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Abstract: An increasing amount of evidence indicates a relatively high prevalence of superinfections
associated with coronavirus disease 2019 (COVID-19), including invasive aspergillosis, but the
underlying mechanisms remain to be characterized. In the present study, to better understand the
biological impact of superinfection, we determine and compare the host transcriptional response to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) versus Aspergillus superinfection,
using a model of reconstituted human airway epithelium. Our analyses reveal that both simple
infection and superinfection induce strong deregulation of core components of innate immune and
inflammatory responses, with a stronger response to superinfection in the bronchial epithelial model
compared to its nasal counterpart. Our results also highlight unique transcriptional footprints of
SARS-CoV-2 Aspergillus superinfection, such as an imbalanced type I/type III IFN, and an induction of
several monocyte and neutrophil associated chemokines, that could be useful for the understanding
of Aspergillus-associated COVID-19 and also the management of severe forms of aspergillosis in this
specific context.
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1. Introduction

The current pandemic of novel coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had the first cases reported in Wuhan,
Hubei province, China, in December 2019. As of 5 December 2020, there have been more than 65,007,974
confirmed COVID-19 cases in the world as reported by the WHO, including 1,507,018 deaths (WHO).
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SARS-CoV-2 is a beta-coronavirus closely related to the severe acute respiratory syndrome coronavirus
(SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) that emerged in 2003
and 2012, respectively.

In a short period of time, significant effort has been devoted to understanding the molecular basis of
the pathology associated with SARS-CoV-2 infection in an attempt to guide work on treatment, vaccine,
and diagnostic test development. Numerous clinical studies have reported that the pathophysiology
of COVID-19 has similar aspects to that initially described for SARS-CoV, i.e., acute lung injury due to
over-inflammation following early stages driven by infection and viral replication [1–5]. Nevertheless,
the underlying mechanisms of these exuberant inflammatory responses in SARS-CoV-2 infection
remain largely unknown, and there is a need to expand our knowledge of the host’s response.
In this context, several recent omics-based approaches, including in vivo and in vitro transcriptional
profiling studies, have highlighted specific aspects of the signature of infection that could contribute to
COVID-19 [6–9]. Blanco-Melo and colleagues, using transcriptional and serum profiling of COVID-19
patients, have notably shown that the SARS-CoV-2 infection signature was defined by low levels of
Type I and III interferons juxtaposed to elevated chemokines and high expression of IL- 6 [6]. A recent
report has shown that inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie
severe COVID-19 pneumonia in patients with no prior severe infection [10].

It is now well known that superinfections of bacterial/fungal origin can affect the course and
severity of respiratory viral infections. For example, the co-pathogenesis of viruses and bacteria into
the lung has been extensively studied, notably in the context of influenza superinfection by bacteria
such as S. pneumoniae [11–14]. To date, there are limited data available on superinfections associated
with COVID-19 [15], though superinfections were reported in 10%–20% of SARS-CoV-2-infected adults
admitted to Wuhan hospitals through the end of January 2020, and notably in 50%–100% of those who
died [16]. In intensive care units, COVID-19 patients are at high risk of developing secondary infections,
including fungal infections, e.g., invasive pulmonary aspergillosis [17]. Indeed, a recent study on the
French COVID-19 cohort reported that 33% of critically ill COVID-19 patients also showed invasive
aspergillosis [18]. However, while the reasons for increased vulnerability to Aspergillus in COVID-19
patients remain undetermined, the putative contribution of Aspergillus to SARS-CoV-2 related lung
inflammation and COVID-19 pathophysiology also constitutes a major unanswered question.

