 46(1),

39–46.

Dion, M. L., Sumner, J. L., & Mitchell, S. M. (2018). Gendered citation pat-

terns across political science and social science methodology fields.

Political Analysis, 26(3), 312–327.
Dixon, M. L., Andrews-Hanna, J. R., Spreng, R. N., Irving, Z. C., Mills, C.,

Girn, M., & Christoff, K. (2017). Interactions between the default net-

work and dorsal attention network vary across default subsystems,

time, and cognitive states. NeuroImage, 147, 632–649.
Douglas, P. K., & Anderson, A. (2019). Feature fallacy: Complications with

interpreting linear decoding weights in fMRI. In Explainable AI: Inter-

preting, explaining and visualizing deep learning (pp. 363–378). Cham,

Switzerland: Springer.

Dworkin, J. D., Linn, K. A., Teich, E. G., Zurn, P., Shinohara, R. T., &

Bassett, D. S. (2020). The extent and drivers of gender imbalance in

neuroscience reference lists. Nature Neuroscience, 23, 918–926.
https://doi.org/10.1038/s41593-020-0658-y

Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural rep-

resentations that underlie declarative memory. Neuron, 44(1),

109–120.
Fischi-Gómez, E., Vasung, L., Meskaldji, D.-E., Lazeyras, F., Borradori-

Tolsa, C., Hagmann, P., … Hüppi, P. S. (2015). Structural brain connec-

tivity in school-age preterm infants provides evidence for impaired

networks relevant for higher order cognitive skills and social cognition.

Cerebral Cortex, 25(9), 2793–2805.
Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Con-

structing geometrically accurate and topologically correct models of

the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1),

70–80. https://doi.org/10.1109/42.906426
Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B. T., …

Zilles, K. (2008). Cortical folding patterns and predicting

cytoarchitecture. Cerebral Cortex, 18(8), 1973–1980. https://doi.org/
10.1093/cercor/bhm225

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., …
Dale, A. M. (2002). Whole brain segmentation: Automated labeling of

neuroanatomical structures in the human brain. Neuron, 33(3),

341–355.
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analy-

sis. II: Inflation, flattening, and a surface-based coordinate system.

NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396

Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution

intersubject averaging and a coordinate system for the cortical surface.

Human Brain Mapping, 8(4), 272–284.
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2014). Cognitive neurosci-

ence: The biology of the mind (4th ed.). New York, NY: W. W. Norton &

Company.

Gershon, R. C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., &

Nowinski, C. J. (2013). NIH toolbox for assessment of neurological and

behavioral function. Neurology, 80(11 Suppl 3), S2–S6. https://doi.org/
10.1212/WNL.0b013e3182872e5f

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,

Yacoub, E., … Jenkinson, M. (2016). A multi-modal parcellation of

human cerebral cortex. Nature, 536(7615), 171–178.
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., … WU-Minn Human Connectome Project. (2013).

The minimal preprocessing pipelines for the Human Connectome Pro-

ject. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.

2013.04.127

Gong, G., He, Y., & Evans, A. C. (2011). Brain connectivity: Gender makes a

difference. The Neuroscientist, 17(5), 575–591. https://doi.org/10.

1177/1073858410386492

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J.,

Douaud, G., Sexton, C. E., … Smith, S. M. (2014). Ica-based artefact

removal and accelerated fMRI acquisition for improved resting state

network imaging. NeuroImage, 95, 232–247. https://doi.org/10.1016/
j.neuroimage.2014.03.034

DHAMALA ET AL. 3115

https://orcid.org/0000-0003-0370-4284
https://orcid.org/0000-0003-0370-4284
https://orcid.org/0000-0002-5050-8342
https://orcid.org/0000-0002-5050-8342
https://doi.org/10.1037/rep0000195
https://doi.org/10.1111/j.2044-8279.1967.tb01930.x
https://doi.org/10.1111/j.2044-8279.1967.tb01930.x
https://doi.org/10.1523/JNEUROSCI.0536-12.2012
https://doi.org/10.1523/JNEUROSCI.0536-12.2012
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1038/s41593-020-0658-y
https://doi.org/10.1109/42.906426
https://doi.org/10.1093/cercor/bhm225
https://doi.org/10.1093/cercor/bhm225
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1212/WNL.0b013e3182872e5f
https://doi.org/10.1212/WNL.0b013e3182872e5f
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1177/1073858410386492
https://doi.org/10.1177/1073858410386492
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.neuroimage.2014.03.034


