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ABSTRACT
Quantitative understanding of drug penetration and exposure in the human central nervous system (CNS) and brain tumors 
is essential for the rational development of new drugs and optimal use of existing drugs for brain cancer. To address this need, 
we developed and validated a novel 9-compartment permeability-limited CNS (9-CNS) physiologically based pharmacokinetic 
(PBPK) model, enabling mechanistic and quantitative prediction of spatial pharmacokinetics for systemically administered 
small-molecule drugs across different regions of the human brain, cerebrospinal fluid, and brain tumors. To make the 9-CNS 
model accessible to a broad range of users, we developed the SpatialCNS-PBPK app, a user-friendly, web-based R/Shiny plat-
form built with R and Shiny programming. The app provides key functionalities for model simulation, sensitivity analysis, and 
pharmacokinetic parameter calculation. This tutorial introduces the development and evaluation of the SpatialCNS-PBPK app, 
highlights its key features and functions, and provides a step-by-step user guide for practical applications. By enhancing our abil-
ity to predict the spatial pharmacokinetics of anticancer drugs in the human CNS and brain tumors, the SpatialCNS-PBPK app 
serves as an invaluable computational tool and data-driven approach for advancing drug development and optimizing treatment 
strategies for more effective treatment of brain cancer.

1   |   Introduction

Drug delivery to the brain is restrained by the blood–brain barrier 
(BBB), a physical and biochemical barrier separating the brain 
parenchyma from the circulatory system [1]. In brain tumors, 
the integrity and function of the BBB are disrupted to varying 
extents, leading to large intra- and inter-individual variability 
(heterogeneity) in drug penetration, which in turn impacts clin-
ical outcome [2–4]. Quantitative knowledge of heterogeneous 

drug penetration and exposure in the human central nervous 
system (CNS) and brain tumors is critical to the rational de-
velopment of new drugs and optimal use of current drugs for 
brain cancer. However, the pharmacokinetics of many new and 
existing anticancer drugs in the human CNS and brain tumors 
remain poorly characterized due to challenges in sampling and 
limitations in current imaging and analytical technologies. 
Physiologically based pharmacokinetic (PBPK) modeling offers 
an innovative computational approach for mechanistically and 
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quantitatively predicting CNS pharmacokinetics. By incorporat-
ing drug-specific and biological system-specific parameters into 
a pharmacokinetic model, the PBPK model enables the predic-
tion of in vivo kinetic processes through mechanistic scaling of 
in vitro data (e.g., in vitro cellular permeability and transporter 
kinetic data) [5, 6].

We have developed and rigorously validated a novel 
9-compartment, permeability-limited CNS (9-CNS) PBPK 
model to predict spatial pharmacokinetics of systemically 
administered small-molecule drugs in the human CNS and 
brain tumors [7]. The 9-CNS model was designed based on 
the general anatomical structure and pathophysiological het-
erogeneity of the human CNS and brain tumor [7]. The model 
consists of nine compartments including two distinct brain 
parenchyma compartments (representing brain tissue adjacent 
to the cerebrospinal fluid [CSF] tract and deep brain paren-
chymal region located > 2 mm from the CSF tract), three CSF 
compartments (ventricular CSF, cranial and spinal subarach-
noid CSF), and three tumor compartments (tumor rim, bulk 
tumor, and tumor core) (Figure S1) [7]. Drug penetration into 
and distribution within the nine CNS compartments is driven 
by the system (plasma) drug concentration-time profile (serv-
ing as the input function) and regulated by multiple dynamic, 
interactive processes. Drug transfer and fluid flow between 
compartments are described by a system of linear nonhomo-
geneous ordinary differential equations incorporating both 
drug-specific and system-specific parameters. Compared 
to the existing 4-compartment CNS (4-CNS) PBPK model 
(Figure  S2) implemented in Simcyp Simulator (Certara Inc.), 
which treats the brain as a homogeneous compartment [8], the 
9-CNS model accounts for regional pathophysiological hetero-
geneity in the human CNS and brain tumors, thereby provid-
ing a mechanism-based computational tool for the prediction 
of spatiotemporal drug penetration and exposure in the CNS 
and brain tumors.

The R/Shiny interface enables the development of web applica-
tions with both front-end (visual design and interactivity) and 
back-end (computations and database management) capabili-
ties. This allows users to leverage R's extensive library of pack-
ages for data science, statistical analyses, and modeling. While 
several Shiny-based tools have been developed for pharmaco-
kinetic/pharmacodynamic (PK/PD) analysis [9–12], none have 
been specifically designed for PBPK modeling of spatial phar-
macokinetics in the human CNS.

