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INTRODUCTION 
 

Gastric cancer (GC) is one of the most common  

forms of gastrointestinal cancer and is associated with 

very high morbidity and mortality rates [1]. It  

can be histologically classified into various subtypes, 

including adenocarcinoma, squamous cell carcinoma, 

adenosquamous carcinoma, and carcinoid. Gastric 

adenocarcinoma accounts for 80-90% of all GC cases. 

In recent years, the incidence of GC has increased and 

GC cases have been associated with poor prognoses. 

Currently, surgical resection is the main option for GC 

treatment [2]. Therefore, identifying new therapeutic 

targets for GC is required [3]. Over the past few 

decades, several studies that focused on developing 

molecular targeted therapies for GC and understanding 

their underlying molecular mechanisms have shed  

light on GC pathogenesis [4]. However, despite the 

importance of accurate classification and risk 

stratification of GC patients in improving management 

decisions and prognosis predictions, reliable biomarkers 

to predict GC prognosis are lacking [5, 6]. 
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ABSTRACT 
 

Despite the high prevalence of gastric cancer (GC), molecular biomarkers that can reliably detect GC are yet to 
be discovered. The present study aimed to establish a robust gene signature based on cancer driver genes 
(CDGs) that can predict GC prognosis. Transcriptional profiles and clinical data from GC patients were analyzed 
using univariate Cox regression analysis and the least absolute shrinkage and selection (LASSO)-penalized Cox 
regression analysis to select optimal prognosis-related genes for modeling. Time-dependent receiver operating 
characteristic (ROC) and Kaplan-Meier analyses were done to assess the predictive power of this gene 
signature. A nomogram model for prediction of survival of GC patients was established using the CDG signature 
and clinical information, and a seven-CDG signature was identified. Risk scores were calculated using this 
signature, and patients were subsequently divided into high- and low-risk groups; high-risk patients in the 
training and validation datasets had poorer prognoses than low-risk patients. Cox regression analysis revealed 
that the CDG signature is an independent prognostic factor for GC. The signature and other clinical features 
were used to construct a nomogram for predicting overall GC patient survival. Calibration and decision curve 
analysis showed that the nomogram accurately predicted survival, highlighting its clinical utility. Thus, we 
established a novel CDG signature and nomogram for predicting GC prognosis, which may facilitate 
personalized treatment of GC. 
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Cancers are complicated diseases characterized by 

uncontrolled cellular growth, invasion, and metastasis, 

which are primarily caused by genetic mutations [7, 8]. 

These mutations are termed “drivers” due to their ability 

to drive tumorigenesis and confer certain selective 

advantages to somatic tissue cells over their neighboring 

cells. Mutations in cancer driver genes (CDGs) affect 

cellular homeostasis and numerous cellular processes. 

Recently, Francisco et al. reported molecular-level 

changes that occur during malignant tumor progression 

[7]. Their study represents the most comprehensive 

analysis performed to date, as they analyzed over 28,000 

samples of 66 cancer types and revealed 568 CDGs; 

these results suggest the involvement of a variety of 

molecular mechanisms. CDGs are important factors that 

affect the occurrence and development of GC, and they 

play important roles in GC prognosis. This necessitates 

the development of a robust and reliable CDG signature 

to improve individualized survival predictions for GC. 

 

This study aimed to build a scoring model by 

classifying GC patients on the basis of a CDG signature, 

in combination with other clinicopathological factors, to 

improve the ability to predict GC patient prognoses, 

thereby helping to guide individualized treatment. This 

study represents the first investigation into the clinical 

value of CDGs in predicting GC prognoses. CDGs are 

expected to become novel key GC biomarkers and open 

new avenues for the development of novel GC 

treatment methods. 

 

RESULTS 
 

Construction of the CDG signature for GC 

 

Overlapping prognostic CDGs from The Cancer 

Genome Atlas Stomach Adenocarcinoma (TCGA-

STAD) and GSE62254 databases were selected to 

determine the candidate CDGs. Twenty-four CDGs were 

identified for final analysis (Supplementary Figure 1A). 