Gur, R. C., & Gur, R. E. (2017). Complementarity of sex differences in brain

and behavior: From laterality to multimodal neuroimaging. Journal of

Neuroscience Research, 95(1–2), 189–199. https://doi.org/10.1002/

jnr.23830

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D.,

Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight

vectors of linear models in multivariate neuroimaging. NeuroImage, 87,

96–110.
He, T., Kong, R., Holmes, A. J., Nguyen, M., Sabuncu, M. R., Eickhoff, S. B.,

… Yeo, B. T. (2020). Deep neural networks and kernel regression

achieve comparable accuracies for functional connectivity prediction

of behavior and demographics. NeuroImage, 206, 116276.

Heaton, R. K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S.,

Dikmen, S., … Gershon, R. (2014). Reliability and validity of composite

scores from the NIH toolbox cognition battery in adults. Journal of the

International Neuropsychological Society, 20(6), 588–598. https://doi.
org/10.1017/S1355617714000241

Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of

fluid and crystallized general intelligences. Journal of Education & Psy-

chology, 57(5), 253–270. https://doi.org/10.1037/h0023816
Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized

intelligence. Acta Psychologica, 26(2), 107–129. https://doi.org/10.

1016/0001-6918(67)90011-x

Howett, D., Castegnaro, A., Krzywicka, K., Hagman, J., Marchment, D.,

Henson, R., … Chan, D. (2019). Differentiation of mild cognitive impair-

ment using an entorhinal cortex-based test of virtual reality navigation.

Brain, 142(6), 1751–1766.
Hutton, C., Josephs, O., Stadler, J., Featherstone, E., Reid, A., Speck, O., …

Weiskopf, N. (2011). The impact of physiological noise correction on

fMRI at 7 t. NeuroImage, 57(1), 101–112.
Iglesias, J. E., Insausti, R., Lerma-Usabiaga, G., Bocchetta, M., van

Leemput, K., Greve, D. N., … Paz-Alonso, P. M. (2018). A probabilistic

atlas of the human thalamic nuclei combining ex vivo MRI and histol-

ogy. NeuroImage, 183, 314–326.
Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y., & Sadato, N. (2006).

Frontoparietal network involved in successful retrieval from episodic

memory. Spatial and temporal analyses using fMRI and ERP. Cerebral

Cortex, 16(9), 1349–1360.
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A.,

Ruparel, K., … Verma, R. (2014). Sex differences in the structural

connectome of the human brain. Proceedings of the National Academy

of Sciences of the United States of America, 111(2), 823–828. https://
doi.org/10.1073/pnas.1316909110

Jacobs, E. G., & Goldstein, J. M. (2018). The middle-aged brain: Biological

sex and sex hormones shape memory circuitry. Current Opinion in

Behavioral Sciences, 23, 84–91. https://doi.org/10.1016/j.cobeha.

2018.03.009

Jacobs, E. G., Weiss, B. K., Makris, N., Whitfield-Gabrieli, S., Buka, S. L.,

Klibanski, A., & Goldstein, J. M. (2016). Impact of sex and menopausal

status on episodic memory circuitry in early midlife. Journal of Neuro-

science, 36(39), 10163–10173.
Jaywant, A., DelPonte, L., Kanellopoulos, D., O'Dell, M. W., &

Gunning, F. M. (2020). The structural and functional neuroanatomy of

post-stroke depression and executive dysfunction: A review of neuro-

imaging findings and implications for treatment. Journal of Geriatric

Psychiatry and Neurology, 0891988720968270.

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J.