To make the 9-CNS PBPK model accessible to a broad range of 
users, we developed a user-friendly, web-based R/Shiny plat-
form, named SpatialCNS-PBPK. The SpatialCNS-PBPK app 
(patent application #, US63/684,242) is available at: https://​
pbpkl​ab.​shiny​apps.​io/​Spati​alCNS_​PBPK_​V1/​. The app is pro-
grammed in R using Shiny as the web framework and inte-
grates key R packages (e.g., tidyverse, deSolve, ggplot2, and 
dplyr) to enable efficient data handling, differential equation 
solving, and interactive visualization [13–17]. This tutorial 
presents the development and validation of the SpatialCNS-
PBPK app, highlights its key features and functionalities, and 
provides a step-by-step user guide for practical applications in 
predicting spatial pharmacokinetics in the human CNS and 
brain tumors.

2   |   9-CNS PBPK Model

2.1   |   Model Structure and Hypotheses

The 9-CNS PBPK model (Figure  S1) comprises nine compart-
ments, including a brain blood compartment, two brain paren-
chyma compartments (representing brain tissue adjacent to CSF 
and a deep brain region > 2 mm from the CSF tract), three CSF 
compartments (ventricular CSF, cranial subarachnoid space, 
and spinal subarachnoid space), and three tumor compartments 
(infiltrative tumor rim, bulk tumor, and tumor core). In the 9-
CNS model, each brain or tumor compartment is treated as ho-
mogeneous, with the unbound drug rapidly distributing between 
the interstitial and intracellular spaces to reach equilibrium and 
exert pharmacological effects. Hence, the model-predicted total 
and unbound drug concentrations (linked by unbound fraction 
in tissue: unbound concentration = total concentration × un-
bound fraction) can be readily validated by comparing the pre-
dicted values with measured concentrations from brain/tumor 
tissue homogenates (which are commonly available from pre-
clinical or clinical studies) [7].

Following systemic drug administration, drug distribution into 
and within the nine CNS compartments is driven by drug plasma 
concentration-time profile (serving as the input function in the 
9-CNS model) and governed by CNS physiological processes, as 
detailed previously [7]. Briefly, drug transport across the BBB, 
blood–brain tumor barrier (BBTB), and blood-CSF barrier is 
governed by passive permeability and transporter-mediated 
active transport [18–20]. Once in the CSF, drug flows through 
the ventricular system to the cranial and spinal subarachnoid 
spaces and is subsequently drained into the systemic circulation 
[21–23]. Drug distribution from the ventricular and subarach-
noid CSF across the ependymal lining into the adjacent brain 
tissue primarily occurs via simple diffusion [23]. Drug may dis-
tribute between the CSF tract and deep brain parenchyma or 
tumors through paravascular convective bulk flow, commonly 
referred to as the glymphatic system [24].

The 9-CNS model incorporates regional pathophysiological 
heterogeneity in the normal brain parenchyma and tumor 
compartments, as detailed previously [7]. The model consid-
ers variability in the BBB integrity and transporter function 
across the normal brain and brain tumors. It assumes that 
the BBB maintains intact tight junctions in the brain paren-
chyma and infiltrative tumor rim, while tight junctions are 
progressively disrupted in the bulk tumor and tumor core 
compartments. This disruption could lead to a 2- to 50-fold 
increase in passive permeability at the BBTB in these com-
partments. Transporter-medicated active efflux clearance 
at the BBB varies between the brain parenchyma and tumor 
compartments, reflecting the heterogeneity of transporter ex-
pression or function [25]. In addition, the model accounts for 
regional differences in interstitial pH across the normal brain 
and tumor compartments, which impacts drug ionization and 
permeability. The normal brain parenchyma has an intersti-
tial pH of 7.2, while tumor regions exhibit progressively more 
acidic conditions (e.g., 6.8 in the tumor rim, 6.5 in bulk tumor, 
and 6.2 in the tumor core) [26–28]. Furthermore, the 9-CNS 
model considers pathophysiological changes caused by tumor 
edema, which affects fluid dynamics in the brain and tumor 
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compartments. For instance, the paravascular bulk flow rate 
is assumed to be doubled in the tumor rim due to edema-
induced expansion of the tumor's extracellular water volume, 
whereas it is reduced in the bulk tumor and tumor core due to 
increased interstitial pressure. Additionally, considering the 
potential for different tissue compositions and plasma pro-
tein extravasation in tumor edema, the model incorporates 
changes in drug binding across the brain parenchyma and 
various tumor compartments.