Next, least absolute shrinkage and selection operator 

(LASSO)-penalized Cox analysis was performed to 

narrow down the list of CDGs, and 12 genes were 

identified for downstream analyses (Supplementary 

Figure 1B). Multivariate Cox analysis was performed 

based on the CDGs selected by LASSO analysis 

(Supplementary Figure 1C). The prognostic risk scores 

of the CDG signature were determined as follows: 

 

Risk score = (-0.06570) * (expression level of Damage 

Specific Deoxyribose Nucleic Acid [DNA] Binding 

Protein 2 [DDB2]) + 0.04589 * (expression level of 

Aminopeptidase [ENPEP] ) + 0.00243* (expression 

level of Guanine Nucleotide binding protein, Alpha 

Stimulating activity polypeptide [GNAS]) - 0.10790 * 

(expression level of Musashi Ribose Nucleic Acid 

[RNA] Binding Protein 2 [MSI2]) + 0.14947 * 

(expression level of myosin Va [MYO5A]) + 0.22932 * 

(expression level of Pleomorphic Adenoma Gene 1 

[PLAG1]) - 0.18526 * (expression level of RNA 

Binding Motif 15 [RBM15]; Supplementary Figure 1D). 

 

CDG expression and its mutations in GC 

 

To study the differences in CDG expression between 

tumor and normal tissues, we examined CDG messenger 

RNA (mRNA) levels in samples from TCGA-STAD. 

The results revealed that tumor tissues had significantly 

higher expression of DDB2, MSI2, and RBM15 than the 

normal tissues (Figure 1A). However, no differences 

were observed in the expression of ENPEP, GNAS, 

MYO5A, or PLAG1. We also examined the levels of 

proteins encoded by these CDGs using clinical samples 

from the Human Protein Atlas (HPA) database and found 

that the differences in protein levels were consistent with 

the observed differences in mRNA levels (Figure 1B).  

 

The prognostic value of the CDG signature 

 

To evaluate the prognostic value of the CDG signature 

in the training set, the GC patients were divided into 

high-risk (n = 167) and low-risk (n= 167) groups 

according to the median risk score. The corresponding 

signature risk score survival statuses were ranked and 

displayed on a dot-plot (Figure 2A, 2B). Individuals 

exhibited a greater risk of mortality with increasing risk 

score (Figure 2C). Heatmaps of the seven prognostic 

CDGs are displayed in Figure 2D. 

 

Kaplan-Meier analysis revealed that in the training set, 

patients in the high-risk group had shorter overall 

survival (OS) than those in the low-risk group (P < 

0.001) (Figure 2E). Time-dependent receiver operating 

characteristic (ROC) analysis demonstrated that the area 

under the curve (AUC) values for one year, three years, 

and five years were 0.712, 0.613, and 0.611, respectively 

(Figure 2F). We also compared the prognostic value  

to traditional clinicopathological predictors. Time-

dependent ROC analyses for grade-based and stage-

based prediction of OS (TCGA) are shown in Figure 2G, 

2H. Univariate and multivariate Cox regression analyses 

showed that age and risk score were both independent 

prognostic factors for GC (Figure 3A, 3B). 

 

Validation of the CDG signature 

 

To validate the CDG signature, patients in the 

validation set were divided into high- and low-risk 

groups, according to the median risk score (calculated 
using the CDG signature). The results were compatible 

with those obtained in the training set derived from 

TCGA. Figure 4A shows the heatmap of the seven 
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Figure 1. Expression levels of cancer driver genes (CDGs) and their alterations in gastric cancer (GC). (A) CDG mRNA expression 

levels in GC obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). (B) Expression levels of proteins encoded by 
CDGs in normal tissues as obtained from the Human Protein Atlas (HPA) database (Data for GLAP1 was not available at HPA database). 

