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The co-occurrence among single nucleotide polymorphisms (SNPs), insertions-
deletions (InDels), and oligonucleotide repeats has been reported in prokaryote,
eukaryote, and chloroplast genomes. Correlations among SNPs, InDels, and repeats
have been investigated in the plant family Araceae previously using pair-wise sequence
alignments of the chloroplast genomes of two morphotypes of one species, Colocasia
esculenta belonging to subfamily Aroideae (crown group), and four species from the
subfamily Lemnoideae, a basal group. The family Araceae is a large family comprising
3,645 species in 144 genera, grouped into eight subfamilies. In the current study, we
performed 34 comparisons using 27 species from 7 subfamilies of Araceae to determine
correlation coefficients among the mutational events at the family, subfamily, and genus
levels. We express strength of the correlations as: negligible or very weak (0.10–0.19),
weak (0.20–0.29), moderate (0.30–0.39), strong (0.40–0.69), very strong (0.70–0.99),
and perfect (1.00). We observed strong/very strong correlations in most comparisons,
whereas a few comparisons showed moderate correlations. The average correlation
coefficient was recorded as 0.66 between “SNPs and InDels,” 0.50 between “InDels
and repeats,” and 0.42 between “SNPs and repeats.” In qualitative analyses, 95–100%
of the repeats at family and sub-family level, while 36–86% of the repeats at genus
level comparisons co-occurred with SNPs in the same bins. Our findings show that
such correlations among mutational events exist throughout Araceae and support the
hypothesis of distribution of oligonucleotide repeats as a proxy for mutational hotspots.

Keywords: Araceae (aroid), chloroplast genome, correlations, repeats, InDels (insertions/deletions)

INTRODUCTION

The chloroplast (cp) is a double-membrane bound organelle in plants, which plays an important
role in photosynthesis (Daniell et al., 2016). The chloroplast genome originated from prokaryotes
(Palmer, 1985). It shows uniparental inheritance, maternal in most angiosperms and paternal in
some gymnosperms (Neale and Sederoff, 1989; Avni and Edelman, 1991). Many mutational events
occur in the cp genome, including InDels, SNPs, inversions, tandem repeats, and oligonucleotide
repeats (Poczai and Hyvönen, 2011; Jheng et al., 2012; Xu et al., 2015; Abdullah et al., 2019;
Iram et al., 2019; Sablok et al., 2019). Sufficient polymorphism and uniparental inheritance
make the chloroplast genome suitable for phylogenetic inference, resolution of taxonomic
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discrepancies, population genetics, barcoding, and estimation
of time of lineage divergence (Poczai et al., 2011; Ahmed,
2014; Poczai and Hyvönen, 2017; Mehmood et al., 2020c;
Shahzadi et al., 2020).

Previously, co-existence of mutations was observed among
SNPs, InDels, and repeats in prokaryotic and eukaryotic genomes
(Silva and Kondrashov, 2002; Hardison et al., 2003; Tian et al.,
2008; Chen et al., 2009; Zhu et al., 2009; McDonald et al., 2011).
Three alternate hypotheses were suggested to explain the co-
existence of mutations. First, the “regional difference hypothesis”
suggests that certain regions are more prone to mutations
in comparison to other regions (Silva and Kondrashov, 2002;
Hardison et al., 2003). The second, “InDel-induced mutation
hypothesis” was suggested based on strong association between
InDels and substitutions, which suggested the recruitment of
error-prone DNA polymerase at point of InDels is the cause of
generation of substitutions (Tian et al., 2008; Yang et al., 2009).
The third hypothesis suggests high frequency of oligonucleotide
repeats in a region of the genome generates InDels and
substitutions (McDonald et al., 2011). To repair DNA damage,
the existence of a high number of repeats in a region leads
to the recruitment of error-prone DNA polymerases, thus the
adjacent sequences replicate with a higher error rate compared
to other regions (McDonald et al., 2011). Hence, instead of
InDel per se, this hypothesis places more importance on “regional
difference hypothesis.”