(2014). Multi-tissue constrained spherical deconvolution for improved

analysis of multi-shell diffusion MRI data. NeuroImage, 103, 411–426.
https://doi.org/10.1016/j.neuroimage.2014.07.061

Jiang, R., Calhoun, V. D., Fan, L., Zuo, N., Jung, R., Qi, S., … Sui, J. (2020).

Gender differences in connectome-based predictions of individualized

intelligence quotient and sub-domain scores. Cerebral Cortex, 30(3),

888–900.

Johansen-Berg, H., Scholz, J., & Stagg, C. J. (2010). Relevance of structural

brain connectivity to learning and recovery from stroke. Frontiers in

Systems Neuroscience, 4, 146.

Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuro-

science, 6(10), 766–774.
Kasper, L., Bollmann, S., Diaconescu, A. O., Hutton, C., Heinzle, J.,

Iglesias, S., … Pruessmann, K. P. (2017). The physio toolbox for model-

ing physiological noise in fMRI data. Journal of Neuroscience Methods,

276, 56–72.
Kawahara, J., Brown, C. J., Miller, S. P., Booth, B. G., Chau, V.,

Grunau, R. E., … Hamarneh, G. (2017). Brainnetcnn: Convolutional

neural networks for brain networks; towards predicting neuro-

development. NeuroImage, 146, 1038–1049. https://doi.org/10.1016/
j.neuroimage.2016.09.046

Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P.

(2008). Competition between functional brain networks mediates

behavioral variability. NeuroImage, 39(1), 527–537.
Klein, E., Suchan, J., Moeller, K., Karnath, H. O., Knops, A., Wood, G., …

Willmes, K. (2016). Considering structural connectivity in the triple

code model of numerical cognition: Differential connectivity for mag-

nitude processing and arithmetic facts. Brain Structure & Function, 221

(2), 979–995. https://doi.org/10.1007/s00429-014-0951-1
Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., …

Yeo, B. T. T. (2018). Spatial topography of individual-specific cortical

networks predicts human cognition, personality, and emotion. Cerebral

Cortex, 29(6), 2533–2551. https://doi.org/10.1093/cercor/bhy123
Koshiyama, D., Fukunaga, M., Okada, N., Yamashita, F., Yamamori, H.,

Yasuda, Y., …Watanabe, Y. (2018). Role of subcortical structures on cog-

nitive and social function in schizophrenia. Scientific Reports, 8(1), 1–9.
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fraction-

ating the default mode network: Distinct contributions of the ventral

and dorsal posterior cingulate cortex to cognitive control. Journal of

Neuroscience, 31(9), 3217–3224.
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and language

functions of the human cerebellum. Trends in Neurosciences, 16(11),

444–447.
Li, J. W., Kong, R., Liegeois, R., Orban, C., Tan, Y. R., Sun, N. B., …

Yeo, B. T. T. (2019). Global signal regression strengthens association

between resting-state functional connectivity and behavior.

NeuroImage, 196, 126–141. https://doi.org/10.1016/j.neuroimage.

2019.04.016

Liégeois, R., Li, J., Kong, R., Orban, C., van de Ville, D., Ge, T., … Yeo, B. T.

(2019). Resting brain dynamics at different timescales capture distinct

aspects of human behavior. Nature Communications, 10(1), 1–9.
Lord, A., Ehrlich, S., Borchardt, V., Geisler, D., Seidel, M., Huber, S., …

Walter, M. (2016). Brain parcellation choice affects disease-related

topology differences increasingly from global to local network levels.

Psychiatry Research: Neuroimaging, 249, 12–19.
Lungarella, M., & Sporns, O. (2006). Mapping information flow in sensori-

motor networks. PLoS Computational Biology, 2(10), e144.

MacKinnon, J. G., & (2009). Bootstrap hypothesis testing. In D. Belsley &

K. Erricos John (Eds.), Handbook of computational econometrics (Vol.

183, p. 213). Chichester, England: John Wiley & Sons, Ltd.