 

 
 

Figure 2. Prognostic value of the cancer driver gene (CDG) signature in The Cancer Genome Atlas (TCGA) training set. (A) 

Distribution of risk scores per patient. (B) Relationships between overall survival (OS) status and survival time of gastric cancer (GC) patients 
ranked on the basis of risk score. (C) Comparison of mortality risk between the two groups in TCGA cohort. (D) Heatmap representing the 
expression profiles of the seven CDGs. (E) Kaplan-Meier analysis of OS between high- and low-risk groups in TCGA set. (F) Time-dependent 
receiver operating characteristic (ROC) analysis for OS prediction in TCGA set. (G) Time-dependent ROC analysis for grade prediction in TCGA 
set of OS. (H) Time-dependent ROC analysis for stage prediction in TCGA set of OS. 
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prognostic CDGs. The corresponding signature risk 

score survival statuses were ranked and are displayed as 

a dot-plot (Figure 4A–4C). Individuals were at greater 

risk of mortality and recurrence with increasing risk 

scores (Figure 4E, 4F). Kaplan-Meier analysis also 

showed that the high-risk group had shorter OS and 

disease-free survival (DFS) than the low-risk group  

(P < 0.001; Figure 4G, 4H). Time-dependent ROC 

 

 
 

Figure 3. Forest plot depicting associations between risk factors and other clinical features and the prognosis of gastric 
cancer. (A) Univariate Cox regression analysis. (B) Multiple Cox regression analysis. 

 

 
 

Figure 4. External validation of the cancer driver gene (CDG) signature using the gastric cancer (GC) data from the Gene 
Expression Omnibus (GEO) validation set. (A) Heatmap representing expression profiles of the seven CDGs. (B) Distribution of risk scores 
per patient. (C) Relationships between overall survival (OS) status and survival time in GC patients ranked by risk score. (D) Relationships 
between disease-free survival (DFS) status and survival time in GC patients ranked by risk score. (E) Comparison of OS risk between the two 
groups. (F) Comparison of DFS risk between the two groups. (G) Kaplan-Meier analysis of OS between high- and low-risk groups in GSE62254. 
(H) Kaplan-Meier analysis of DFS between high- and low-risk groups in GSE62254. (I) Time-dependent receiver operating characteristic (ROC) 
analysis for OS prediction in the GSE62254 cohort. (J) Time-dependent ROC analysis for DFS prediction in the GSE62254 cohort. 
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analysis of OS showed that the 1-, 3-, and 5-year AUC 

values were 0.662, 0.652, and 0.646 respectively 

(Figure 4I). The AUC values of one-, three-, and five-

year DFS were 0.628, 0.637, and 0.619, respectively 

(Figure 4J). 

 

Subgroup analysis of the CDG signature 

 

To further estimate the utility of the CDG signature  

in predicting survival outcomes, stratification analysis 

was conducted based on specific clinicopathological 

characteristics. These subgroups included age (<65 or 

≥65 years), gender, grade, stage, and T, N, and M stages 

(Figure 5A–5P). Stratification of the training and 

validation datasets revealed that the CDG signature 

could categorize patients into different survival groups 

and provide statistically significant prognostic values 

(Tables 1, 2). 

 

Gene set enrichment analysis (GSEA) 

 

To further analyze the functions of the seven CDGs 

identified, GSEA was conducted for the high- and 

low-risk patients in the four datasets. GSEA results for 

 

 
 

Figure 5. Subgroup analysis of the cancer driver gene (CDG) signature. (A) Age < 65 years, (B) Age ≥ 65 years, (C) Male, (D) Female, 

(E) G2, (F) G3, (G) Stage I, (H) Stage III, (I) Stage IV, (J) T3, (K) T4, (L) M0, (M) M1, (N) N0, (O) N1, and (P) N3. 
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Table 1. Stratified survival analyses based on clinical characteristics and CDG signature in TCGA-STAD cohort. 