2.2   |   Model Equations

Drug distribution and fluid flow into and out of individual 
compartments of the 9-CNS PBPK model are described by 
differential equations that contain system-specific and drug-
specific parameters, as presented in Supporting Information. 
The system- and drug-specific parameters are defined in 
Tables 1 and 2.

2.3   |   Methods for Solving Differential Equations

The rates of change in drug concentrations in individual com-
partments of the 9-CNS PBPK model are described by a system 
of non-homogeneous linear parametric ordinary differential 
equations (ODEs). Various numerical methods exist for solv-
ing systems of differential equations, such as Euler's method, 
Runge- Kutta methods, and Adam's method. Each method 
carries its own strengths and weaknesses. In our study, we em-
ployed the Livermore Solver for Ordinary Differential Equations 
with Automatic method (LSODA) available through the deSolve 
package in R to efficiently solve the differential equations of 
the 9-CNS model [29]. LSODA automatically selects between 
non-stiff and stiff methods by dynamically monitoring data, 
and thus, users do not need to determine whether the system 
of differential equations is stiff or not. For solving non-stiff 
systems of ordinary differential equations, LSODA offers the 
implicit Adams method [30]. For solving stiff systems of differ-
ential equations, LSODA uses the backward differentiation for-
mula (BDF) method, which is commonly used for solving such 
problems  [31–33]. However, it always starts with the non-stiff 
method. The discrete drug plasma concentration-time profile is 
converted into a continuous profile (used as the input function of 
the model) via linear interpolation as this is required by the ODE 
function and passed to the ODE function as an additional argu-
ment. Finally, the ODE function within the deSolve package re-
trieves state variable values (i.e., drug concentrations) from the 
9-CNS model at specified times (i.e., sampling times).

3   |   Evaluation of the SPATIALCNS PBPK App

A 4-compartment permeability-limited CNS (4-CNS) PBPK 
model is implemented in the Simcyp Simulator v18. The model 
structure, differential equations, and system-specific parame-
ters for the 4-CNS model were published [18]. To evaluate the 
SpatialCNS-PBPK app, we packaged the 4-CNS PBPK model 
into the SpatialCNS-PBPK app using the same methodology as 
that for the 9-CNS model, and then we compared the 4-CNS 

model simulation results from the Simcyp Simulator v18 and 
SpatialCNS-PBPK app.

Ribociclib was used as the model drug for model evaluation. 
First, we performed simulations with the Simcyp 4-CNS 
model to predict ribociclib concentration—time profiles in the 
plasma, brain mass, cranial, and spinal CSF compartments 
in 100 Simcyp virtual cancer patients (i.e., 10 trials with 10 
cancer patients in each trial) following oral administration of 
a single dose (600 mg). The drug- and system-specific param-
eters for the Simcyp whole-body-4-CNS PBPK model of ribo-
ciclib were published previously by us [20]. Then, using the 
Simcyp 4-CNS model-simulated ribociclib plasma concentra-
tion—time profiles from 100 individuals as the input function, 
we performed simulations with the app 4-CNS model to pre-
dict the drug concentration—time profiles in the brain mass, 
cranial, and spinal CSF compartments for the same 100indi-
viduals, where the system- and drug-specific parameters were 
the same as those used in the Simcyp 4-CNS model simula-
tions [20]. The input file template for the app 4-CNS model is 
provided in Table S1.

Based on the 4-CNS model-simulated ribociclib concentration-
time profile by the Simcyp Simulator and SpatialCNS-PBPK app 
from the same 100 individuals, the mean and inter-individual 
variability (represented by 5th and 95th percentiles) of the con-
centration profiles in individual four CNS compartments were 
generated. As shown in Figure S3, the mean, 5th and 95th per-
centiles of ribociclib concentration profiles in individual CNS 
compartments simulated from the SpatialCNS-PBPK app were 
well aligned with those simulated from the Simcyp Simulator. 
Further correlation analysis indicated a Pearson's correlation 
coefficient (R) of approximately 1 between the Simcyp and 
SpatialCNS-PBPK app simulated mean concentrations in indi-
vidual CNS compartments. Collectively, these data suggested 
that the methodology used in the SpatialCNS PBPK app, includ-
ing the method for solving differential equations, was validated 
by the Simcyp Simulator.

