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Abstract 
The objectives of this study were to 1) investigate the predictability and bias of genomic breeding values (GEBV) of purebred (PB) sires for CB 
performance when CB genotypes imputed from a low-density panel are available, 2) assess if the availability of those CB genotypes can be used 
to partially offset CB phenotypic recording, and 3) investigate the impact of including imputed CB genotypes in genomic analyses when using 
the algorithm for proven and young (APY). Two pig populations with up to 207,375 PB and 32,893 CB phenotypic records per trait and 138,026 
PB and 32,893 CB genotypes were evaluated. PB sires were genotyped for a 50K panel, whereas CB animals were genotyped for a low-density 
panel of 600 SNP and imputed to 50K. The predictability and bias of GEBV of PB sires for backfat thickness (BFX) and average daily gain recorded 
(ADGX) recorded on CB animals were assessed when CB genotypes were available or not in the analyses. In the first set of analyses, direct 
inverses of the genomic relationship matrix (G) were used with phenotypic datasets truncated at different time points. In the next step, we eval-
uated the APY algorithm with core compositions differing in the CB genotype contributions. After that, the performance of core compositions 
was compared with an analysis using a random PB core from a purely PB genomic set. The number of rounds to convergence was recorded for 
all APY analyses. With the direct inverse of G in the first set of analyses, adding CB genotypes imputed from a low-density panel (600 SNP) did 
not improve predictability or reduce the bias of PB sires’ GEBV for CB performance, even for sires with fewer CB progeny phenotypes in the 
analysis. That indicates that the inclusion of CB genotypes primarily used for inferring pedigree in commercial farms is of no benefit to offset 
CB phenotyping. When CB genotypes were incorporated into APY, a random core composition or a core with no CB genotypes reduced bias 
and the number of rounds to convergence but did not affect predictability. Still, a PB random core composition from a genomic set with only 
PB genotypes resulted in the highest predictability and the smallest number of rounds to convergence, although bias increased. Genotyping 
CB individuals for low-density panels is a valuable identification tool for linking CB phenotypes to pedigree; however, the inclusion of those CB 
genotypes imputed from a low-density panel (600 SNP) might not benefit genomic predictions for PB individuals or offset CB phenotyping for 
the evaluated CB performance traits. Further studies will help understand the usefulness of those imputed CB genotypes for traits with lower 
PB–CB genetic correlations and traits not recorded in the PB environment, such as mortality and disease traits.

Lay Summary 
Crossbred (CB) genotypes primarily used for inferring pedigree in commercial farms can be potentially used for genomic prediction and partially 
offset CB phenotyping. We investigated the predictability and bias of genomic breeding values (GEBV) of purebred (PB) sires for CB performance 
when CB genotypes are available, assessed if the availability of those CB genotypes can be used to partially offset CB phenotypic recording, and 
investigated the impact of including CB genotypes in genomic analyses when using the algorithm for proven and young (APY). The predictability 
and bias of GEBV of PB sires for two CB traits were assessed when CB genotypes were available or not in the analyses. Later, the performance 
of different APY core compositions accounting for CB genotypes was compared with a random core from a purely PB genomic set. Adding CB 
genotypes did not improve predictability or reduce the bias of PB sires’ GEBV for CB performance, indicating that the inclusion of CB genotypes 
imputed from a low-density (600 SNP) panel is of no benefit to offset CB phenotyping. With APY, a random core composition from a genomic 
set with only PB genotypes resulted in the highest predictability and the smallest number of rounds to convergence, although bias increased.
Key words: algorithm for proven and young, genomic selection, single-step, swine, pig, predictability
Abbreviations: APY, algorithm for proven and young; ADGP, purebred average daily gain;ADGX, crossbred average daily gain;BFP, purebred backfat 
thickness;BFX, crossbred backfat thickness;CB, crossbred;CCPS, combined crossbred and purebred selection;GEBV, genomic estimated breeding value;G_PB, 
genomic set containing only purebred genotypes;G_PB_CB genomic set containing purebred and crossbred genotypes;MCMC, Markov Chain Monte Carlo;PB, 
purebred;PP, population;SL, terminal sire line;ssGBLUP single-step genomic best linear unbiased prediction;TP, time point

Introduction
The benefits of breed complementarity and heterosis are effec-
tively exploited in the pig industry. Purebred (PB) pigs are 

selected to compose specialized lines and later mated to pro-
duce crossbred (CB) progeny, commonly known as commer-
cial animals. Genetic selection is performed on PB animals, 
whereas the phenotypic improvements are expected to occur 
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at the CB level, primarily in much more challenging conditions 
than in the nucleus environments (Knol et al., 2016; Garrick, 
2017). The difference between the genetic background and 
the environment experienced by PB and CB animals results 
in low accuracy of PB breeding values to predict CB perfor-
mance. However, more accurate predictions can be obtained 
in a process called combined CB and PB selection (CCPS), 
where performance records of CB progeny are included in the 
genetic evaluation (Wei and van der Werf, 1994).