Characteristics 
Number 

% 
Overall survival 

High-risk Low-risk HR (95% CI) P value 

Age (years)   

< 65 73 72 43.4% 2.627(1.378-5.007) 0.003 

≥ 65 94 95 56.6% 2.791(1.761-4.424) 0.000 

Sex   

Male 110 106 64.7% 2.623(1.682-4.090) 0.000 

Female 57 61 35.3% 1.705(1.204-2.415) 0.003 

Grade   

G1 8 1 2.7% - - 

G2 50 67 35.0% 2.115(1.518-2.947) 0.000 

G3 103 96 59.6% 1.554(1.219-1.981) 0.000 

Unknown 6 3 2.7% - - 

Stage  

I 17 27 13.2% 1.940(1.037-3.629) 0.038 

II 58 48 31.7% 1.225(0.844-1.777) 0.286 

III 63 74 41.0% 1.717(1.290-2.284) 0.000 

IV 19 14 9.9% 2.111(1.251-3.563) 0.005 

Unknown 10 4 4.2% - - 

T stage  

T1 2 12 4.2% - - 

T2 37 35 21.6% 1.425(0.944-2.150) 0.092 

T3 86 70 46.7% 1.359(1.041-1.774) 0.024 

T4 38 50 26.3% 2.228(1.539-3.225) 0.000 

Unknown 4 0 1.2% - - 

M stage  

M0 151 149 89.8% 1.576(1.290-1.925) 0.000 

M1 13 9 6.6% 2.360(1.087-5.122) 0.030 

Unknown 3 9 3.6% - - 

N stage  

N0 46 52 29.3% 1.708(1.146-2.544) 0.009 

N1 51 39 26.9% 2.044(1.346-3.105) 0.001 

N2 32 36 20.4% 1.467(0.974-2.210) 0.067 

N3 29 38 20.1% 1.587(1.113-2.263) 0.011 

Unknown 9 2 3.3% - - 

HR, hazard ratio; CI, confidence interval. 

 

the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways indicated that the “calcium 

signaling pathway,” “cell adhesion molecules,” 

(CAMs) “extracellular matrix receptor interaction,” 

“focal adhesion,” and “gap junction” categories were 

highly enriched in the high-risk group (Figure 6A). 

GSEA results for Gene Ontology (GO) terms indicated 

that the “collagen-containing extracellular matrix,” 

“contractile fiber,” “glycosaminoglycan binding,” 

“hormone binding,” and “muscle system processes” 

were highly enriched in the high-risk group  

(Figure 6B). 

 

Analysis of tumor immunity 

 

TCGA-STAD gene expression matrix was uploaded to 

the Cell type Identification by Estimating Relative 

Subsets of RNA Transcripts (CIBERSORT) platform to 

estimate the proportions of the 22 immune cell types. 

The high-risk group had high proportions of activated 
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Table 2. Stratified survival analyses based on clinical characteristics and CDG signature in the GSE62254 cohort. 

Characteristics 
Number 

% 
Overall survival Disease-free survival 

High-risk Low-risk HR (95% CI) P value HR (95% CI) P value 

Age (years)  