Associations have been reported between SNPs, repeats,
InDels, and inversions (Mes et al., 2000; Lockhart et al., 2001;
Li J. et al., 2018). The role of repeats in the generation of
inversions (Kim and Lee, 2005; Whitlock et al., 2010) and InDels
(Kawata et al., 1997) has also been reported. However, these
observations were made on the bases of few loci instead of
complete chloroplast genomes. The first study of associations
among SNPs, InDels, and repeats based on genome-wide analyses
of complete chloroplast genomes included five species of Araceae
(Ahmed et al., 2012). That study suggests the distribution of
oligonucleotide repeats could be used as a proxy for mutational
hotspots. Following Ahmed et al. (2012), correlations were
studied in two species of genus Cephalotaxus Siebold & Zucc.
ex Endl. (Yi et al., 2013). However, authors observed very
weak correlations between “InDels and SNPs” and “repeats and
InDels,” whereas moderate correlation was observed between
“substitutions and repeats.” Recently, strong correlations were
reported among these mutational events in the species of genus
Dendrobium Sw. (Li et al., 2020), whereas others have described
weak to strong correlations in species of the plant family
Malvaceae (Abdullah et al., 2020c,d). Hence, the very thorough
study by Abdullah and colleagues reported correlations at the
family, subfamily, and genus levels among 19 species belonging
to seven subfamilies of Malvaceae (Abdullah et al., 2020c).

The previous study of family Araceae was limited to five
species of Araceae, including Colocasia esculenta (L.) Schott from
subfamily Aroideae, which is a younger clade evolutionarily;
and four species from subfamily Lemnoideae, which is among
the earliest diverging aroid subfamilies (Nauheimer et al.,
2012). Colocasia esculenta is found in tropical habitat and
produces unisexual flowers, whereas the four species of subfamily

Lemnoideae produce bisexual flowers and inhabit aquatic habitat
(Mayo et al., 1997; Cusimano et al., 2011). These species also
demonstrated a different rate of mutations, which is consistent
with the finding that aquatic and tropical plant have diverse
mutation rates (Abbasi et al., 2016; Hu et al., 2017; Hart et al.,
2019; Wang et al., 2020). Sampling is therefore sparse in the
previous study for a large and ancient monocot family like
Araceae, which dates back to the Early Cretaceous period,
and is divided into eight diverse subfamilies distributed across
the multitude of ecological habitats (Cusimano et al., 2011;
Nauheimer et al., 2012; Henriquez et al., 2014). This family
comprises 144 genera and 3,645 species (Boyce and Croat, 2018).
Recently, with the advancement of next generation sequencing,
chloroplast genome sequences of several species of Araceae were
reported from subfamilies Aroideae, Lasioideae, Pothoideae,
Monsteroideae, Orontioideae, and Zamioculcadoideae (Han
et al., 2016; Choi et al., 2017; Kim et al., 2019; Abdullah et al.,
2020a,b; Henriquez et al., 2020a,b). We included 27 species
from 7 subfamilies of Araceae which are diverse in term of
habit, habitat, native range, and evolutionary time of divergence
(Table 1 and Figure 1A). The availability of these genomic
resources from a wide array of aroid species (Table 1) provided
enough data to elucidate correlations among substitutions,
InDels, and repeats throughout the family.

In the current study, we are interested in determining
correlations among these mutational events throughout the
family Araceae using genus-, subfamily-, and family-level
comparisons, aka time of divergences ranged from relatively
recent splits to deep divergences. This study will be helpful to
understand whether such correlations exist among these five
species used in Ahmed et al. (2012) by chance or whether these
correlations exist among species of Araceae at varying taxonomic
levels and diverse ecological habitats.

MATERIALS AND METHODS

We downloaded chloroplast genome sequences of 27 species of
Araceae from GenBank of the National Center for Biotechnology
Information (Table 1). The species are high diverse in terms
of habitat, geographical distribution, ecology, and evolutionary
history. The species included in the comparisons range in
distribution from tropical and subtropical to temperate regions
of the world, such as America, Asia, and Africa (Table 1).
Similarly, these species also differed in terms of habit and
habitat occupying aquatic and semi-aquatic to tropical and
subtropical forests (Table 1). The sub-families diverged during
Cretaceous to Miocene periods (Nauheimer et al., 2012). We
selected one species per genus from all subfamilies other than
subfamily Aroideae for family level comparisons. From subfamily
Aroideae, we selected 9 species from the comparisons among
the major clades using a previous phylogenetic inference of
Araceae (Cusimano et al., 2011; Henriquez et al., 2014). We
performed comparisons at the family, subfamily, and genus
levels. At the family level, all the species were pairwise compared
with Orontium aquaticum L. (Orontioideae) which is among the
basal groups of Araceae following a previous approach applied in
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TABLE 1 | GenBank accession numbers of the species used in comparative analyses along with native range, habit and habitat of each species.