Including CB performance information in the genetic eval-
uations requires pedigree recording to link phenotypes from 
CB animals to PB parents. However, tracking pedigrees on 
commercial farms is challenging due to several factors, such 
as the use of pooled semen, lack or loss of individual iden-
tification tags, and the difficult accommodation of pedigree 
recording along with daily procedures at a commercial farm 
(Maiorano et al., 2019; Hollifield et al., 2021; See et al., 2021). 
Those factors might limit the use of CCPS-based systems. A 
possible way to mitigate such a challenge is by genotyping 
CB animals using less expensive low-density SNP panels and 
inferring kinship through genomic information.

Beyond its primary purpose of inferring kinship, the low-den-
sity genotypic data on CB animals could be used for genomic 
prediction and potentially partially offset CB progeny phenotyp-
ing while maintaining a constant prediction accuracy for selec-
tion candidates. It has been shown through simulation (Dekkers, 
2007; See et al., 2020) and empirical studies (Hidalgo et al., 
2015; Lourenco et al., 2016; Iversen et al., 2017) that when the 
breeding goal is to improve CB performance, adding CB genomic 
information into genomic evaluations could increase response 
to selection at the commercial level. However, the magnitude 
of such an increase depends on the trait, the genetic correlation 
between PB andCB populations, and the relationship between 
validation and training sets.

Another aspect of using the genotypes from CB animals 
is the rapid increase in the size of the genotyped population. 
With a large number of genotyped animals, directly inverting 
the genomic relationship matrix for GBLUP-based methods 
may not be feasible. To overcome that limitation, Misztal et al. 
(2014a) proposed the algorithm for proven and young (APY) 
for obtaining a sparse representation of the inverse of the 
genomic relationship matrix (G). With APY, the direct inver-
sion of G is only required for a small set of animals (core ani-
mals), whereas the remaining components for noncore animals 
are obtained based on recursive equations with a linear com-
putational cost. This enables genomic evaluations with millions 
of genotyped animals in a reasonable time and computing cost 
(Tsuruta et al., 2021; Cesarani et al., 2022).

The objectives of this study were to 1) investigate the pre-
dictability and bias of GEBV of PB sires for CB performance 
when CB genotypes imputed from a low-density panel are 
available, 2) assess if the availability of those CB genotypes 
can be used to partially offset CB phenotypic recording, and 
3) investigate the impact of including imputed CB genotypes 
in genomic analyses when using APY for the inversion of the 
genomic relationship matrix.

Materials and methods
Animal Care and Use Committee approval was not needed 
because the information was obtained from pre-existing  
databases.

Data set
Research data sets were provided by PIC (a Genus company, 
Hendersonville, TN). Phenotypic information was recorded 
from 2000 to 2020 and was available for sires from two PB 
terminal sire lines (SL1 and SL2) and their three-way CB 
progeny resulting from the cross with F1 dams. For sim-
plicity, SL1 sires and their CB progeny will be referred to as 
population 1 (PP1), and SL2 sires and their CB progeny as 
population 2 (PP2). Pedigree information was available for 
PB sires and CB animals and traced back three generations 
from phenotyped animals, resulting in 151,625 pedigree 
records for PP1 and 246,699 records for PP2. Phenotypes 
were available for four traits: backfat thickness recorded on 
PB sires (BFP) and CB animals (BFX), and average daily gain 
recorded on PB sires (ADGP) and their CB progeny (ADGX). 
Although F1 dams were individually identified at the farm 
level, no phenotypic or pedigree information was available 
on the female side. The definition for traits recorded on 
PB and CB animals differed slightly in recording methods. 
ADGP was defined as PB animals’ live weight measured at 
the off-test divided by the animal’s age, whereas ADGX was 
defined as the hot carcass for CB divided by the animal’s age. 
Similarly, BFP was recorded as an ultrasonic measurement 
at off-test, whereas BFX was measured on the hot carcass 
following slaughter. In addition to phenotypic records, con-
temporary groups, litter code, off-test weight (for PB), and 
hot carcass weight (for CB) were also available and are sum-
marized in Table 1.