< 65 81 80 53.7% 2.431(1.491-3.963) 0.000 2.201(1.318-3.675) 0.003 

≥ 65 69 70 46.3% 1.443(1.154-1.805) 0.001 1.299(1.007-1.675) 0.044 

Sex   

Male 103 96 66.3% 1.260(1.032-1.538) 0.023 1.155(0.928-1.436) 0.197 

Female 47 54 33.7% 2.074(1.538-2.796) 0.000 2.019(1.454-2.805) 0.000 

Lauren pathological classification 

Intestinal 59 87 48.7% 1.450(1.124-1.869) 0.004 1.327(1.003-1.757) 0.048 

Diffuse 82 53 45.0% 1.476(1.157-1.884) 0.002 1.388(1.068-1.805) 0.014 

Mixed 9 10 6.3% 1.251(0.722-2.170) 0.425 1.062(0.548-2.058) 0.859 

Stage  

I 7 23 10.0% 0.937(0.313-2.805) 0.908 1.272(0.383-4.227) 0.694 

II 41 56 32.3% 1.638(1.140-2.352) 0.008 1.156(0.760-1.760) 0.498 

III 56 40 32.0% 1.341(1.008-1.784) 0.044 1.278(0.932-1.754) 0.128 

IV 46 31 25.7% 1.263(0.975-1.637) 0.077 1.228(0.932-1.619) 0.145 

T stage  

T1+T2 75 113 62.7% 1.510(1.202-1.896) 0.000 1.370(1.056-1.777) 0.018 

T3+T4 75 37 37.3% 1.217(0.953-1.556) 0.116 1.091(0.843-1.411) 0.509 

M Stage   

M0 132 141 91.0% 1.441(1.205-1.722) 0.000 1.348(1.109-1.638) 0.003 

M1 18 9 9.0% 4.708(1.538-14.411) 0.007 2.186(0.702-6.803) 0.177 

N Stage  

N0 12 26 12.7% 1.123(0.561-2.246) 0.744 1.301(0.615-2.752) 0.491 

N1+N2+N3 138 124 87.3% 1.473(1.240-1.749) 0.000 1.345(1.116-1.620) 0.002 

HR, hazard ratio; CI, confidence interval. 

 

natural killer (NK) cells, monocytes, M2 macrophages, 

resting dendritic cells, and resting mast cells (Figure 

7A). The low-risk group had high proportions of CD8 

T-cells, CD4 memory-activated T-cells, follicular 

helper T-cells, resting NK cells, and M1 macrophages 

(Figure 7B). 

 

Establishment and evaluation of the nomogram 

 
To predict the survival of GC patients, we constructed a 

nomogram based on the training set, which included the 

CDG signature risk score, age, gender, and pathological 

stage (Figure 8A). Time-dependent ROC analysis was 

performed to assess the predictive accuracy of the 

nomogram. Plotting the one-, three-, and five-year ROC 

values of OS in the training set of the nomogram 

revealed AUC values of 0.696, 0.639, and 0.632, 

respectively (Figure 8B). Time-dependent ROC 

analyses from the nomogram for one-, three- and five-

year OS probabilities in the validation set returned AUC 

values of 0.825, 0.784, and 0.767, respectively (Figure 

8C). In addition, ROC analysis of the DFS predictions 

in the validation set revealed that the nomogram was 

highly discriminatory, with AUC values of 0.825, 

0.784, and 0.767 for one-, three-, and five-year DFS 

levels, respectively (Figure 8D). 

 

Calibration and decision curve analysis (DCA) revealed 

the reliability of the nomogram for predicting prognoses 

in the training and validation sets. The calibration plot 

revealed that the predictions made using the nomogram 

were consistent with the true observations 

(Supplementary Figure 2A–2C). The DCA curves for the 

predictive nomogram revealed that it had high net benefit 

(Supplementary Figure 2D–2F). The web-based 

calculator (https://prognosis.shinyapps.io/STAD/) could 

predict the OS of GC patients based on the established 

nomogram (Supplementary Figure 3A, 3B) and is 

convenient in terms of its usage and visualization of the 

prognostic nomogram. 

 

DISCUSSION 
 

Prognostic outcomes of GC patients are highly  

variable. Thus, there is an urgent need to find new GC 

biomarkers and to construct new prognostic models for 

https://prognosis.shinyapps.io/STAD/
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predicting GC survival in order to develop personalized 

treatment plans [9]. In this study, we developed a 

prognostic CDG signature and a corresponding 

nomogram for predicting GC patient survival. We have 

developed a promising tool for predicting GC outcomes 

and guiding personalized GC therapy. 