To better understand the biological impact of superinfection in the SARS-CoV-2 context, we sought
to determine and compare the host transcriptional response to SARS-CoV-2 versus a SARS-CoV-2
+ Aspergillus superinfection. To reach this goal, we established a model of SARS-CoV-2 infection
and superinfection in reconstituted human airway epithelia (HAE), based on previously published
works [19–21]. Our analysis reveals that both simple infection and superinfection induced strong
deregulation of core components of innate immune and inflammatory responses, however, it also
highlighted unique transcriptional footprints of the SARS-CoV-2 + Aspergillus superinfection that
provide valuable insight for the understanding not only of Aspergillus-associated COVID-19 but also
for the management of severe forms of aspergillosis.

2. Materials and Methods

2.1. Reconstituted Human Airway Epithelial Model

MucilAirTM HAE reconstituted from primary human cells obtained from nasal or bronchial
biopsies, were provided by Epithelix SARL (Geneva, Switzerland) and maintained in air-liquid
interphase, according to the manufacturer’s instructions. For infection experiments, apical poles were
gently washed twice with warm OptiMEM medium (Gibco, ThermoFisher Scientific, Waltham, MA,
USA) and then infected directly with 150 µL dilution of the virus in OptiMEM medium, at a multiplicity
of infection (MOI) of 0.1 (i.e., 5 × 104 TCID50/epithelium) [21]. For mock infection, the same procedure
was followed using OptiMEM as inoculum. Superinfection was performed in SARS-CoV-2 infected
cells at 48 h post-infection, with apical inoculation of 10 µL of Aspergillus in OptiMEM at a MOI of 1.
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Samples were collected from apical washes or basolateral medium at 72 h post-infection. Variations in
transepithelial electrical resistance (TEER) were measured using a dedicated volt-ohm meter (EVOM2,
Epithelial Volt/Ohm Meter for TEER) and expressed as Ohm.cm2.

2.2. Pathogens

All experiments involving clinical samples and the manipulation of infectious SARS-CoV-2 were
performed in biosafety level 3 (BSL-3) facilities, using appropriate protocols. The BetaCoV/France/

IDF0571/2020 SARS-CoV-2 strain used in this study was isolated directly from a patient sample,
as described elsewhere [21]. Viral stocks were prepared and quantified in Vero E6 cells (TCID50/mL).
Aspergillus niger (ATCC 16404) was maintained on potato dextrose agar for 5–7 days at 37 ◦C. Conidia
were then harvested by washing culture flask with sterile PBS supplemented with 0.1% Tween 20 and
quantified on maltose extract agar plates (CFU/mL).

2.3. mRNA Sequencing

Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, ref. 74104, Courtaboeuf, France)
with DNase treatment, following the manufacturer’s instruction. 500 µg total RNA was used to prepare
polyA-enriched RNA-seq libraries using the KAPA mRNA Hyper Prep Kit (Roche, ref. KK8581/KK8581,
Basel, Switzerland). Those libraries were prepared separately for each sample with 11 amplification cycles,
and then all libraries were equimolar pooled before sequencing. Paired-end sequencing (2 × 100 bp) was
performed with Illumina NovaSeq 6000 sequencing platform on an SP flowcell (Illumina, ref. 20040326,
San Diego, CA, USA). Raw reads were first cleaned with Cutadapt 2.8 [22] to trim adapters and
low-quality ends (i.e., terminal bases with Phred quality score below 30). Only reads longer than
75 bp and with less than 20% of N (undetermined base) after trimming were kept for further analysis.
The Kallisto 0.46.1 software was used for reference-indexing and transcript abundance estimation [23].
The reference transcriptome based on NCBI RefSeq annotation release 109.20191205 and genome
assembly build GRCh37.p13 were chosen for this analysis [24]. Table S2 provides a summary statistic
of the pseudo-alignment process.