Purebred sires were genotyped for a commercial 50K SNP 
panel (GGP-Porcine HD BeadChip; GeneSeek, Lincoln, NE), 
whereas all the CB animals were genotyped for a low-density 
SNP panel of 600 SNP markers and imputed to 50K. After 
quality control steps, 40,628 and 44,368 SNP markers were 
available for 46,760 (10,622) and 138,026 (32,893) PB (CB) 
animals in PP1 and PP2, respectively.

Variance components estimation
A multitrait model containing the two CB and PB traits, with-
out genomic information, was used for variance component 
estimation for each population. The model description fol-
lows:

y = Xβ +Wl+ Za+ e,

where y is the vector of phenotypes; β is the vector contain-
ing the fixed effects of the contemporary group composed 
of farm, sex, year, and week of birth for PB traits and farm, 
sex, year, week of birth, and slaughter date for CB traits, 
and linear covariables of off-test weight (for BFP) and hot 
carcass weight (for BFX); l is the vector of random effects 
of common litter environment; a is the vector of additive 
genetic random effects; e is the vector of random resid-
uals; and X, W and Z are the incidence matrices for the 
effects contained in β, l, and a, respectively. A uniform 
distribution (i.e., flat prior) was assumed for β, whereas l 
| Σ l ∼ N(0, Il ⊗ Σ l), a | Σ a ∼ N (0, A⊗ Σa), and 
e | Σe ∼ N (0, Ie ⊗ Σ e), where A is the pedigree 
relationship matrix, Il and Ie are identity matrices, ⊗ is the 
Kronecker product, and Σl, Σa, and Σe are the (co)variance 
matrices of common litter environment, additive genetic 
effects, and residuals, respectively. (Co)variance matrices were 
defined as follows:
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Variance component estimation was performed on the soft-
ware GIBBS1F90 (Misztal et al., 2014b). A total of 10,000 
Markov Chain Monte Carlo (MCMC) samples (i.e., a total of 
120,000 samples generated with a burn-in of 20,000 and a thin-
ning interval of 10) were used to obtain the posterior parameter 
distributions on POSTGIBBSF90 (Misztal et al., 2014b). The 
convergence was checked by visual inspection of posterior dis-
tributions and the Geweke criterion (Geweke, 1992), as imple-
mented in POSTGIBBSF90 (Misztal et al., 2014b).

Definition of validation sires and genomic sets
The validation sets in PP1 and PP2 were composed of 66 and 
163 sires that only had phenotyped and genotyped CB progeny 
born from 2018 to 2020 and from 2019 to 2020, respectively. 
On average, validation sires had 108.0 CB progeny in PP1 and 
142.6 in PP2 in the complete dataset. In addition, two genomic 
sets were defined: a set containing only PB genomic informa-
tion (G_PB) and a second one where genomic information of 
CB animals was added to the first genomic set (G_PB_CB). 
The genomic sets G_PB (G_PB _CB) were composed of 46,760 
(57,382) genotypes in PP1, and 138,026 (170,119) in PP2.

Predictability and bias of PB breeding values for CB 
performance
Genomic-breeding values (GEBV) for validation sires were 
estimated using the two genomic sets and six phenotypic sets 

obtained from cutting off the complete phenotypic data in 
six-time points. For instance, in time point 1 (TP1), validation 
sires did not have CB progeny phenotypes available in the 
analysis. However, from time point 2 (TP2), CB progeny phe-
notypes were gradually added until time point 6 (TP6), which 
accounted for a complete phenotypic set. The average and the 
total number of CB progeny phenotypes per validation sire at 
each time point are shown in Figure 1.

The strategy of evaluating sires at different time points was 
used because, besides assessing the impacts in predictability 
and bias for PB sire’s GEBV and whether or not adding CB 
genotypes (G_PB _CB vs. G_PB) could offset CB phenotyp-
ing, we also aimed to determine if results would differ for 
groups of sires with fewer CB progeny information. However, 
as a comprehensive investigation would not be possible with 
a small validation set (i.e., 66 sires in PP1 and 163 sires in 
PP2), sires were evaluated at multiple time points to increase 
the validation sample (i.e., instead of a single GEBV estimate 
per genomic set, each sire contributed with six GEBV esti-
mates). This study used an empirical threshold of 300 CB 
phenotypes to define a proven sire; therefore, sires with less 
than 300 CB phenotypes in the analysis will be referred to as 
young sires hereafter.