4   |   SPATIALCNS-PBPK App Functions and User 
Guide

The SpatialCNS-PBPK app is a graphical user interface that 
consists of two modules: model simulation and sensitiv-
ity analysis, as shown in Figure  1. After an input file is up-
loaded, users can perform model simulations to predict drug 
concentration-time profiles in individual CNS compartments. 
In addition, users can perform sensitivity analysis to examine 
the impact of a particular system- or drug-specific parameter 
on the drug concentration-time profiles in individual com-
partments. The app provides real-time updates of outputs in 
response to input modifications and allows users to visualize 
the simulated plots and data tables. In addition, the output re-
sults including simulated drug concentration-time plots and 
data tables as well as calculated pharmacokinetic parameters 
can be downloaded. A step-by-step user guide for preparing 
the input file and performing model simulation and sensitiv-
ity analysis is provided as follows, using abemaciclib as the 
model drug.
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TABLE 1    |    System-specific parameters for the 9-CNS PBPK model.

Parameters Descriptions Values References or Assumptions

Vbb (L) Volume of brain blood 0.0630 5% of brain volume (1260 cm3 in men 
and 1130 cm3 in women) (ref 22)

Vbm1 (L) Volume of adjacent brain tissue 0.1200 Assuming 10% of brain volume 
(average brain volume, 1.2 L)

Vbm2 (L) Volume of deep brain parenchyma 1.0800 Assuming 90% of brain volume 
(average brain volume, 1.2 L)

VT1 (L) Volume of infiltrative tumor region 0.0700 Assuming non-enhancing tumor is 2-
fold of enhancing tumor volume

VT2 (L) Volume of bulky tumor region 0.0350 Assuming enhancing tumor is 35 mL

VT3 (L) Voume of tumor core 0.0035 Assuming tumor core is 10% of 
enhancing tumor volume

Vvcsf (L) Volume of ventricular CSF 0.0251 16.7% of total CSF (0.15 L) (ref 22)

Vccsf (L) Volume of cranial subarachnoid CSF 0.0450 30% of total CSF (0.15 L) (ref 22)

Vscsf (L) Volume of spinal subarachnoid CSF 0.0800 SCSF is 80 mL (ref 36)

Qbrain (L/h) Cerebral blood flow 39.0000 600–700 mL/min or 15% of the 
cardiac output (ref 22, 36)

Qcsink (L/h) Absorption rate of cranial CSF into blood 
circulation through arachnoid villi

0.0130 62% of CSF production rate (0.021 L/h) (ref 38)

Qssink (L/h) Absorption rate of spinal CSF into blood 
circulation through arachnoid villi

0.0080 38% of CSF production rate (0.021 L/h) (ref 38)

Qgly,ccsf (L/h) Absorption rate of cranial CSF via olfactory 
mucosa and cranial nerve sheaths

0.0065 50% of Qcsink

Qgly,scsf (L/h) Absorption rate of spinal CSF 
via spinal nerve sheaths

0.0040 50% of Qssink

Qsin1 (L/h) CSF flow rate from the ventricle 
to cranial subarachnoid space

0.0126 60% of CSF production rate (0.021 L/h) (ref 38)

Qsin1r (L/h) CSF back flow rate from the cranial 
subarachnoid space to ventricle

0.0013 Assuming 10% of Qsin1

Qsin2 (L/h) CSF flow rate from the ventricle 
to spinal subarachnoid space

0.0084 40% of CSF production rate (0.021 L/h) (ref 38)

Qsin2r (L/h) CSF back flow rate from the spinal 
subarachnoid space to ventricle

0.0008 Assuming 10% of Qsin2

Qsout (L/h) CSF flow rate from the spinal subarachnoid 
space to cranial subarachnoid

0.0004 Assuming Qsout = Qcsink − Qsin1 
to maintain fluid balance

Qsoutr (L/h) CSF flow rate from the cranial subarachnoid 
space to spinal subarachnoid

0.0000 Assuming 10% of Qsout

Qbulk,CB1 (L/h) Paravascular bulk flow rate from the cranial 
subarachnoid CSF to brain parenchyma 1