Majerus, S., Attout, L., D'Argembeau, A., Degueldre, C., Fias, W.,

Maquet, P., … van der Linden, M. (2012). Attention supports verbal

short-term memory via competition between dorsal and ventral atten-

tion networks. Cerebral Cortex, 22(5), 1086–1097.
Maliniak, D., Powers, R., & Walter, B. F. (2013). The gender citation gap in

international relations. International Organization, 67(4), 889–922.
Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Func-

tion, electrophysiology, and importance of individual precision map-

ping. Dialogues in Clinical Neuroscience, 20(2), 133–140.
Matejko, A. A., Price, G. R., Mazzocco, M. M., & Ansari, D. (2013). Individ-

ual differences in left parietal white matter predict math scores on the

3116 DHAMALA ET AL.

https://doi.org/10.1002/jnr.23830
https://doi.org/10.1002/jnr.23830
https://doi.org/10.1017/S1355617714000241
https://doi.org/10.1017/S1355617714000241
https://doi.org/10.1037/h0023816
https://doi.org/10.1016/0001-6918(67)90011-x
https://doi.org/10.1016/0001-6918(67)90011-x
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1016/j.cobeha.2018.03.009
https://doi.org/10.1016/j.cobeha.2018.03.009
https://doi.org/10.1016/j.neuroimage.2014.07.061
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1007/s00429-014-0951-1
https://doi.org/10.1093/cercor/bhy123
https://doi.org/10.1016/j.neuroimage.2019.04.016
https://doi.org/10.1016/j.neuroimage.2019.04.016


preliminary scholastic aptitude test. NeuroImage, 66, 604–610. https://
doi.org/10.1016/j.neuroimage.2012.10.045

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and con-

trol: A network model of insula function. Brain Structure and Function,

214(5–6), 655–667.
Messé, A. (2020). Parcellation influence on the connectivity-based

structure–function relationship in the human brain. Human Brain Map-

ping, 41(5), 1167–1180.
Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and

structural brain connectivity in numerical cognition. Frontiers in Human

Neuroscience, 9, 227. https://doi.org/10.3389/fnhum.2015.00227

Mungas, D., Heaton, R., Tulsky, D., Zelazo, P. D., Slotkin, J., Blitz, D., …
Gershon, R. (2014). Factor structure, convergent validity, and discrimi-

nant validity of the NIH toolbox cognitive health battery (NIHTB-

CHB) in adults. Journal of the International Neuropsychological Society,

20(6), 579–587. https://doi.org/10.1017/S1355617714000307
Nilsson, J. P., Söderström, M., Karlsson, A. U., Lekander, M., Åkerstedt, T.,

Lindroth, N. E., & Axelsson, J. (2005). Less effective executive func-

tioning after one night's sleep deprivation. Journal of Sleep Research,

14(1), 1–6.
O'Neill, J., Kamper-DeMarco, K., Chen, X., & Orom, H. (2020). Too stressed

to self-regulate? Associations between stress, self-reported executive

function, disinhibited eating, and BMI in women. Eating Behaviors, 39,

101417.

Pamplona, G. S., Santos Neto, G. S., Rosset, S. R., Rogers, B. P., &

Salmon, C. E. (2015). Analyzing the association between functional

connectivity of the brain and intellectual performance. Frontiers in

Human Neuroscience, 9, 61. https://doi.org/10.3389/fnhum.2015.

00061

Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A

Bayesian model of shape and appearance for subcortical brain seg-

mentation. NeuroImage, 56(3), 907–922.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine learning in

python. Journal of Machine Learning Research, 12, 2825–2830.
Pehrs, C., Zaki, J., Schlochtermeier, L. H., Jacobs, A. M., Kuchinke, L., &

Koelsch, S. (2017). The temporal pole top-down modulates the ventral

visual stream during social cognition. Cerebral Cortex, 27(1), 777–792.
Peng, L., Zeng, L. L., Liu, Q., Wang, L., Qin, J., Xu, H., … Hu, D. (2018). Func-

tional connectivity changes in the entorhinal cortex of taxi drivers.