Breeding values estimation was performed using the soft-
ware BLUP90IOD2OMP1 (Misztal et al., 2014b) with the 
12 unique datasets resultant from the combination of the 
six phenotypic datasets (TP1–TP6) and two genomic data-
sets (G_PB and G_PB _CB). After breeding values were esti-
mated, predictability was separately calculated for each of 

Table 1. Descriptive statistics of populations 1 (PP1) and 2 (PP2)

 PP1 PP2

Item¹ Records Mean (SD) Records Mean (SD) 

ADGP, g/d 137,538 716.42 (75.97) 207,375 756.36 (83.05)

ADGX, g/d 10,622 520.74 (58.26) 32,893 541.17 (59.66)

BFP, mm 135,576 9.19 (2.62) 203,294 9.39 (2.76)

BFX, mm 10,621 13.50 (2.46) 32,886 13.46 (2.55)

OW, kg 137,627 113.39 (12.25) 207,499 118.47 (13.79)

HCW, kg 10,622 98.08 (9.61) 32,893 99.66 (9.46)

¹Purebred information: ADGP (average daily gain; live off-test weight divided by age), BFP (backfat thickness; ultrasonic measurement), and OW (live off-
test weight), and crossbred information: ADGX (average daily gain; hot carcass divided by age), BFX (backfat thickness; measured on the hot carcass), and 
HCW (hot carcass weight).

Figure 1. Total number of crossbred progeny phenotypes of validation 
sires at different time points. Bar labels show the average number of 
crossbred progeny phenotypes per validation sire in the given time point.
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the two genomic sets and groups of validation sires. Valida-
tion groups were defined based on the maximum number of 
CB progeny phenotypes sires had at GEBV estimation. For 
instance, the first group was composed of sires with no CB 
progeny phenotypes in the analysis (maximum number of 
CB progeny = 0), whereas the second group was composed 
of sires with a maximum of 100 CB progeny phenotypes 
(maximum number of CB progeny = 100). Groups were 
formed following intervals of 100 CB progeny phenotypes, 
resulting in six groups for PP1 and 10 groups for PP2. As 
sires had GEBV estimated at six-time points, the same sire 
could be represented in the same validation group more than 
once, with GEBV estimated at different time points. The pre-
dictability of GEBV of validation sires was calculated as:

ρGEBVij = cor
(
DR, GEBVij

)
,

where DR is the vector of deregressed proofs (VanRaden et 
al., 2009) from sire’s EBV (no genomics) calculated with a 
complete phenotypic dataset and GEBVij is the vector of sires’ 
GEBV for CB performance given the ith validation group and 
jth genomic set. The dispersion bias was accessed by the linear 
regression of DR on GEBVij, as follows:

DR = µ+ δGEBVij + e

where µ is an overall mean, δ is the dispersion, and e is a vec-
tor of residuals. The slope of the linear regression (called dis-
persion bias hereafter) has an expectation of 1 in the absence 
of inflation/deflation of GEBV.

The single-step genomic BLUP method (ssGBLUP) (Legarra 
et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010) 
was used to incorporate genomic information into the mixed 
model equations. In ssGBLUP, the relationship between gen-
otyped and nongenotyped animals is combined in the H 
matrix, which replaces the pedigree relationship matrix (A) in 
the traditional BLUP. The inverse of the H matrix (H−1) was 
constructed as in Aguilar et al. (2010):

H−1 = A−1 +

ñ
0 0
0 G−1 − A−1

22

ô
,

where A−1 is the inverse of the traditional pedigree relation-
ship matrix, A−1

22  is the inverse of the pedigree relationship 
matrix for genotyped animals, and G−1 is the inverse of the 
genomic relationship matrix, as shown in VanRaden (2008). 
The G matrix was constructed as follows:

G =
ZZ ′

2
∑

pj
(
1− pj

) ,

where Z is a matrix of SNP markers centered by twice the 
across-breed allele frequency (p) of the jth locus computed 
from the current genotyped population. To overcome singu-
larity problems, G was blended with 5% of A22. For this first 
set of analyses, direct inverses of G were used in the mixed 
model equations (i.e., no APY).

APY core composition accounting for CB 
information
Accounting for CB genotypes in the genomic evaluation 
should greatly increase the size of the genotyped population. 

In this situation, the direct inversion of the genomic relation-
ship matrix might become computationally unfeasible. To 
overcome this problem, a sparse representation of the inverse 
of G can be computed with the APY algorithm (G−1

APY) (Misz-
tal, 2016). The inverse of the G−1

APY is constructed as:

G−1
APY =

ñ
G−1

cc 0
0 0

ô
+

ñ
−G−1

cc Gcn

I

ô
M−1

nn

î
−GncG−1

cc I
ó
,

where G−1
cc  is the inverse of the genomic relationship matrix 

for core animals, Gcn is the genomic relationship matrix 
between core and noncore animals and M−1

nn  is the inverse 
of the relationship matrix for noncore animals, calculated as:

mnn,i = diag
¶
gii − g′icG

−1
cc gci

©

where gii is the diagonal element of Gnn corresponding to the 
ith animal, and gic is the relationship between the noncore 
animal i with all the core animals.