0.0013 Average bulk flow rate is 0.15 ul/min/g in human 
brain, bm1 is 10% of whole brain weight (140 g)

Qbulk,B1C (L/h) Paravascular bulk flow rate from brain 
parenchyma 1 to cranial subarachnoid CSF

0.0016 Assuming 1.25-fold of Qbulk,CB1

Qbulk,VB1 (L/h) Paravasculare bulk flow rate from the 
ventricular CSF to brain parenchyma 1

0.0001 Assuming 10% of Qbulk,CB1

Qbulk,B1V (L/h) Paravascular bulk flow rate from brain 
parenchyma 1 to ventricular CSF

0.0002 Assuming 1.25-fold of Qbulk,VB1

(Continues)
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4.1   |   Prepare Input File

4.1.1   |   Input File Template

An input file provides necessary information for model simula-
tions, which includes the drug plasma-concentration time profile 
(as the input function of the model), system- and drug-specific 
parameters, and respective interindividual variabilities, as well 
as observed data (if available). An input file is prepared in .csv or 
.xlsx format. The template of the input file for the 9-CNS model is 
provided in Table S2, using abemaciclib as the model drug. The 

input file contains a number of columns, named as Time (sam-
pling times), Plasma (drug plasma concentrations), Parameters 
(system- and drug-specific parameter names), IIV (interindivid-
ual variability), and Sim (parameter values). In addition, observed 
data (e.g., measured drug concentrations in CSF and/or tumor) (if 
available) can be included in the input file (Table S1). Of note, users 
have the flexibility to add new columns for additional plasma time 
profiles (e.g., Time2 and Plasma2), parameter values (e.g., Sim2, 
Sim3…), and inter-individual variability (e.g., IIV2) for performing 
different simulations. However, the column names should follow 
the sequence of the current column names in the template, and 

Parameters Descriptions Values References or Assumptions

Qbulk,CB2 (L/h) Paravascular bulk flow rate from cranial 
subarachnoid CSF to brain parenchyma 2

0.0113 Average bulk flow rate is 0.15 ul/
min/g in human brain, bm2 is 90% of 
whole brain weight (1260 g) (ref 37)

Qbulk,B2C (L/h) Paravascular bulk flow rate from brain 
parenchyma 2 to cranial subarachnoid CSF

0.0142 Assuming 1.25-fold of Qbulk,CB2

Qbulk,CT1 (L/h) Paravascular bulk flow rate from cranial 
subarachnoid CSF to tumor mass 1

0.0013 Assuming bulk flow rate increased 2-fold 
(0.30 ul/min/g) in tumor rim (T1) due to 

tumor edema; assuming T1 is 70 g.

Qbulk,T1C (L/h) Paravascular bulk flow rate from tumor 
mass 1 to cranial subarachnoid CSF

0.0016 Assuming 1.25-fold of Qbulk,CT1

Qbulk,CT2 (L/h) Paravascular bulk flow rate from cranial 
subarachnoid CSF to tumor mass 2

0.0002 Assuming bulk flow rate decreased by 25% (0.1125 
ul/min/g) in bulk tumor (T2) due to increased 

interstitial pressure; assuming T2 is 35 g.

Qbulk,T2C (L/h) Paravascular bulk flow rate from tumor 
mass 2 to cranial subarachnoid CSF

0.0003 Assuming 1.25-fold of Qbulk,CT2

Qbulk,CT3 (L/h) Paravascular bulk flow rate from cranial 
subarachnoid CSF to tumor mass 3

0.0000 Assuming bulk flow rate decreased by 
50% (0.075 ul/min/g) in tumor core (T3) 

due to increased interstitial pressure; 
assuming T3 weight is 20% of T1

Qbulk,T3C (L/h) Paravascular bulk flow rate from tumor 
mass 3 to cranial subarachnoid CSF

0.0000 Assuming 1.25-fold of Qbulk,CT3

Qbulk,B1B2 (L/h) Convective bulk flow rate from 
brain parenchyma 1 to 2

0.0005 Assuming a constant small bulk flow between 
two brain parenchyma compartments

Qbulk,B2B1 (L/h) Convective bulk flow rate from 
brain parenchyma 2 to 1

0.0005 Assuming a constant small bulk flow between 
two brain parenchyma compartments

Qbulk,B2T1 (L/h) Convective bulk flow rate from brain 
parenchyma 2 to tumor mass 1