 

Altering the expression of CDGs can increase cell 

proliferation and survival, leading to clonal expansion 

and tumor growth [10]. Different cancer types may be 

associated with both common and specific driver genes, 

and different genes may play different roles in various 

cancer types. Here, we developed a seven-CDG 

prognostic signature based on DDB2, ENPEP, GNAS, 

MSI2, MYO5A, PLAG1, and RBM15. DDB2 was 

originally identified as a novel tumor suppressor via 

nucleotide excision repair [11], and it is abnormally 

expressed in several tumor tissues [12–15]. However, 

increasing evidence suggests that DDB2 exhibits dual 

functions in cancer cell proliferation. Qiao et al. reported 

that DDB2-silencing inhibits proliferation and migration 

of GC cells [16]. ENPEP is an essential and highly 

specific proangiogenic enzyme. ENPEP functions in 

tumor proliferation, migration, and drug resistance in 

breast and colorectal cancers [17, 18]. GNAS is a 

complex gene locus that gives rise to multiple translated 

and non-translated gene products [19–22]. At present, 

few studies have investigated the role of GNAS in GC, 

thus future studies should systematically elucidate its 

functions. MSI2 is a member of the Musashi family of 

RNA-binding proteins, which are overexpressed in 

various tumors, including ovarian, pancreatic, bladder, 

and lung cancers [23–26]. MSI2 overexpression is 

correlated with poor prognoses of liver and pancreatic 

 

 
 

Figure 6. Gene set enrichment analysis (GSEA) of high- and low-risk groups. Top five representatives from (A) Gene Ontology (GO) 
term enrichment analysis and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. 
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cancer patients [27, 28]. Early studies on MYO5A 

focused on its roles in neuron formation and function, 

and in neurological disease. However, the functions and 

clinical significance of MYO5A in GC remain unclear. 

Recent studies have reported that MYO5A plays a  

role in tumorigenesis. Zhao et al. reported that serum 

MYO5A levels are a valuable predictor of cervical  

nodal occult metastasis and can be used to assess 

prognosis [29]. PLAG1 is a transcription factor involved 

in various cancers, such as lipoblastoma, hepatoblastoma, 

acute myeloid leukemia, uterine leiomyoma, and 

leiomyosarcoma [30]. RBM15, which is a member of the 

split ends family of proteins, determines cell-fate in  

many tissues including blood and is overexpressed  

in hepatocellular carcinoma [31]. While the studies 

highlighted above have revealed the functions of these 

CDGs in other cancers, few studies have investigated the 

roles of these CDGs in GC tumorigenesis. 

 

While several studies have focused on the functions of 

CDGs, systematic analysis of their prognostic potential 

for GC is still required. The CDG signature identified in 

 

 
 

Figure 7. Tumor immunity analysis based on the CDG signature. (A) Relative proportion of immune cells between high- and low-risk 

groups. (B) Violin plot depicting differences in the abundances of 22 types of immune cells between the high- and low-risk groups. 
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our study was significantly associated with the survival 

of GC patients, and this association remained significant 

after controlling for clinical and pathological features. 

We constructed a nomogram for predicting one-, three- 

and five-year OS values for GC based on this CDG 

signature, age, gender, and stage. ROC analysis, 

calibration plots, and DCA were used to verify the 

prognostic accuracy of the model, and the results 

showed that this model had strong predictive ability. 

We also created a simple online tool to perform this 

analysis in clinical settings. 

To further our understanding of the mechanisms 

associated with this CDG signature, GSEA was 

conducted to compare the low- and high-risk groups. 

Terms and categories such as “calcium signaling 

pathway,” “CAMs,” “extracellular matrix receptor 

interaction,” “focal adhesion,” “gap junction,” “collagen-

containing extracellular matrix,” “contractile fiber,” 

“glycosaminoglycan binding,” “hormone binding,” and 

“muscle system processes” were highly enriched in the 

high-risk group, indicating that the seven CDGs are 

involved in these signaling pathways in GC. 