In this study, the number of core animals was defined 
according to the dimensionality of the genomic information 
as the number of eigenvalues explaining 98% of the varia-
tion in G (Pocrnic et al., 2016). For easier calculations, the 
number of eigenvalues was obtained from the singular value 
decomposition of Z with the complete genotype set including 
PB and CB genotypes (i.e., G_PB_CB) on PREGSF90 (Misztal 
et al., 2014b). The number of eigenvalues explaining 98% of 
the variance in G_PB_CB was 7,239 in PP1 and 9,946 in PP2, 
and this was the number of core animals used in all scenarios.

For a genomic analysis accounting for CB genotypes (G_PB_
CB), four core compositions based on different levels of CB gen-
otype contribution were investigated. First, a core with no CB 
genotypes (0%_CB), then 50% of the core animals were CB 
(50%_CB), then 100% of the core animals were CB (100%_
CB), and finally, a core set was chosen randomly from the entire 
genotyped population (RANDOM). In addition, a random core 
selection from a genomic set with PB genotypes only (G_PB) 
was investigated (RANDOM_PB). Note that in the 0%_CB 
and RANDOM_PB scenarios, no CB genotypes are included 
in the core set. However, in the first scenario, a genomic set 
accounting for CB and PB genotypes (G_PB_CB) was used for 
the construction of G−1

APY, whereas in the second one only PB 
genotypes were included (G_PB). Regardless of the core com-
position, core animals were always chosen randomly. Therefore, 
to account for the randomness of the selection, core sampling 
and further genetic analyses were repeated five times. The phe-
notypic set was constant for all APY analyses at time point TP1 
(i.e., no CB progeny phenotypes of validation sires included).

The performance of analyses was measured based on the 
predictability and dispersion bias of the GEBV of PB sires 
for CB performance, as explained previously. In addition, 
the number of rounds to convergence (10-13) was compared 
across different core compositions. Predictability and disper-
sion bias were calculated, respectively, as follows:

ρGEBVij = cor (DR,GEBVk) ,

DR = µ+ δGEBVk+e,

where GEBVk represents sires’ GEBV calculated with the kth 
core composition and genomic set associated with it; other 
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parameters were previously described. For all APY analy-
ses, breeding values estimation was performed on BLUP90I-
OD2OMPP1 (Misztal et al., 2014b).

Results and discussion
Genetic parameters
Heritabilities and genetic correlations are shown in Table 2. 
The heritability for all traits had similar magnitudes in PP1 
and PP2. The average daily gain recorded on CB (ADGX) 
had lower heritabilities (from 0.15 to 0.19) in comparison 
with PB average daily gain (ADGP; from 0.28 to 0.30) in 
both populations. Differently, slightly larger heritabilities 
were observed for backfat thickness recorded on CB animals 
(BFX; from 0.50 to 0.56) compared with the estimates for 
PB backfat thickness (BFP; at 0.43). For all the cases, genetic 
correlations were positive between and across trait defini-
tions (i.e., ADGP vs. ADGX and ADGP vs. BFX or BFP). Even 
though positive, genetic correlations were stronger between 
trait definitions (from 0.51 to 0.89), whereas correlations 
across trait definitions ranged from weak to moderate (0.17 
to 0.31). As expected, our results indicate that average daily 
gain and BFX recorded on CB and PB animals are genet-
ically different traits (genetic correlations deviate consid-
erably from 1), with the first presenting the higher genetic 
divergence. Genetic correlations that differ from unity are 
usually the norm in the pig industry (Hidalgo et al., 2015; 
Lourenco et al., 2016; Steyn et al., 2021). Such deviation 
reflects the different environmental and genetic backgrounds 
between PB and CB populations and enforces the importance 
of including CB information, particularly when the goal is to 
improve CB performance (Wei and van der Werf, 1994; See 
et al., 2020).

Predictability and bias of PB breeding values for CB 
performance
The predictability of PB sires’ breeding values for CB traits 
given the two genotype sets and the number of CB prog-
eny phenotypes is presented in Figure 2. The predictability 
for all traits and in both populations gradually increased 

with the number of CB progeny phenotypes up to a point 
where sires had around 300 CB phenotyped progeny. After 
this point, predictabilities remained constant with the fur-
ther addition of CB progeny phenotypes. As shown in other 
studies, when the goal is to increase CB performance, includ-
ing CB phenotypes in genetic evaluations is expected to be 
positive (Wei and van der Werf, 1994; Lutaaya et al., 2002; 
See et al., 2020). Although according to our results, the ben-
efit of including those CB phenotypes is negligible after sires 
already have 300 CB progeny phenotypes included in the 
analyses.