S. No Species NCBI accession Subfamily Native range Habit and habitat

1 Orontium
aquaticum

MT226773 Orontioideae East United States Rhizomatous marginal aquatic herb grows in
ponds, streams, and shallow lakes

2 Symplocarpus
renifolius

KY039276 Orontioideae Russian far East to Korea and North &
Central Japan

Herb growing on wet places, moist mixed and
coniferous forests, forest swamps, swampy
meadows and lands

3 Symplocarpus
nipponicus

MK341566 Orontioideae Japan, Korea, Manchuria Herb growing on wet places

4 Lasia spinosa MT226772 Lasioideae Tropical and subtropical Asia 1–2-m-tall herb. Grow on swamps, riverbanks,
ditches, moist places in tropical and subtropical
forests, sometimes cultivated along fish ponds
and rice fields

5 Zamioculcas
zamiifolia

MT226775 Zamioculcadoideae Kenya to KwaZulu-Natal Tuber subcylindric, ±3–4 cm in diameter or
more, tough or woody. Humid to dry evergreen
forest, Brachystegia woodland, dry wooded
grassland, bushland thicket, often on rocks,
locally abundant

6 Stylochaeton
bogneri

MT226774 Zamioculcadoideae East Tropical Africa Rhizome slender, horizontal, elongated
0.4–0.6 cm. Evergreen forest, Brachystegia
woodland

7 Lemna minor DQ400350 Lemnoideae North and Central America, Temperate
and Subtropical Old World

Free-floating aquatic

8 Spirodela polyrhiza JN160603 Lemnoideae Cosmopolitan Floating herbs in form of colonies which cover
large area of water

9 Wolffiella lingulata JN160604 Lemnoideae Tropical and Subtropical America Aquatic herb

10 Wolffia australiana JN160605 Lemnoideae South and South East Australia,
New Zealand

Aquatic herb

11 Spathiphyllum
kochii

KR270822 Monsteroideae Colombia to Venezuela Herb exist on Lowland to middle-elevation
forests

12 Epipremnum
aureum

NC_027954 Monsteroideae Society Islands (Moorea) Small herb exists on wet hill forest. ca 500 m

13 Monstera adansonii MN046888 Monsteroideae South Mexico to Tropical America Herb, creeper or hemiepiphyte ranged in size
from 2 to 4 m climbing on the tree in dense rain
forest

14 Stenospermation
multiovulatum

MN046893 Monsteroideae West Colombia to Ecuador Epiphyte herb

15 Spathiphyllum
patulinervum

MN046890 Monsteroideae Tropical region of the America Evergreen herb

16 Anthurium
huixtlense

MN996266 Pothoideae Mexico to Central America Terrestrial or epiphytic, stem ranged to 14 cm
long

17 Pinellia ternata KR270823 Aroideae China to Temperate East Asia Small herb grows on grasslands, cultivated
lands, secondary forests, wastelands,

18 Colocasia
esculenta

JN105689 Aroideae India to South China and Sumatera Robust, acaulescent herb to 2 m. Wild forms
occur as colonies on river banks, in open
swampy places, on slopes and on rocks and
banks in the splash-zone of waterfalls. Very
occasionally found in forest under story. Widely
cultivated usually near farmhouses or in water
fields; also naturalized or perhaps native in wet
places in forests, valleys, swamps, wastelands,
and at watersides

19 Arisaema ringens MK111107 Aroideae East China, South Korea, Central Japan
to Taiwan

Herbaceous perennial with height of 1–1.5 feet.
Grow on humus-rich, moist but well-drained
soils in part shade to full shade. Needs
consistent moisture and does poorly in heavy
clay soils.

20 Anubias
heterophylla

MN046884 Aroideae West Central Tropical Africa, Angola Rhizome creeping, prostrate and rooting,
growing on rocky grounds on the banks of or in
water courses, and on shady places in the
forest

21 Arisaema
franchetianum

MN046885 Aroideae South China to North Indo-China Dioecious plant of up to 1.5 feet, grow in
Forests, thickets, and grasslands

(Continued)
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TABLE 1 | Continued

S. No Species NCBI accession Subfamily Native range Habit and habitat

22 Pinellia pedatisecta MN046890 Aroideae Central and South China. Tuber subglobose, to 4 cm in diam., with some
surrounding tubercles. Grow in forests, valleys,
shaded areas