 

 
 

Figure 8. Construction of the nomogram. (A) A nomogram for predicting one-, three-, and five-year overall survival (OS) generated by 
integrating the risk score, age, gender, and stage. (B) Time-dependent receiver operating characteristic ROC curves of the nomogram for OS 
prediction from the training set. (C) Time-dependent ROC curves of the nomogram for OS prediction from the validation set. (D) Time-
dependent ROC curves of the nomogram for DFS predictions from the validation set.  
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There is evidence that CDGs are closely related to 

tumor cell immune infiltration. In non-small cell lung 

cancer, GNAS promotes migration and invasion of 

cancer cells by altering macrophage polarization [32]. 

However, studies focusing on the role of the seven 

CDGs, identified in this study, in immune infiltration 

remain limited. In the present study, CIBERSORT was 

used to calculate the proportions of 22 immune cell 

subsets in GC, revealing that the high-risk group had 

high proportions of activated NK cells, monocytes, M2 

macrophages, resting dendritic cells, and resting mast 

cells. These findings provide insight into the 

mechanisms associated with these CDGs in GC. 

 

Many previous studies have constructed prognostic gene 

signatures. Chen et al. constructed a stemness index-

related signature for GC with an AUC value of 0.688 

[33]. Ren et al. reported angiogenesis-related gene 

expression signatures for predicting DFS in GC patients 

with an AUC value of 0.673 [34]. ROC analysis in  

the validation group for the nomogram in our study 

(0.825, 0.784, and 0.767 for OS and 0.822, 0.783, and 

0.767 for DFS) indicated that the prognostic index is  

a stable predictor for the prognosis of GC patients.  

We also performed ROC analysis with traditional 

clinicopathological predictors (stag and grade), which 

demonstrated that our CDG signature has high 

prognostic value compared to that of these predictors. 

 

However, our study has the following limitations. 

First, the data used in this study were obtained from 

two different databases and a non-database case  

was not used for external verification. Second, we did 

not investigate the mechanisms underlying these 

CDGs in GC. Third, the levels of immune cell 

infiltration were calculated based on algorithmic 

evaluations and, thus, require experimental validation. 

Therefore, further genetic and experimental studies 

with larger sample sizes and experimental validation 

are needed. 

 

In summary, this is the first study to identify and 

validate a CDG signature that could independently 

predict the OS and DFS of GC patients. A prognostic 

nomogram was constructed by integrating age, sex, and 

TNM stage, which performed well in predicting  

the survival of GC patients. Our study, thus, generated  

a clinically useful tool for improving prognostic 

management of GC. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

Publicly available transcriptomic and clinical data 

associated with GC samples were obtained from TCGA 

(https://tcga-data.nci.nih.gov/tcga/) and the Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm. 

nih.gov/gds/) and analyzed retrospectively. We used 

the RNA-Seq fragments per kilobase of transcript  

per million mapped reads (FPKM) data from TCGA. 

After excluding cases with follow-up times of <30 

days, 634 patients were enrolled in the study, 

including 334 patients from TCGA-STAD project and 

300 from the GSE62254 cohort [35]. Data from the 

GSE62254 cohort were obtained from the Asian 

Cancer Research Group (ACRG) Gastric cohort,  

which included 199 male and 91 female GC patients. 

The median age was 64 years and the range was  

24-86 years. 

 

Data for 568 CDGs (Supplementary Table 1) were 

downloaded from the Integrative OncoGenomics 

(IntOGen) pipeline (https://www.intogen.org/search) 

[7]. The immunohistochemical data associated  

with proteins encoded by each CDG in GC and  

normal tissues were obtained from the HPA 

(https://www.proteinatlas.org/).  

 

Construction of the CDG signature 

 

To narrow down the screening range, overlapping 

prognostic CDGs were selected from TCGA-STAD 

and GSE62254 cohorts via Cox univariate analysis. 

TCGA-STAD and GSE62254 were then used for 

model training (n = 334) and validation (n = 300), 

respectively. Previously selected CDGs were further 

screened and confirmed by LASSO Cox regression 

analysis (with the penalty parameter estimated by  

10-fold cross-validation) using the “glmnet” package. 