2.4. Differential Expression Analysis

Differential expression analysis was performed with R 3.6.3. First, abundances at transcript-level
were imported using tximport 1.14.0 [25]. Only coding mRNA transcripts were considered. Gene-level
effective lengths were obtained by weighted mean with their expression values in FPKM (Fragment
Per Kilobase Million) weights. Raw counts were also computed at gene-level by sum and used as input
for DESeq2 1.26.0 [26]. Normalization within DESeq2 used first gene-level effective length, and then
the size factor was estimated using the function ‘estimateSizeFactors.’ Differential expression testing
was performed using default parameters. P-values were adjusted using the Benjamini–Hochberg
method after the independent filtering was implemented by default in DESeq2. A gene was considered
differentially expressed if both its adjusted p-value was below 0.01 and its induced change in expression
was at least a 2-fold increase (for upregulated genes) or a 2-fold decrease (for down-regulated genes)
compared to the control condition. Finally, the NCBI gene IDs were mapped to Uniprot IDs using
Uniprot cross-references (https://www.uniprot.org/database/DB-0118) [24,27]. First, Uniprot entries
associated with several gene IDs were removed. Indeed, we were not focused on gene fusion products
or read-through transcripts in this study. The protein–protein interaction (PPI) network was analyzed
with STRING 11.0 and visualized with Cytoscape 3.8.0.

https://www.uniprot.org/database/DB-0118
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2.5. In silico Functional Analysis

Based on mapped Uniprot IDs, gene set enrichment was performed using the parent-child union
method as previously described [28]. In this method each functional term, called child, was considered
relatively to its parents to compute the probability of enrichment (p-value). We considered 3 functional
databases with parent-child relations: Reactome, Uniprot Keyword (restricted to “Biological process”
and “Disease”), and Gene ontology (Restricted to “Biological process”). Different files (available online:
URLs were all accessed the 04/02/2020) were parsed to define Uniprot ID associations with terms and
identify a child to parent relations within each functional database; URLs are specified in Table S1.

3. Results

3.1. Simple Infection and Superinfection Induce a Strong Deregulation of Core Components of Innate Immune
and Inflammatory Responses

In order to identify similarities and differences between the host response to SARS-CoV-2 simple
infection and Aspergillus superinfection, we sought to investigate the transcriptome of human respiratory
epithelial cells during infection, in comparison with non-infected cells. Aware of the inherent limitations
of experimental models using cell lines, we set up a model of infection/superinfection in a physiological
model of reconstituted human airway epithelium (HAE). Developed from biopsies of nasal or bronchial
cells differentiated in the air/liquid interphase, these HAE models, that we previously used with
different respiratory viruses including SARS-CoV-2 [19–21], reproduced with high fidelity most of
the main structural, functional, and innate immune features of the human respiratory epithelium
that play a central role during infection, hence constituting an interesting surrogate to study airway
disease mechanisms.

We infected nasal or bronchial HAE with SARS-CoV-2, and superinfection with Aspergillus
was performed at 48 h post-infection (hpi), which we had previously defined as the peak of acute
SARS-CoV-2 infection in the HAE model [21]. Mock-infected, infected (CoV), and superinfected
samples (CoV+Asp) were harvested at 72 hpi (24 h after superinfection) to perform mRNA-seq analysis
(Figure 1A). Both nasal and bronchial HAE models of superinfection were further characterized and
validated in terms of viral production, impact on trans-epithelial resistance, and apical release of
IL-6, which we used as hallmarks of infection (Figure 1A). Interestingly, in contrast with nasal HAE,
we observed a significant increase in the relative viral production in the context of superinfection in
bronchial HAE, associated with higher IL-6 levels and a stronger negative impact on trans-epithelial
resistance (Figure 1B).
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Figure 1. (A) Overview of experimental strategy. (B) At 72 h post-infection, for both nasal and bronchial
human airway epithelia (HAE) model, the relative viral production (intracellular) was determined using
RTqPCR, and the impact of infection on epithelium integrity was monitored by the measure of the
transepithelial resistance (TEER Ohms/cm2). IL-6 was measured at the apical using a specific ELISA
assay. * p < 0.05; ** p < 0.01; *** p < 0.001. (C) Nasal and bronchial gene signature overlap for SARS-CoV2
or SARS-CoV-2+Aspergillus infected conditions vs. Mock. We contrasted the significantly differentially
expressed gene lists corresponding to CoV vs. Mock and CoV+Asp vs. Mock in nasal and bronchial
HAE. Only genes above threshold (log2(FC) > 1 or <−1 compared to the mock-infected condition and
Benjamini–Hochberg adjusted p-value < 0.01) were considered. (D) Overview of functional enrichment
results for SARS-CoV2 or SARS-CoV-2+Aspergillus infected conditions vs. Mock. Considering (CoV vs.
Mock) and (CoV+Asp vs. Mock) for both bronchial and nasal HAE, significantly up- or down-regulated
gene lists (x-axis) were tested for significant enrichment using the parent-child strategy (see methods).
If below the threshold, the adjusted p-values corresponding to different terms (y-axis) are represented
by point sizes (see legend). After clustering terms based on gene occurrences (binary distance and Ward
algorithm) in 15 metagroups, only the top two (lowest adjusted p-value) were represented here. For the
complete list of significant terms, see Figure S1. The bar plot on the right represents the sizes of enriched
terms (called child) in comparison to the size of their parents (see Section 2). (E) Positive regulation
of the inflammatory response in nasal and bronchial HAE. We extracted the list of proteins associated
with the term GO:0050729 and visualized the scaled log-transformed expression results in a heatmap.
Each row represents a gene, and each column is an experimental condition. The color key indicates the
scaled expression levels vs. Mock (red, low; blue, high).