23 Taccarum
caudatum

MN046895 Aroideae Brazil to Bolivia Deciduous herbs, grow in rocky area

24 Montrichardia
arborescens

MN046889 Aroideae Tropical America Aquatic herb

25 Aglaonema
costatum

MN046881 Aroideae Bangladesh to Peninsula Malaysia Herb up to 35 cm tall. Grow in dry lowland to
hill evergreen forest, mixed evergreen and
deciduous forest

26 Syngonium
angustatum

MN046894 Aroideae Mexico to Colombia Climbing herb

27 Amorphophallus
konjac

MK611803 Aroideae China Tuber brown, slightly glossy, depressed
globose, to ca. 20 cm high, to ca. 30 cm in
diam., seasonally producing numerous long
rhizomatous offsets with swollen apical part,
these to ca. 50 × 3 cm. Open situations or
forest margins and thickets, secondary forests

The data of distributions, habit and habitat are taken from powo.science.kew.org and Mayo et al. (1997).

FIGURE 1 | Coefficient of correlations were determined among mutational events using pairwise alignments. (A) Family–level comparisons, (B) subfamily-level
comparisons in Aroideae, (C) Genus-level comparisons. Orontium aquaticum was used as reference at family level, Montrichardia arborescence was used as
reference at subfamily level, and at the generic level, Arisaema franchetianum, Pinellia pedatisecta, Spathiphyllum patulinervum, and Symplocarpus renifolius were
used as references for Arisaema ringens, Pinellia ternata, Spathiphyllum kochii, and Symplocarpus nipponicus, respectively.

family Malvaceae (Abdullah et al., 2020c). At the subfamily level
in Aroideae, the genome of Montrichardia arborescens (L.) Schott
is used as a reference for the other species of subfamily Aroideae.

At the generic level, Arisaema franchetianum Engler, Pinellia
pedatisecta Schott, Spathiphyllum patulinervum G. S. Bunting,
and Symplocarpus renifolius Schott ex Tzvelev were used as
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references for Arisaema ringens (Thunb.) Schott, Pinellia ternata
(Thunb.) Makino, Spathiphyllum kochii Engl. & K. Krause, and
Symplocarpus nipponicus Makino, respectively.

The MAFFT (Multiple alignment using fast Fourier
transform) integrated in Geneious R8.1 (Kearse et al., 2012) was
used for the pairwise alignment in all comparisons after removal
of long inverted repeat regions following Ahmed et al. (2012). We
also deleted ycf 1 and rps15 genes along with intergenic-spacer
regions, as these genes jump between small single-copy and
inverted-repeat regions, hence present the problem of rate
heterotachy (Lockhart et al., 2006; Abdullah et al., 2020a). Each
alignment was divided into non-overlapping bins of 250 bp
and deletions in the reference genome were removed from the
alignment after noting their positions. This approach has been
used previously (Ahmed et al., 2012; Yi et al., 2013; Abdullah
et al., 2020c) to fix the coordinates positions in the reference
genomes for allocations of oligonucleotide repeats. The InDels
were counted manually and assigned into bins of 250 bp. The
forward and reverse repeats were determined as ≥ 14 bp using
REPuter (Kurtz et al., 2001) by searching for 5,000 repeats in the
reference genomes at family, subfamily, and generic levels. The
names of the species whose cp genomes were used as reference
are mentioned above (vide infra). All the repeats with exact
match located at least 10 bp away from each other were included
in the analyses after excluding redundant repeats. The repeats
were allocated into bins using Microsoft Excel (Redmond,
United States). The numbers of substitutions were determined by
a custom Pearl script and allocated into bins in Microsoft Excel.

Quantitative and qualitative approaches were used to
determine the correlations among the mutational events.
The normality test was first performed on the data in
Minitab v.19 following Abdullah et al. (2020c). This test
confirmed the non-normal distribution of mutational events
(Supplementary Figures S1–S4). Hence, Spearman rho
(ρ) correlations were applied on the non-normal data in
Minitab v.19. The methodology described in Akoglu (2018)
was used to express strength of the correlations as follows:
negligible or very weak (0.10–0.19), weak (0.20–0.29), moderate
(0.30–0.39), strong (0.40–0.69), very strong (0.70–0.99), and
perfect (1.00). The probability (p) of significance of correlations
was determined at 0.05 α level.

In the qualitative approach, we evaluated the co-occurrence
of InDels with substitutions, and of repeats with InDels and
substitutions following Abdullah et al. (2020c).