Including CB genotypes did not improve the predictability 
of GEBV of PB validation sires for any evaluated CB traits 
(Figure 2), even for young (<300 CB progeny phenotypes) 
sires. On the contrary, except for BFX in PP2, for which the 
predictability remained similar, including CB genotypes mar-
ginally decreased the overall predictability. We hypothesized 
that young sires would benefit from CB progeny genotypes 
and possibly have compatible predictability as sires with 
less than 100 CB progeny phenotypes but no CB genotypes. 
In such a case, CB genotypes would offset CB phenotyping 
while keeping the predictability for PB selection candidates 
constant. However, our results showed that adding CB geno-
types did not improve predictions for young or old sires and 
was of no benefit to offset CB phenotyping in those studied 
populations.

The observed results could be due to the moderate to 
high correlations (Table 2) between PB and CB traits in 
our study (0.51 to 0.89). A simulation study by See et al. 
(2020) showed that in comparison with an evaluation where 
CB phenotypes and genotypes are not available, including 
10% of CB phenotypes per generation increased the CB per-
formance from 21% to 134% when the magnitude of the 
genetic correlation between PB and CB trait was from strong 
(0.9) to weak (0.1), respectively. In the same study, adding 
genotypes for those animals provided an additional 109% 
increase in prediction accuracy when the PB and CB traits 
were lowly correlated. Still, when the correlations were mod-
erate to high (0.3–0.9), there was no further improvement 
in prediction accuracy by adding CB genotypes. Therefore, 

Table 2. Estimations of heritability (diagonals) and genetic correlations (off-diagonals) for all traits in populations 1 (PP1) and 2 (PP2)

 PP1

Trait¹ ADGP ADGX BFP BFX 

ADGP 0.30(0.01)² 0.65(0.11) 0.31(0.02) 0.23(0.02)

ADGX 0.17(0.04) 0.17(0.13) 0.27(0.14)

BFP 0.43(0.01) 0.89(0.05)

BFX 0.50(0.04)

 PP2

ADGP ADGX BFP BFX 

ADGP 0.28(0.01) 0.51(0.08) 0.29(0.02) 0.23(0.02)

ADGX 0.15(0.02) 0.29(0.08) 0.19(0.05)

BFP 0.43(0.01) 0.83(0.03)

BFX 0.56(0.02)

¹ADGP: purebred average daily gain (live off-test weight divided by age); ADGX: crossbred average daily gain (hot carcass divided by age); BFP: purebred 
backfat thickness (ultrasonic measurement); and BFX: crossbred backfat thickness (measured on the hot carcass).
²Standard deviations.
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different results than those presented in our study might be 
expected for traits with lower PB–CB genetic correlations 
and for traits not recorded in the PB environment, such as 
mortality and disease traits. Another aspect that could have 
contributed to the small changes in predictability by adding 
CB genotypes observed herein is the already large size of the 
PB reference population. Using a reference population with 
up to 5,236 PB genotypes, Hidalgo et al. (2015) and Iversen 
et al. (2017) observed marginal increases in the accuracy of 
PB candidates for CB performance when CB genomic geno-
types were added to the reference population. However, with 
a PB reference population of at least nine times bigger, no 
improvements were observed in our study. Given the smaller 
genotyped population used by the authors, that may sug-
gest the observed benefits could also be a result of a general 
increase in the genotyped population rather than from the 
benefit of adding CB information.

The dispersion bias of PB sires’ breeding values for CB per-
formance traits given the two genotype sets compositions is 
presented in Figure 3. Overall, dispersion bias was associated 
with the trait and the number of CB progeny phenotypes but 
weakly associated with the inclusion of CB genotypes. PB 
breeding values were less biased for BFX than for ADGX, 
likely due to the higher heritability and stronger PB–CB 
genetic correlation of BFX. Dispersion bias decreased with 
an increase in CB progeny phenotypes; for BFX, the GEBV 
of young sires were slightly biased but almost unbiased for 
proven sires (>= 300 CB progeny phenotypes), whereas, for 
ADGX, GEBV were still biased, even after sires had more 
than 300 CB progeny phenotypes. Including CB genotypes 
did not impact GEBV bias, except for ADGX in PP2, where 
including CB genotypes reduced the overall bias by 0.10 
points for proven sires on average. An unbiased evaluation 
avoids selecting the wrong set of candidates as it allows 
for proper comparison between individuals from different 
generations (Legarra and Reverter, 2017). In this study, the 
observed dispersion bias could be originated from different 
sources, namely, incompatibility between genomic and pedi-
gree relationships (Tsuruta et al., 2021), selection (Vitezica et 
al., 2011), and heritability estimates with nongenomic models 
in the presence of genomic selection (Hidalgo et al., 2020). 
Some of this bias could be alleviated by modeling unknown 
parent groups (Legarra et al., 2015) and removing older data 

(Lourenco et al., 2014). However, investigating sources of 
bias was outside the scope of this study.