Microorganisms 2020, 8, 1974 6 of 14

3.2. CoV+Asp Superinfection Transcriptomic Signature Recapitulates the Signature CoV Infection, but with a
Distinct Regulation of the Inflammatory Response

Differential expression analysis of mRNA-seq data compared to the mock-infected condition
identified 1638 and 454 differentially expressed genes (DEGs) in SARS-CoV-2-infected nasal and
bronchial HAE, respectively (FC ≥ 2, Benjamini–Hochberg adjusted p-value < 0.01). In the context of
CoV+Asp superinfection, the number of DEGs was notably higher, with 2979 and 3235 genes in nasal and
bronchial HAE, respectively (Supplementary Data File 1). Interestingly, there was an important overlap
between CoV infection and CoV+Asp superinfection associated DEGs in both nasal and bronchial
models. As illustrated in the Venn diagrams (Figure 1C), more than 96% (nasal HAE) and 99% (bronchial
HAE) of DEGs of the CoV signature were also part of the CoV+Asp signature. To provide a further
functional interpretation of the global transcriptional signatures, we performed functional enrichment
analysis on the CoV and CoV+Asp nasal and bronchial models. Gene Ontology (GO), UniProt
(KW), and Reactome (RC) terms were considered enriched when their Bonferroni-adjusted corrected
enrichment p-value was <0.05 (Figure 1D). As anticipated, a large part of the most enriched and shared
terms between all experimental conditions was related to the host response to infection (regulation of
response to cytokine stimulus, regulation of defense response, regulation of response to biotic stimulus)
and also to cornification, which regroups genes mostly involved in cell-death mechanisms (Figure 1D).
Interestingly, functional enrichments specific to CoV infection or CoV+Asp superinfection were also
highlighted. For example, gene clusters harboring terms associated with epithelium physiology and
cilium movements (regulation of cellular component movements, cell projection assembly, intraflagellar
transport) but also with intra- and extra-cellular signaling (post-translational protein phosphorylation,
protein localization to the extracellular membrane, peptide secretion) were exclusively enriched
in the context of CoV+Asp superinfection (Figure 1D). In parallel, given the importance of the
exacerbated immune response observed mainly in severe COVID-19 cases, we further analyzed the
inflammation-related terms and identified similar, yet to a different extent, regulation patterns for
genes involved in the positive regulation of inflammatory response (GO:0050729) between nasal and
bronchial HAE. As exemplified in the heatmap (Figure 1D), deregulated genes such as calgranulin
coding genes S100A12 and S100A9/A8 and downregulated genes such as vesicle-associated membrane
protein coding genes VAMP7 or VAMP8 were identified as a hallmark of CoV+Asp superinfection,
in contrast to CoV infection (Figure 1D). Similar observations were performed using different terms
related to inflammation (Figure S1), hence suggesting a very different inflammation signature resulting
from superinfection. Altogether, our results indicate that the CoV+Asp superinfection presents a
transcriptomic signature that recapitulates the overall signature of a simple CoV infection, but with
both a particularly distinct regulation of the inflammatory response and the additional regulation of
many biological processes related to the physiology of epithelia. Of note, we observed a relatively
similar global pattern of regulation between the nasal and bronchial HAE models, differing primarily
in the magnitude rather than the nature of the responses to CoV and CoV+Asp superinfection.
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3.3. Transcriptional Footprints of SARS-CoV-2 Aspergillus Superinfection