RESULTS

Correlations Among SNPs, InDels, and
Oligonucleotide Repeats at the Family
Level
Among 22 comparisons at the family level, the correlations
between SNPs and InDels were strong for Symplocarpus
renifolius and Zamioculcas zamiifolia (Lodd.) Engl., whereas were
categorized as very strong in the remaining 20 comparisons
(Figure 1A). Correlations between SNPs and repeats were

regarded as strong for all other comparisons except Stylochaeton
bogneri Mayo, which showed moderate correlations (Figure 1A).
We recorded strong correlations between repeats and InDels in
all comparisons. The average values of coefficients of correlations
were recorded highest between substitutions and InDels (0.72),
followed by InDels and repeats (0.48), and then by substitutions
and repeats (0.44). All correlations were observed with a high
significance of p < 0.0001. All the comparisons showed high
similarities in correlations from basal groups to the crown group.
The distributions of substitutions, InDels, and repeats in 250 bp
bins are shown in Supplementary Table S1.

Correlations Among SNPs, InDels, and
Oligonucleotide Repeats at the
Subfamily Level
For eight comparisons within the subfamily Aroideae, strong
correlations were observed among SNPs and InDels for
seven comparisons, whereas a very strong correlation was
observed for Anubias heterophylla Engl. (Figure 1B). We
recorded strong correlations between SNPs and repeats for
six comparisons, whilst moderate correlation was recorded
for Aglaonema costatum N.E.Br., and weak correlation was
recorded in Amorphophallus konjac K. Koch (Figure 1B). We
observed strong correlations between InDels and repeats for
all comparisons (Figure 1B). The average values of correlation
coefficients showed a similar pattern as observed at the family-
level comparisons: it remained highest between substitutions and
InDels (0.62), followed by InDels and repeats (0.55), and then by
substitutions and repeats (0.40). All correlations at the subfamily
level were also observed with high significance of p < 0.0001. The
distributions of substitutions, InDels, and repeats in 250 bp bins
are shown in Supplementary Table S2.

Correlations Among SNPs, InDels, and
Oligonucleotide Repeats at the Genus
Level
We investigated interspecific correlations in four genera as
representative of recent splits between species belonging to
the same genera. The correlation coefficients greatly varied in
these comparisons; the correlations between SNPs and InDels
remained very strong between the species of genus Pinellia Ten.,
strong in Spathiphyllum Schott, moderate in Arisaema Mart., and
negligible in Symplocarpus Salisb. (Figure 1C). The same pattern
was evident for correlations between substitutions and repeats,
which remained strong in Pinellia, moderate in Spathiphyllum,
weak in Arisaema, and negligible in Symplocarpus (Figure 1C).
Conversely, all comparisons showed strong correlations between
repeats and InDels (Figure 1C). In these comparisons, the
average values of the coefficients of correlations were found
highest between repeats and InDels (0.52), followed by SNPs and
InDels (0.42), and SNPs and repeats (0.31). Except Symplocarpus,
correlations in all other comparisons were observed with
p < 0.0001. Low significance was observed for substitutions and
InDels (p = 0.024), and for substitutions and repeats (p = 0.055)
in Symplocarpus. The distributions of substitutions, InDels, and
repeats in 250 bp bins are shown in Supplementary Table S3.
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Qualitative Analyses of the Existence of
InDels With Substitutions, and of
Repeats With Substitutions and InDels
In the qualitative analyses, we determined the percentages of the
InDel-containing bins that co-occurred with SNPs, and of the
repeat-containing bins that co-occurred with InDels and SNPs.
At the family level, we observed that up to 99.47–100% of InDel-
containing bins also contained SNPs, 97.88–100% of repeat-
containing bins also showed SNPs, and up to 66.45–80.51% of
repeat-containing bins also contained InDels (Table 2).

The results at the subfamily level show high similarities
with the family level. We observed 97.98–100% of InDel-
containing bins that also contained SNPs, 94.95–100% of repeat-
containing bins also contained SNPs, whereas up to 60.73–80%
of repeat-containing bins also exhibited InDels (Table 2). In

genus-level comparisons, for qualitative comparisons of three
among the four genera, 71.08–90.55% of InDel-containing bins
exhibited SNPs, 42.66–75.16% of repeat-containing bins also
contained InDels, while 36–86.51% of the repeat-containing
bins also displayed SNPs. The genus Symplocarpus remained
an exception, for which only 23.73% of InDel-containing bins
showed SNPs, and only 20.28% of repeat-containing bins
exhibited InDels, while merely 15.66% of repeat-containing bins
displayed SNPs (Table 2).