Brain and Behavior, 8(9), e01022.

Pievani, M., Filippini, N., van den Heuvel, M. P., Cappa, S. F., &

Frisoni, G. B. (2014). Brain connectivity in neurodegenerative

diseases—From phenotype to proteinopathy. Nature Reviews Neurol-

ogy, 10(11), 620–633.
Ramanoël, S., York, E., le Petit, M., Lagrené, K., Habas, C., & Arleo, A.

(2019). Age-related differences in functional and structural connectiv-

ity in the spatial navigation brain network. Frontiers in Neural Circuits,

13, 69.

Respino, M., Jaywant, A., Kuceyeski, A., Victoria, L. W., Hoptman, M. J.,

Scult, M. A., … Murri, M. B. (2019). The impact of white matter hyper-

intensities on the structural connectome in late-life depression: Rela-

tionship to executive functions. NeuroImage: Clinical, 23, 101852.

Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated

anatomical labelling atlas 3. NeuroImage, 206, 116189.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,

Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional

MRI data: Combining independent component analysis and hierarchi-

cal fusion of classifiers. NeuroImage, 90, 449–468. https://doi.org/10.
1016/j.neuroimage.2013.11.046

Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the

International Neuropsychological Society: JINS, 16(5), 754–760.
Satterthwaite, T. D., Wolf, D. H., Roalf, D. R., Ruparel, K., Erus, G.,

Vandekar, S., … Gur, R. C. (2015). Linked sex differences in cognition

and functional connectivity in youth. Cerebral Cortex, 25(9), 2383–
2394. https://doi.org/10.1093/cercor/bhu036

Schmahmann, J. D., & Caplan, D. (2006). Cognition, emotion and the cere-

bellum. Brain, 129(2), 290–292.
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H.,

Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity

networks for salience processing and executive control. The Journal of

Neuroscience, 27(9), 2349–2356. https://doi.org/10.1523/

JNEUROSCI.5587-06.2007

Segonne, F., Grimson, E., & Fischl, B. (2005). A genetic algorithm for the

topology correction of cortical surfaces. Information Processing in Medi-

cal Imaging, 19, 393–405.
Seidlitz, J., Vasa, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J.,

Vertes, P. E., … Bullmore, E. T. (2018). Morphometric similarity net-

works detect microscale cortical organization and predict inter-

individual cognitive variation. Neuron, 97(1), 231, e237–247. https://
doi.org/10.1016/j.neuron.2017.11.039

Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N.,

Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and

self-referential processes in depression. Proceedings of the National

Academy of Sciences of the United States of America, 106(6), 1942–1947.
Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomi-

cally-constrained tractography: Improved diffusion MRI streamlines

tractography through effective use of anatomical information.

NeuroImage, 62(3), 1924–1938.
Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2015). Sift2:

Enabling dense quantitative assessment of brain white matter connec-

tivity using streamlines tractography. NeuroImage, 119, 338–351.
Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., &

Prabhakaran, V. (2014). Age-related reorganizational changes in modu-

larity and functional connectivity of human brain networks. Brain Con-

nectivity, 4(9), 662–676.
Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C., & Jiang, T. (2009). Default net-

work and intelligence difference. Conference Proceedings: Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society,

2009, 2212–2215. https://doi.org/10.1109/IEMBS.2009.5334874

Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain

spontaneous functional connectivity and intelligence. NeuroImage, 41

(3), 1168–1176. https://doi.org/10.1016/j.neuroimage.2008.02.036

Spreng, R. N., & Grady, C. L. (2010). Patterns of brain activity supporting

autobiographical memory, prospection, and theory of mind, and their

relationship to the default mode network. Journal of Cognitive Neuro-

science, 22(6), 1112–1123.
Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C., & Liberzon, I. (2014).

Childhood poverty and stress reactivity are associated with aberrant

functional connectivity in default mode network.

Neuropsychopharmacology, 39(9), 2244–2251.
Thiem, Y., Sealey, K. F., Ferrer, A. E., Trott, A. M., & Kennison, R. (2018).