All combined, our results indicate that incorporating CB 
genotypes imputed from a low-density panel (600 SNP) will 
result in minor to no improvements in predictability and 
dispersion bias of PB sires GEBV for CB performance and 
might not offset CB phenotyping. That was unexpected once 
many other studies have shown the benefits and support for 
the inclusion of CB genomic information when PB selection 
aims to improve CB performance (Dekkers, 2007; Hidalgo et 
al., 2015; Iversen et al., 2017; See et al., 2020). In our study, 
a possible factor that could have impacted both predictability 
and dispersion bias was the need for CB genotype imputation 
from a low-density panel. The imputation of CB genotypes is 
challenging and commonly relies on a PB reference popula-
tion composed of two or more PB lines that are themselves 
frequently imputed (Leite et al., 2021). Moreover, the low-ini-
tial density of the SNP panel, the differences in LD pattern 
between PB and CB populations (Xiang et al., 2015), and the 
decrease in relationship across lines may further hinder the 
imputation of CB genotypes. For example, Xiang et al. (2015) 
evaluated the imputation accuracy of PB and CB genotypes in 
a pig population and showed that the imputation of CB gen-
otypes from a low-density SNP panel (425 SNP) had an accu-
racy of around 0.7. The observed low-imputation accuracy 
from the low-density panel was associated with the weaker 
LD with few SNP and the presence of narrower haplotype 
segments in CB genotypes, which further challenges imputa-
tion accuracy (Toosi et al., 2010; Xiang et al., 2015).

APY core composition accounting for CB 
information
The predictability, dispersion bias, and the number of rounds 
to convergence given different APY core compositions are 
shown in Figures 4, 5, and 6, respectively. Among APY cores 
accounting for CB genotypes, the predictability was gener-
ally lowly impacted by different levels of CB contribution 
(Figure 4), presenting a maximum difference between sce-
narios of 0.02 points. However, a marginal increase in dis-
persion bias (Figure 5) and an increase in the number of 
rounds for convergence (Figure 6) were associated with core 
compositions with a higher proportion of CB genotypes 
(i.e., 50%_CB and 100%_CB) (Figure 5 and 6). On average, 

Figure 2. Predictability of breeding values of purebred sires for crossbred performance traits given two genotypes set compositions and the number of 
phenotype progeny information. The vertical line represents the threshold between young and proven sires (300 CB progeny phenotypes).
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RANDOM presented the smaller number of rounds to con-
verge and was followed, respectively, by 0%, CB, 50%_CB, 
and 100%_CB cores compositions showing a roughly linear 
increase in rounds with an increase in CB genotype contri-
bution (Figure 6).

The poorer performance of APY with higher CB contri-
bution in the core could be associated with CB animals’ age 
and inadequate representation of the genotyped population. 
In both studied populations, PB genotypic information was 
available for animals born from 2000 to 2020, whereas 
for CB animals, genotypes were only available for younger 
animals born from 2017 to 2020. Therefore, the APY cores 
mainly composed of CB genotypes investigated herein can 
also be seen as APY cores composed of younger animals. This 
was confirmed by a deviation of the average relationship 
between core individuals (Gcc) from the population expec-
tation (i.e., 0.0), suggesting a core sampled from a stratified 

group of genotyped animals. Fragomeni et al. (2015) stated 
that the APY algorithm presents better properties when core 
and noncore sets are well related; however, that might not be 
achieved when the core is mainly composed of animals born 
in recent generations. Generally, our results indicate that if 
CB genotypes are incorporated in genomic analyses using 
APY, a core composed at random (RANDOM) or with no 
CB contribution (0%_CB) will generally result in a smaller 
bias and a smaller number of rounds to convergence. In con-
trast, predictability should be lowly affected by core com-
position.

To further exploit our findings, we compared the perfor-
mance of previous APY scenarios that accounted for CB 
genotypes in the genomic set with a random core chosen 
from a genomic set with PB genotypes only (RANDOM_
PB). In practice, CB animals are rarely genotyped since 
they are not candidates for selection; therefore, a genetic 

Figure 3. Dispersion bias of breeding values of purebred sires for crossbred performance traits given two genotypes set compositions and the number 
of CB phenotype progeny information. The vertical line represents the threshold between young and proven sires (300 CB progeny phenotypes), and 
the dotted line indicates unbiasedness.