Distributions of InDels and Substitutions
at Family, Subfamily, and Genus Level
At the family level, the distantly related species showed existence
of a high number of substitutions and InDels with 3,430–15,459
substitutions and 456–1,156 InDels. Most of the substitutions and

TABLE 2 | The co-occurrence of InDels with substitutions, and of repeats with substitutions and InDels in family Araceae.

Species SNPs with InDels (%) InDels with repeats (%) SNPs with repeats (%)

Family level

Aglaonema costatum 100 76.69 99.57

Amorphophallus konjac 100 75.00 100

Anthurium huixtlense 100 77.11 99.57

Anubias heterophylla 100 75.00 99.57

Arisaema franchetianum 100 75.85 100

Colocasia esculenta 100 76.27 100

Epipremnum amplissimum 100 77.00 100

Lasia spinosa 100 76.69 99.57

Lemna minor 100 78.72 100

Monstera adansonii 100 77.11 100

Montrichardia arborescens 100 74.57 99.57

Pinellia pedatisecta 100 75.00 99.57

Spathiphyllum patulinervum 100 76.69 100

Spirodela polyrhiza 100 78.39 100

Stenospermation multiovulatum 100 76.69 100

Stylochaeton bogneri 100 76.69 97.88

Symplocarpus renifolius 99.47 64.45 99.57

Syngonium angustatum 100 74.58 99.57

Taccarum caudatum 100 76.27 99.57

Wolffia australiana 100 80.51 100

Wolffiella lingulata 100 80.10 100

Zamioculcas zamiifolia 99.63 80.50 99.57

Subfamily level

Aglaonema costatum 100 66.00 98.66

Amorphophallus konjac 99.57 63.75 94.95

Anubias heterophylla 97.98 60.73 97.98

Arisaema franchetianum 100 79.80 98.99

Colocasia esculenta 100 67.11 100

Pinellia pedatisecta 99.57 66.10 98.66

Syngonium angustatum 100 64.76 99.33

Taccarum caudatum 100 66.10 99.33

Genus level

Arisaema 85.71 75.16 81.36

Pinellia 71.08 42.66 36.00

Spathiphyllum 90.55 64.18 86.51

Symplocarpus 23.73 20.28 15.66

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 610838

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-610838 January 13, 2021 Time: 17:16 # 7

Abdullah et al. Mutational Dynamics of Aroid

InDels were found in aquatic species of subfamily Lemnoideae
(Table 3). At the subfamily level, deeply diverge species showed
3,639–5,859 substitutions and 537–765 InDels. At the genus
level, 89–1,793 substitutions and 70–352 InDels were determined
in closely related species (Table 3). The species of genus
Symplocarpus show a low number of substitutions and InDels 89
and 70, respectively.

DISCUSSION

We determined the extent of correlations among SNPs, InDels,
and repeats in cp genomes using 27 species from 23 genera,
distributed among seven of the eight subfamilies of Araceae. We

TABLE 3 | Distribution of SNPs and InDels at family, subfamily, and genus level.

Species SNPs InDels

Family level

Aglaonema costatum 9,283 991

Amorphophallus konjac 9,849 956

Anthurium huixtlense 10,533 1,007

Anubias heterophylla 9,283 957

Arisaema franchetianum 10,343 1,006

Colocasia esculenta 9,819 950

Epipremnum amplissimum 9,826 989

Lasia spinosa 10,193 1,019

Lemna minor 13,424 1,060

Monstera adansonii 9,736 979

Montrichardia arborescens 9,248 922

Pinellia pedatisecta 10,190 964

Spathiphyllum patulinervum 10,003 971

Spirodela polyrhiza 11,624 1003

Stenospermation multiovulatum 9,701 959

Stylochaeton bogneri 9,783 1,005

Symplocarpus renifolius 3,430 456

Syngonium angustatum 9,682 977

Taccarum caudatum 9,712 964

Wolffia australiana 15,459 1,147

Wolffiella lingulata 15,238 1,156

Zamioculcas zamiifolia 9,336 958

Subfamily Aroideae level

Aglaonema costatum 3,639 571

Amorphophallus konjac 3,750 549

Anubias heterophylla 5,859 537

Arisaema franchetianum 5,592 765

Colocasia esculenta 4,704 638

Pinellia pedatisecta 5,161 707

Syngonium angustatum 4,308 620

Taccarum caudatum 4,061 628

Genus level

Arisaema ringens vs. Arisaema franchetianum 1,355 303

Pinellia ternata vs. Pinellia pedatisecta 1,793 173

Spathiphyllum kochii vs. Spathiphyllum patulinervum 1,662 352

Symplocarpus nipponicus VS Symplocarpus renifolius 89 70

performed 34 pairwise comparisons and observed strong/very-
strong correlations for most of the comparisons among these
mutational events, which suggests high associations between
these mutational events.