In order to explore in more depth, the transcriptomic signature of the superinfection, we then
performed a differential analysis of CoV+Asp signature using that of CoV infection as a baseline.
This focused analysis highlighted 248 and 769 DEGs in the CoV+Asp nasal and bronchial HAE,
respectively (FC ≥ 2, adjusted p-value < 0.01), which allowed us to spot finer differences between
the two epithelium models. Indeed, the volcano plots in Figure 2A,B representing all DEGs induced
by the CoV+Asp versus the CoV condition showed interesting differences in both the scale of
deregulation and the nature of the most deregulated genes between the upper and lower respiratory
tract tissues. Interestingly, many genes involved in the regulation of the inflammatory response,
such as HOX1, IL1B, IL1A, and IL17C, were found amongst the most upregulated genes in the
nasal HAE model (Figure 2A). These genes were also upregulated in the bronchial HAE model
(Supplementary Data File 2). To provide a further functional interpretation of the superinfection
signature, we performed a functional enrichment analysis, using the same strategy previously described.
We only observed a limited number of enriched clusters of downregulated genes, mostly in bronchial
HAE, all of them being related to epithelial physiology and cell movement (e.g., cytoskeleton-dependent
intracellular transport, protein localization to the cilium, cilium movement GO terms, Figure 2C).
In line with this observation, our analysis highlighted several clusters of enriched upregulated genes
related to epithelial physiology (e.g., locomotion, movement of the cell, or subcellular component
GO terms, Figure 2C). On the other hand, terms related to signaling, host response, and immunity
were markedly more upregulated in the bronchial HAE model (Figure 2C and Figure S2). In addition
to the gene enrichment profile shared between the nasal and bronchial models, our study also
highlighted several overlapping biological processes such as the cytokine signaling and IL10 signaling
pathways (Figure 2C), which is consistent with the most upregulated DEGs shown in Figure 2A and
Supplementary Data File 2.

To better visualize these observations, we applied a protein–protein interactions analysis using the
STRING database to investigate the DEGs corresponding to several Reactome and GO terms (immune
system process, cytokine signaling in the immune system, inflammatory response, interleukin-10
signaling) enriched in the bronchial and nasal superinfection signatures along with their functional
interactions (Figure 3A,B). The two interactome maps with mostly upregulated DEGs illustrate the
strong functional interconnections among several cytokines/chemokines (blue) and receptors (yellow)
involved in the immune and inflammatory responses occurring in the context of a SARS-CoV-2 +

Aspergillus superinfection. Interestingly, our analysis underlined the role of type III IFN (IFNL1,
INFL2, and INFL3) and several cytokine-coding genes such as CXCL2/CXCL8 (Figure 3A,B) that are
upregulated following simple SARS-CoV-2 infection and even more upregulated in the context of
superinfection, arguably illustrating an enhanced specific response to control infection in both models.