Just ideas? The status and future of publication ethics in philosophy: A

white paper

Tooley, U. A., Mackey, A. P., Ciric, R., Ruparel, K., Moore, T. M., Gur, R. C.,

… Bassett, D. S. (2019). Associations between neighborhood SES and

functional brain network development. Cerebral Cortex, 30(1), 1–19.
https://doi.org/10.1093/cercor/bhz066

Tournier, J. D., Calamante, F., & Connelly, A. (2010). Improved probabilistic

streamlines tractography by 2nd order integration over fibre orienta-

tion distributions. Paper Presented at the Proceedings of the Interna-

tional Society for Magnetic Resonance in Medicine.

Tournier, J. D., Calamante, F., & Connelly, A. (2012). Mrtrix: Diffusion

tractography in crossing fiber regions. International Journal of Imaging

Systems and Technology, 22(1), 53–66.
Tulsky, D. S., Holdnack, J. A., Cohen, M. L., Heaton, R. K., Carlozzi, N. E.,

Wong, A. W. K., … Heinemann, A. W. (2017). Factor structure of the

NIH toolbox cognition battery in individuals with acquired brain injury.

DHAMALA ET AL. 3117

https://doi.org/10.1016/j.neuroimage.2012.10.045
https://doi.org/10.1016/j.neuroimage.2012.10.045
https://doi.org/10.3389/fnhum.2015.00227
https://doi.org/10.1017/S1355617714000307
https://doi.org/10.3389/fnhum.2015.00061
https://doi.org/10.3389/fnhum.2015.00061
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1093/cercor/bhu036
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1109/IEMBS.2009.5334874
https://doi.org/10.1016/j.neuroimage.2008.02.036
https://doi.org/10.1093/cercor/bhz066


Rehabilitation Psychology, 62(4), 435–442. https://doi.org/10.1037/

rep0000183

Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic

reconfiguration of structural and functional connectivity across core

neurocognitive brain networks with development. The Journal of Neu-

roscience, 31(50), 18578–18589. https://doi.org/10.1523/

JNEUROSCI.4465-11.2011

Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of cir-

cuits and function. Neuroscience & Biobehavioral Reviews, 32(3),

333–342.
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009).

Efficiency of functional brain networks and intellectual performance.

The Journal of Neuroscience, 29(23), 7619–7624. https://doi.org/10.
1523/JNEUROSCI.1443-09.2009

van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,

Ugurbil, K., & WU-Minn Human Connectome Project. (2013). The

WU-Minn Human Connectome Project: An overview. NeuroImage, 80,

62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

van Schouwenburg, M. R., den Ouden, H. E., & Cools, R. (2010). The

human basal ganglia modulate frontal-posterior connectivity during

attention shifting. Journal of Neuroscience, 30(29), 9910–9918.
Vatansever, D., Manktelow, A., Sahakian, B. J., Menon, D. K., &

Stamatakis, E. A. (2018). Default mode network engagement beyond

self-referential internal mentation. Brain Connectivity, 8(4), 245–253.
Viviani, R. (2016). A digital atlas of middle to large brain vessels and their

relation to cortical and subcortical structures. Frontiers in Neuroanat-

omy, 10, 12.

Wallis, G., Stokes, M., Cousijn, H., Woolrich, M., & Nobre, A. C. (2015).

Frontoparietal and cingulo-opercular networks play dissociable roles in

control of working memory. Journal of Cognitive Neuroscience, 27(10),

2019–2034.
Weintraub, S., Bauer, P. J., Zelazo, P. D., Wallner-Allen, K., Dikmen, S. S.,

Heaton, R. K., … Gershon, R. C. (2013). I. NIH toolbox cognition bat-

tery (CB): Introduction and pediatric data. Monographs of the Society

for Research in Child Development, 78(4), 1–15. https://doi.org/10.