0.0005 Assuming a constant small bulk flow between 
the brain and tumor rim compartments

Qbulk,T1B2 (L/h) Convective bulk flow rate from tumor 
mass 1 to brain parenchyma 2

0.0005 Assuming a constant small bulk flow between 
the brain and tumor rim compartments

Qbulk,T1T2 (L/h) Convective bulk flow rate 
from tumor mass 1 to 2

0.0002 Assuming a constant small bulk flow 
between tumor rim and bulk tumor

Qbulk,T2T1 (L/h) Convective bulk flow rate 
from tumor mass 2 to 1

0.0002 Assuming a constant small bulk flow 
between tumor rim and bulk tumor

Qbulk,T2T3 (L/h) Convective bulk flow rate 
from tumor mass 2 to 3

0.0002 Assuming a constant small bulk flow 
between bulk tumor and tumor core

Qbulk,T3T2 (L/h) Convective bulk flow rate 
from tumor mass 3 to 2

0.0002 Assuming a constant small bulk flow 
between bulk tumor and tumor core

TABLE 1    |    (Continued)
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TABLE 2    |    Drug-specific parameters for the 9-CNS PBPK model.

Parameters Description

MW (g/mol) Molecular weight

LogP Logarithm of the neutral species 
octanol-to-buffer partition ratio

PKa Acid dissociation constants

PSB1 (L/h) Passive permeability clearance at 
the BBB between brain blood and 

adjacent brain parenchyma

PSB2 (L/h)a Passive permeability clearance 
at the BBB between brain blood 

and deep brain parenchyma

PST1 (L/h) Passive permeability clearance at the BBTB 
between brain blood and tumor rim

PST2 (L/h) Passive permeability clearance at the BBTB 
between brain blood and bulk tumor

PST3 (L/h) Passive permeability clearance at the BBTB 
between brain blood and tumor core

PSV (L/h) Passive permeability clearance at 
the blood-CSF barrier between the 

brain blood and ventricular CSF

PSC (L/h) Passive permeability clearance at the 
blood-CSF barrier between the brain 
blood and cranial subarachnoid CSF

PSE1 (L/h) Simple diffusion rate between 
cranial subarachnoid CSF and 

adjacent brain parenchyma

PSE2 (L/h) Simple diffusion rate between ventricular 
CSF and adjacent brain parenchyma

PSB1B2 (L/h) Simple diffusion rate between the 
adjacent and deep brain parenchyma

PSB2T1 (L/h) Simple diffusion rate between the deep 
brain parenchyma and tumor rim

PST1T2 (L/h) Simple diffusion rate between 
tumor rim and bulk tumor

PST2T3 (L/h) Simple diffusion rate between 
bulk tumor and tumor core

CLeff,bbb1 (L/h) Efflux transporter-mediated efflux 
clearance at the BBB between the brain 
blood and adjacent brain parenchyma

CLup,bbb1 (L/h) Uptake transporter-mediated influx 
clearance at the BBB between the brain 
blood and adjacent brain parenchyma

CLeff,bbb2 (L/h)b Efflux transporter-mediated efflux 
clearance at the BBB between the brain 

blood and deep brain parenchyma

CLup,bbb2 (L/h) Uptake transporter-mediated influx 
clearance at the BBB between the brain 

blood and deep brain parenchyma

(Continues)

Parameters Description

CLeff,T1 (L/h) Efflux transporter-mediated efflux 
clearance at the BBTB between the 

brain blood and tumor rim

CLup,T1 (L/h) Uptake transporter-mediated influx 
clearance at the BBB between the 

brain blood and tumor rim

CLeff,T2 (L/h) Efflux transporter-mediated efflux 
clearance at the BBTB between the 

brain blood and bulk tumor

CLup,T2 (L/h) Uptake transporter-mediated influx 
clearance at the BBB between the 

brain blood and bulk tumor

CLeff,T3 (L/h) Efflux transporter-mediated efflux 
clearance at the BBTB between the 

brain blood and tumor core

CLup,T3 (L/h) Uptake transporter-mediated influx 
clearance at the BBB between the 

brain blood and tumor core

CLeff,vcsf (L/h) Efflux transporter-mediated efflux clearance 
at the blood-CSF barrier between the brain 
blood and ventricular CSF compartments