Microorganisms 2020, 8, 1974 8 of 14

Figure 2. (A,B) Volcano plots of differentially expressed genes from (A) nasal and (B) bronchial
tissue superinfected by Aspergillus. We considered significantly modulated genes (CoV+Asp vs.
CoV) for both bronchial and nasal HAE (log2(FC) > 1 or < −1 compared to the CoV condition and
Benjamini–Hochberg adjusted p-value < 0.01). The color scale represents the log-transformed fold
change values and ranges from low (red) to high (blue). (C) Overview of functional enrichment results
of SARS-CoV-2+Aspergillus superinfection vs. SARS-CoV-2 infection. Considering CoV+Asp vs. CoV
for both bronchial and nasal epithelium type, significantly up- or down-regulated gene lists (x-axis)
were tested for significant enrichment using the parent-child strategy (see methods). If below the
threshold (0.05), the adjusted p-values corresponding to different terms (y-axis) are represented by
point sizes (see legend). After clustering terms based on gene occurrences (binary distance & Ward
algorithm) in 15 metagroups, the two terms with the lowest p-value are represented here. For the
complete list of significant terms, see Supplementary Data File 2. The bar plot on the right represents
the sizes of enriched terms (called child) in comparison to the size of their parents (see Section 2).
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Figure 3. (A) and (B) Network visualization of immunity-associated proteins in superinfected HAE.
We selected the 76 and 191 genes significantly differentially expressed (vs. CoV) in our study
(respectively in nasal (A) and bronchial (B) HAE) associated with the Reactome “Interleukin-10
signaling” (R-HSA-6783783) and “cytokine signaling in immune system” pathways (R-HAS-1280215),
Table 0395. and the Gene Ontology term “immune system process” (GO:0002376). The circles indicate
genes modulated in our study in the superinfection context. The predicted associations are materialized
by the dark lines. Cytokines/chemokines are highlighted in blue and receptors in yellow.
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4. Discussion

Invasive pulmonary aspergillosis (IPA), which typically occurs in an immunocompromised host,
represents an important cause of morbidity and mortality worldwide [29]. Superinfections were
extensively documented in the case of influenza infections, with the latter being usually described to
“pave the way” for bacterial superinfections, but several severe influenza cases have also been reported
to develop invasive pulmonary aspergillosis [30]. An increasing amount of evidence points towards
a relatively high prevalence of superinfections, including invasive aspergillosis, to be associated
with COVID-19 [16–18]. However, the underlying mechanisms remain to be characterized. In the
present study, we sought to understand better the biological impact of superinfections by determining
and comparing the host transcriptional response to SARS-CoV-2 versus SARS-CoV-2 + Aspergillus
superinfection. Collectively, our results show a much stronger host response to superinfection in the
bronchial epithelial model compared to its nasal counterpart. In both models, functional analyses
show that the SARS-CoV-2 + Aspergillus superinfection signature reflects important changes in the
expression regulation of genes involved not only in epithelium physiology but also in the regulation of
host immune and inflammatory responses compared to that of the simple SARS-CoV-2 infection.

The reconstituted HAE model of infection/superinfection appears as valuable support for the study
of respiratory viral infections and virus-host interactions in highly biologically relevant experimental
conditions. Previous results by our group using this model constituted of fully differentiated and
functional human primary cells have provided meaningful contributions to the characterization of
the kinetics of viral infection as well as on the tissue-level remodeling of the cellular ultrastructure
and local innate immune responses induced by SARS-CoV-2, in line with our present observation [21].
Whereas no major differences in terms of global superinfection signatures were observed between
HAE models of nasal or bronchial origin, the second part of our study highlighted more subtle
differences between the two models in terms of the scale of deregulation (fold change and p-value),
as well as in the nature of the most deregulated genes (Figure 2C). Ziegler and colleagues have
recently reported that differences of infectivity and consecutive host responses between different cell
subsets (type II pneumocytes, nasal goblet secretory cells) are linked to varying ACE2/TMPRSS2 levels,
ACE2 expression is linked to the IFN response [31]. The discrepancies we observed in the two HAE
models could be explained by differences of cell-type composition that could be interesting to explore
further using combinations of additional experimental models, including ACE2/TMPRSS3 expression
and single-cell RNA-seq approaches.