Figure 4. Predictability of breeding values of purebred sires for crossbred performance traits given different APY core compositions. Bars indicate the 
range within one standard deviation between five replicates. Scenarios 0%_CB, 50%_CB, and 100%_CB, and RANDOM used the full genotyped set 
(G_PB_CB) with APY cores composed of 0%, 50%, and 100% CB genotypes, or of genotypes of PB and CB entirely chosen at random, respectively. 
The scenario RANDOM_PB used the genotype set only accounting for PB genotypes (G_PB) with a core composed of PB genotypes chosen randomly.
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evaluation exclusively based on a PB reference population 
might represent a more usual analysis in the pig industry. 
Compared to core scenarios accounting for CB genotypes, 
RANDOM_PB presented the highest predictability, with 
relative increases ranging from 2.4% to 10.2% (Figure 
4). An exception occurred for BFX in PP2, where RAN-
DOM_PB performed similarly to other core composi-
tions. On the other hand, an overall increase in bias was 
observed with the RANDOM_PB core (Figure 5). This dif-
ference was more evident for traits in PP1, in which the 
increase in bias with RANDOM_PB ranged from 0.04 to 
0.15 points in absolute values compared with other core 
scenarios. Moreover, the number of rounds to convergence 

with RANDOM_PB was, on average, the smallest among 
all core scenarios, indicating that G−1

APY from a genomic set 
with no CB genotypes might present a better numerical 
condition (Fragomeni et al., 2015). Pocrnic et al. (2019) 
and Vandenplas et al. (2018) also evaluated the inclusion 
of CB genotypes in the APY core using a dataset on a real 
and simulated pig population, respectively. Differently than 
observed in our study, the authors suggested that CB per-
formance was better predicted when CB animals contribute 
with genotypes in the APY cores, whereas the differences 
in bias were generally similar for different core setups. The 
different results observed in our study could be due to the 
potential lower imputation accuracy of CB genotypes from 

Figure 5. Dispersion bias of breeding values of purebred sires for crossbred performance traits given different APY core compositions. Bars indicate the 
range within one standard deviation between five replicates. Scenarios 0%_CB, 50%_CB, and 100%_CB, and RANDOM used the full genotyped set 
(G_PB_CB) with APY cores composed of 0%, 50%, and 100% CB genotypes, or of genotypes of PB and CB entirely chosen at random, respectively. 
The scenario RANDOM_PB used the genotype set only accounting for PB genotypes (G_PB) with a core composed of PB genotypes chosen randomly.

Figure 6. Average relationship between core animals and average number of rounds to BLUP convergence (10-13) given different APY core 
compositions. Bars indicate the range within one standard deviation between five replicates. Scenarios 0%_CB, 50%_CB, and 100%_CB, and 
RANDOM used the full genotyped set (G_PB_CB) with APY cores composed of 0%, 50%, and 100% CB genotypes, or of genotypes of PB and CB 
entirely chosen at random, respectively. The scenario RANDOM_PB used the genotype set only accounting for PB genotypes (G_PB) with a core 
composed of PB genotypes chosen randomly.
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a low-density panel. As pointed out by Misztal (2016), the 
optimum performance of APY might also rely on the quality 
of genotypes being used in the core set.

Conclusions
Adding CB genotypes imputed from a low-density panel 
(600 SNP) to genomic analyses using the direct inverse of G 
neither improves predictability nor reduces the dispersion 
bias of PB sires’ GEBV for CB performance, even for sires 
with fewer phenotypic progeny information in the analysis. 
That further indicates that the inclusion of those imputed 
CB genotypes is of no benefit to offset CB phenotyping 
while keeping constant predictability for PB sires’ GEBV. 
When CB imputed genotypes are incorporated in analyses 
with APY, a random core composition or a core with no 
CB genotypes will reduce dispersion bias and the number 
of rounds to convergence but will not affect predictabil-
ity. Still, a random core composition from a genomic set 
with only PB genotypes will result in the highest predict-
ability and the smallest number of rounds to convergence, 
although dispersion bias will be increased. Genotyping CB 
individuals for a low-density panel (600 SNP) is a valuable 
identification tool for linking CB phenotypes to pedigree; 
however, the inclusion of those CB genotypes imputed from 
a low-density panel (600 SNP) might not benefit genomic 
predictions for PB individuals or offset CB phenotyping. 
Further studies will help understand the usefulness of those 
imputed CB genotypes for traits with lower PB–CB genetic 
correlations and traits not recorded in the PB environment, 
such as mortality and disease traits.
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