A formula was developed using the CDG signature 

constructed above, where β corresponds to the 

correlation coefficient: 

 

Risk score = β1 × (expression of RNA1) + β2 × 

(expression of RNA2) + ··· + βn × (expression of 

RNAn) 

 

The patients in each dataset were assigned to a high- or 

a low-risk group using the median risk score as a cutoff. 

The ROC curves were created using the “survivalROC” 

package, and the AUC values were calculated to 

evaluate the predictive potential of the CDG signature. 

 

Validation of the CDG signature 

 

To validate the CDG signature, the patients in the 

validation set were separated into high- or low-risk 

groups according to the median risk score, which was 
calculated according to the CDG signature. Kaplan-

Meier curve and time-dependent ROC analyses were 

conducted to assess CDG signature categorization.  

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.intogen.org/search
https://www.proteinatlas.org/
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Subgroup analysis of the CDG signature 

 

To validate the effectiveness of the prognostic CDG 

signature, stratification analysis was performed on the 

training and validation sets using different 

demographic and clinical characteristics. The GC 

cases were divided into two risk groups according to 

their characteristics and risk scores, and Cox 

regression analysis was performed to analyze 

differences between the subgroups. 

 

Estimation of immune cell infiltration 

 

To analyze the relationship between the CDG signature 

and immune cell characteristics, CIBERSORT was used 

to estimate the fractions of immune cell types between 

the high- and low-risk groups [36]. Statistical analysis 

of the proportions of 22 immune cell types in each of 

the 334 GC samples was performed using the Wilcoxon 

rank-sum test. 

 

GSEA 

 

GSEA was performed to explore the GO terms and 

KEGG pathways that were significantly enriched in 

high-risk GC samples (http://www.broadinstitute. 

org/gsea). Gene sets were considered significantly 

enriched when FDR < 0.05 and |NES| > 1. 

 

Construction and evaluation of the nomogram 

 

We designed a novel nomogram model containing the 

CDG signature and clinicopathological predictors to 

establish a quantitative clinical tool to monitor and 

predict outcomes of GC patients. Subsequently, we 

developed a web-based calculator based on this model for 

clinical applications. Time-ROC curves and calibration 

plots were generated, and DCA was performed to 

evaluate the clinical utility of the novel nomogram. 

 

Statistical analysis 

 

All statistical analyses were performed using R software 

(version 4.0.5, R Development Core Team, 2021) and 

GraphPad Prism (version 8.3.0, GraphPad software, 

Inc., San Diego, CA, USA). All statistical tests (two-

tailed) with P < 0.05 were considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Establishment of a prognostic CDG (cancer driver gene) signature. (A) Screening of prognosis-related 
CDGs. (B) Least absolute shrinkage and selection operator (LASSO) regression analysis to screen prognosis-related genes from the survival-
related CDGs. (C) Forest plot of multivariate Cox regression analyses used to construct the prognostic CDG signature. (D) Seven-CDG signature 
for GC based on Cox regression coefficient. 
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Supplementary Figure 2. Evaluation of the cancer driver gene (CDG)-based nomogram. (A) Calibration plot for overall survival (OS) 

prediction from the training set of the nomogram. (B) Calibration plot for OS prediction from the validation set of the nomogram. (C) 
Calibration plot for disease-free survival (DFS) prediction from the validation set of the nomogram. (D) Decision curve analysis (DCA) for OS 
prediction from the training set of the nomogram. (E) DCA for OS prediction from the validation set of the nomogram. (F) DCA for DFS 
prediction from the validation set of the nomogram. 
 

 
 

Supplementary Figure 3. Establishment of an easy-to-operate web-based calculator for predicting gastric cancer (GC) 
prognoses (https://prognosis.shinyapps.io/STAD/). (A) Overall survival rate calculator. (B) 95% confidence interval of the overall 

survival rate determined using the web-based calculator. 

 

  

https://prognosis.shinyapps.io/STAD/
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. List of cancer driver genes. 

 