Our analysis of the superinfection signature revealed an important role of physiology and
cilium-related genes, which could reflect an additional negative impact of Aspergillus infection on
the epithelium integrity (trans-epithelial resistance, Figure 1B) and mucociliary clearance, in good
agreement with previous observations by our group following different types of viral infection in
HAE [19]. In the specific context of SARS-CoV-2 infection, the additional deleterious effect on epithelium
integrity induced by aspergillosis might contribute to the enhanced disease severity reported in the
clinic while arguably increasing the risk of additional bacterial of fungal superinfections, similarly to
what has been described in the case of other respiratory viral infections [32,33].

Another major finding of our study relates to the impact of infection/superinfections on interferon
and inflammatory responses, notably when compared to the limited transcriptomic data available in the
literature to date. Using primary cells, Blanco-Melo and colleagues recently reported that SARS-CoV-2
induces limited IFN-I and III responses [6]. Our data are not entirely consistent with these findings.
Whereas, we also demonstrate a very limited involvement of the type I interferon response in the context
of simple SARS-CoV-2 infection—in contrast with data previously obtained with other viruses [19],
our analysis highlights an important upregulation of crucial genes involved in the type III interferon
response. This response is even more pronounced in the context of superinfection (Figure 3A,B).
Type III interferon (IFN-λ) is known to play a key role in innate and adaptive mucosal immune
responses to infection [34]. Interestingly, IFN-λ has been identified as a critical regulator of neutrophil
activation to prevent fungal infection, such as invasive pulmonary aspergillosis [35]. Our data suggest
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a divergence between type I and type III interferon responses, with enhanced activation of the latter in
the context of fungal superinfection. This characteristic response could be associated with increased
neutrophil activation as an important first line of adaptive defense against these two pathogens.
This hypothesis is further supported by the observed induction of several monocyte-and neutrophil
associated chemokines, such as CCL2, CXCL2, and CXCL3 (Figure 3A,B). Interestingly, our results
suggest a strong activation of the adaptive immune response in the context of SARS-CoV-2 infection,
in line with currently available clinical data from COVID-19 patients, which generally present high
levels of circulating neutrophils [1,36]. These observations support an important role of neutrophil
recruitment in response to COVID-19, more particularly in the context of fungal superinfection with an
exacerbation of pro-inflammatory response. In that sense, the upregulation of key genes belonging to
the IL-10 pathway observed in our analysis (Figure 2C), previously demonstrated to play a deleterious
role in innate resistance to systemic aspergillosis [37], constitutes an illustration of how such “enhanced”
state of inflammation could contribute to increasing severity. Our results, which give a first glimpse of
the interactions between the host cell and SARS-CoV-2/Aspergillus, are to be placed in the broader and
more complex context of the microbiota, which could also play a regulatory role in the severity of the
pathology [38,39].

5. Conclusions

Our transcriptional profiling approach revealed unique features of the SARS-CoV-2 + Aspergillus
superinfection signature, characterized on one side by an “enhanced” version of that induced by
SARS-CoV-2 infection, but also by specific changes on respiratory tissue physiology, a distinct
regulation of type I and type III interferons, and an over-induction of inflammatory response. While we
acknowledge that it would be rather bold to make a statement on the possible severity associated
with Aspergillus superinfection in a pre-existing COVID-19 pathological context based solely on our
results, our observations suggest that the immunomodulation induced by SARS-CoV-2 infection could
establish a favorable context for the development of severe forms of aspergillosis. This could constitute
an important aspect to be considered for the immunological follow-up of COVID-19 patients with
aspergillosis. On top of that, the characteristic infection signatures described in this study provide
valuable insight in the perspective of possible future treatments targeting the COVID-19 inflammatory
response, which could result in counter-productive effects for the management of aspergillosis.
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