We removed the ycf 1 and rps15 genes, along with intergenic
spacer regions, as these elements are located at the single-copy
and inverted-repeat junctions—appearing in single-copy regions
in some species, and in inverted repeats regions in others. Single-
copy regions undergo a different rate of mutation compared to
the inverted-repeat regions, hence the same genes that occur in
single-copy regions in some species and in inverted-repeats in
other species undergo a phenomenon known as rate heterotachy
(Lockhart et al., 2006). We previously reported the effect of rate
heterotachy in Araceae (Abdullah et al., 2020a). Single nucleotide
polymorphisms, InDels, and oligonucleotide repeats did not
follow the normal distribution curves in normality tests using
Minitab v.19. These observations are in agreement with previous
reports of chloroplast genomes in which certain regions were
found to be predisposed to mutations and reported as hotspots
for mutations (Ahmed et al., 2013; Li Y. et al., 2018; Sablok et al.,
2019; Abdullah et al., 2020e; Mehmood et al., 2020a,b).

Ahmed et al. (2012) determined correlations among
SNPs, InDels, and repeats using chloroplast genomes of
two morphotypes of one species, C. esculenta, and four
species of the subfamily Lemnoideae, including Lemna minor
L., Wolffia australiana (Benth.) Hartlog & Plas, Wolffiella
lingulata Hegelm., and Spirodela polyrhiza (L.) Schleid.
Colocasia esculenta is tropical and belongs to the crown
group, whereas the species of Lemnoideae are aquatic and
belong to the basal group. Aquatic plants evolve faster as
compared to non-aquatic, and tropical plants evolve faster
as compared to temperate plants (Abbasi et al., 2016; Hu
et al., 2017; Hart et al., 2019; Wang et al., 2020). We found
higher rates of mutation in terms of substitutions and InDels
in the species of Lemnoideae as compared to other species
(Table 3). Hence, further exploration of these observations
was required in diverse species to gain insight into correlations
among mutational events as sparse sampling of taxa is evident
in the previous study of Ahmed et al. (2012). In order to
cover the taxa across the family tree, here we include species
spanning seven of the eight subfamilies of Araceae and used
34 comparisons among 27 diverse species in terms of habit,
habitat, and evolution.

At the family and subfamily levels, most of the comparisons
exhibited strong/very strong correlations among “SNPs and
InDels,” “SNPs and repeats,” and “InDels and repeats.” Hence,
our study confirms strong correlations among mutational
events in close comparisons (subfamily level) and distant
comparisons (family level). Here, the high similarity among
mutational events in diverse species in terms of geography,
ecology, and time of divergence (Table 1 and Figure 1A)
demonstrates that the correlations are unaffected by the
geographical distribution, habit, and habitat. Weak correlations
in generic-level comparisons, however, may be due to fewer
SNPs and InDels in recently diverged species within the
same genera. Strong correlations have also been reported in
the family Malvaceae (Abdullah et al., 2020c). At the genus
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level, we observed very weak to strong correlations among
mutational events. Similar results were reported in the family
Malvaceae at the genus level (Abdullah et al., 2020c). Here,
very weak correlations were recorded between the species
of Symplocarpus. The species of Symplocarpus showed closed
resemblance and revealed the presence of few substitutions
(89) and InDels (70). Hence, the weak correlations might be
due to recent divergence of these species from each other.
Similar results were observed in the closely related species
of Theobroma L. (Abdullah et al., 2020c) and Cephalotaxus
(Yi et al., 2013). Previously, Tian et al. (2008) suggested
InDels as mutagens, whereas McDonald et al. (2011) suggested
the role of repeats in the generation of InDels and SNPs.
However, they considered the recruitment of error-prone DNA
polymerases during replication to be the cause of high mutations
due to errors in replications. Therefore, in closely related
species InDels and repeats might not have enough time to
generate substitutions. Moreover, correlations between “InDels
and repeats” were found to be higher than correlations between
“SNPs and InDels” and “SNPs and repeats” in three out of
four comparisons. Similar results were previously observed in
family Malvaceae, where four of the five comparisons showed
high correlation between “InDels and repeats” as compared to
“SNPs and InDels” and “SNPs and repeats” (Abdullah et al.,
2020c). These observations at the genus level suggest that most
of the InDels are generated by repeats first, and then both
InDels and repeats contribute to the generation of SNPs over
a period of time.