1111/mono.12031

Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D.,

Slotkin, J., … Gershon, R. (2014). The cognition battery of the NIH

toolbox for assessment of neurological and behavioral function: Vali-

dation in an adult sample. Journal of the International Neuropsychologi-

cal Society, 20(6), 567–578. https://doi.org/10.1017/

S1355617714000320

Weis, S., Patil, K. R., Hoffstaedter, F., Nostro, A., Yeo, B. T. T., &

Eickhoff, S. B. (2019). Sex classification by resting state brain

connectivity. Cerebral Cortex, 30, 824–835. https://doi.org/10.1093/
cercor/bhz129

Willmes, K., Moeller, K., & Klein, E. (2014). Where numbers meet words: A

common ventral network for semantic classification. Scandinavian Jour-

nal of Psychology, 55(3), 202–211. https://doi.org/10.1111/sjop.12098
Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal

cortex as a cognitive map of task space. Neuron, 81(2), 267–279.
Wu, Z., Xu, D., Potter, T., Zhang, Y., & Alzheimer's Disease Neuroimaging

Initiative. (2019). Effects of brain parcellation on the characterization

of topological deterioration in Alzheimer's disease. Frontiers in Aging

Neuroscience, 11, 113.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., … Polimeni, J. R. (2011). The organization of the

human cerebral cortex estimated by intrinsic functional connectivity.

Journal of Neurophysiology, 106(3), 1125–1165.
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., &

Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the

choice of nodes matter? NeuroImage, 50(3), 970–983.
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray

and white: Neuroimaging changes in brain structure during learning.

Nature Neuroscience, 15(4), 528–536.
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L.,

Conway, K. P., … Weintraub, S. (2014). NIH toolbox cognition battery

(CB): Validation of executive function measures in adults. Journal of

the International Neuropsychological Society, 20(6), 620–629. https://
doi.org/10.1017/S1355617714000472

Zimmermann, J., Griffiths, J. D., & McIntosh, A. R. (2018). Unique mapping

of structural and functional connectivity on cognition. The Journal of

Neuroscience, 38(45), 9658–9667. https://doi.org/10.1523/

JNEUROSCI.0900-18.2018

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Dhamala E, Jamison KW, Jaywant A,

Dennis S, Kuceyeski A. Distinct functional and structural

connections predict crystallised and fluid cognition in healthy

adults. Hum Brain Mapp. 2021;42:3102–3118. https://doi.org/

10.1002/hbm.25420

3118 DHAMALA ET AL.

https://doi.org/10.1037/rep0000183
https://doi.org/10.1037/rep0000183
https://doi.org/10.1523/JNEUROSCI.4465-11.2011
https://doi.org/10.1523/JNEUROSCI.4465-11.2011
https://doi.org/10.1523/JNEUROSCI.1443-09.2009
https://doi.org/10.1523/JNEUROSCI.1443-09.2009
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1111/mono.12031
https://doi.org/10.1111/mono.12031
https://doi.org/10.1017/S1355617714000320
https://doi.org/10.1017/S1355617714000320
https://doi.org/10.1093/cercor/bhz129
https://doi.org/10.1093/cercor/bhz129
https://doi.org/10.1111/sjop.12098
https://doi.org/10.1017/S1355617714000472
https://doi.org/10.1017/S1355617714000472
https://doi.org/10.1523/JNEUROSCI.0900-18.2018
https://doi.org/10.1523/JNEUROSCI.0900-18.2018
https://doi.org/10.1002/hbm.25420
https://doi.org/10.1002/hbm.25420

	Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults
	1  INTRODUCTION
	2  METHODS
	2.1  Dataset
	2.2  Parcellation
	2.2.1  FS 86
	2.2.2  CoCo 439

	2.3  FC extraction
	2.4  SC extraction
	2.5  Hybrid connectome
	2.6  Cognition
	2.7  Prediction of cognitive performance
	2.8  Model significance and comparisons
	2.9  Feature importance

	3  RESULTS
	3.1  Prediction of cognitive performance
	3.2  Feature importance

	4  DISCUSSION
	4.1  Limitations

	5  CONCLUSIONS
	6  CITATION GENDER DIVERSITY STATEMENT
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