The quantitative analyses showed very strong correlations
between SNPs and InDels in most cases, whereas the qualitative
analyses revealed the occurrence of more than 90% of InDels
containing bins with SNPs. Previously strong associations
were also observed among SNPs and InDels in prokaryotic,
eukaryotic, and chloroplast genomes (Tian et al., 2008; Zhang
et al., 2008; Chen et al., 2009; Yang et al., 2009; Abdullah
et al., 2020c; Li et al., 2020). The InDels were suggested
as a mutagen for the generation of SNPs based on the
observation of high association between InDels and SNPs in
prokaryotic and eukaryotic genomes (Tian et al., 2008; Zhu
et al., 2009). Our analyses lend support to these previous
results. Chloroplast genomes originate from prokaryotes and
decrease in size by loss of genomic portions along with several
genes (Palmer, 1985) but still reveal high associations between
SNPs and InDels.

Abdullah et al. (2020c) reported weak to moderate correlations
between “SNPs and repeats” and “InDels and repeats” in most
of the comparisons in the plant family Malvaceae. However,
based on qualitative analyses, they reported the existence of
up to 60% of repeats with InDels and up to 90% of repeats
with SNPs. In the current study, we report strong correlations
between “InDels and repeats” and “SNPs and repeats” based
on quantitative analyses in the family Araceae, whereas based
on qualitative analyses we observed the existence of up to
100% of repeats with SNPs and up to 80% of repeats with
InDels. The variation in the results might be due to the
inclusion of a copy of inverted repeats in comparisons of
family Malvaceae as the inverted-repeats region showed less

polymorphism due to copy-dependent repair mechanisms (Zhu
et al., 2016). Here we excluded one copy of the Inverted repeats
from our comparisons, following previous studies (Ahmed et al.,
2012; Yi et al., 2013). A high frequency of repeats has previously
been considered the cause of generations of SNPs and InDels
in the adjacent regions based on strong associations between
“InDels and repeats” and “SNPs and repeats” in prokaryotic
and eukaryotic genomes (McDonald et al., 2011). Here, our
analyses in a wider sampling of species of Araceae and the
previous report of Malvaceae (Abdullah et al., 2020c) also
support the role of repeats in the generation of InDels and
substitutions, and supports the hypothesis that oligonucleotide
repeats can be used as a proxy for identification of mutational
hotspots (Ahmed et al., 2012; Abdullah et al., 2020c). This
hypothesis has practical implications in selecting appropriate
loci for comparative analyses. No one single locus is good
enough for evolutionary comparisons at all time scales; slow
evolving regions should be preferred for deep divergences, while
mutational hotspots for the closely related taxa and recently
diverged species (Ahmed et al., 2013; Ahmed, 2015; Li et al.,
2020). A recent report of Ahmed et al. (2020) on family
Araceae showed the practical implication of the use of repeats
in identification of suitable polymorphic loci for the study
of phylogeography and population genetics. Their developed
markers from the identified loci providing new insight about
the origin of Colocasia esculenta in southeast Asia instead of
Papua New Guinea (Ahmed et al., 2020). Our current results
support strong associations between repeats and substitutions
and repeats and InDels in Araceae, which can be helpful
for identifying species-specific suitable loci for the study of
phylogeography, domestication, and population genetics of other
species of Araceae.

In conclusion, the previous observations in five aroid species
were not an artifact of low sampling but a representative sample
of the correlations found at various taxonomic levels, and in
ecologically, geographically and evolutionarily of Araceae. The
strong associations of InDels with SNPs, and of repeats within
InDels and SNPs, support the previous observation (Ahmed
et al., 2012) that the multiple hypotheses outlined in the
introduction (vide infra) might explain the mutational dynamics
of chloroplast genome evolution. The strong associations
among the three types of mutational events reported in
prokaryotic, eukaryotic (Tian et al., 2008; Zhang et al., 2008;
Chen et al., 2009; McDonald et al., 2011), and chloroplast
genomes (Ahmed et al., 2012; Abdullah et al., 2020c; Li et al.,
2020), show that such co-occurrence of mutations might be
a universal phenomenon in all types of genomes. Further
studies in prokaryotes and eukaryotes are needed to test
this hypothesis.
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