CLup,vcsf (L/h) Uptake transporter-mediated 
uptake clearance at the blood-CSF 

barrier between the brain blood and 
ventricular CSF compartments

CLeff,ccsf (L/h) Efflux transporter-mediated efflux clearance 
at the blood-CSF barrier between the brain 

blood and cranial subarachnoid CSF

CLup,ccsf (L/h) Uptake transporter-mediated 
uptake clearance at the blood-CSF 

barrier between the brain blood 
and cranial subarachnoid CSF

CLmet1 (L/h) Drug metabolism clearance in the 
adjacent brain parenchyma

CLmet2 (L/h) Drug metabolism clearance in 
the deep brain parenchyma

fubb Drug unbound fraction in the brain blood

fubm1 Drug unbound fraction in the 
adjacent brain parenchyma

fubm2 Drug unbound fraction in the 
deep brain parenchyma

fuT1 Drug unbound fraction in tumor rim

fuT2 Drug unbound fraction in bulk tumor

fuT3 Drug unbound fraction in tumor core

fuvcsf Drug unbound fraction in ventricular CSF

Fuccsf, fuscsf Drug unbound fraction in cranial/
spinal subarachnoid CSF

(Continues)

TABLE 2    |    (Continued)
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in addition, the same order of parameter names should be kept as 
shown in the template (Table S2).

4.1.2   |   Drug Plasma Concentration-Time Profile

The drug plasma concentration-time profile is used as the 
input function for the 9-CNS model simulations. Users need 
to provide this information in the columns named “Time” and 
“Plasma” in the input file. Drug plasma concentration-time 
profiles can be obtained from individual patients or a patient 
population. As described previously, we performed population 
plasma pharmacokinetic analysis to characterize the popula-
tion mean and inter-individual variability (expressed as the 5th 
and 95th percentiles) of the plasma concentration-time profiles 
for the model drugs, which were subsequently applied as the 
input functions for the 9-CNS model simulations [7]. As an 
example, the input file template includes the population mean 
plasma concentration-time profile of abemaciclib determined 
from glioblastoma patients [7]. In addition to using the popula-
tion mean plasma concentration-time profile as the input func-
tion to predict CNS pharmacokinetics in the “average” patient 
population, the observed plasma concentration-time profile in 
an individual patient can be used as the input function to pre-
dict CNS pharmacokinetics in that particular patient. Of note, 
observed drug plasma concentration data with either inten-
sive or sparse sampling time can be used as the input function 
because the app internally converts the discrete drug plasma 
concentration-time profile to a continuous profile via linear 
interpolation.

4.1.3   |   System- and Drug-Specific Parameters

Users need to provide system- and drug-specific parameters in 
the column “Sim” in the input file (Table S2). The typical or ref-
erence values of the system-specific parameters for the 9-CNS 
model (as presented in Table 1 and input file template) were de-
termined or assumed based on literature data  [22, 34–37] and 
further validated by us using 6 different drugs [7]. Users can 
use these typical values as the starting point for simulations and 
modify them if needed.

The drug-specific parameters are defined in Table  2. As an 
example, the input file template (Table  S2) includes the drug-
specific parameter values for abemaciclib, as published previ-
ously by us [7]. Users need to provide drug-specific parameter 
values for their model drugs. The methods for determination of 
drug-specific parameters were described briefly below, and de-
tails can be found in published papers [7, 19, 20].

Mechanistic in  vitro-in vivo extrapolation (IVIVE) strategy 
is used to predict in  vivo passive clearance and transporter-
mediated active efflux clearance at the BBB. Specifically, in vivo 
passive clearance at the BBB or BBTB, parameterized as the pas-
sive permeability-surface area product (PSB), can be estimated 
by scaling of the apical-to-basolateral apparent permeability 
(Papp,A−B) determined from in vitro epithelial cell model to the 
human brain/tumor microvasculature surface area (SA) using 
the equation: PSB =

Papp,A−B ×SA

�
, where Papp,A−B is corrected by the 

unionization fraction (λ) of a drug because passive permeability 
allows only unbound and unionized drug to pass through [18, 38]. 
The unionization efficiency (λ) is calculated using the Henderson-
Hasselbalch equation: Log10

base (or unionized)

acid (ionized)
= pH − PK [19, 20]. 

The active efflux clearance at the BBB (CLefflux,BBB,) can be es-
timated based on the intrinsic efflux clearance (CLefflux,vitro) 
determined from in  vitro transporter system using the equa-
tion: CLefflux,BBB = CLefflux,vitro × RAF × BMvPGB × BW , where 
CLefflux,vitro is the in vitro efflux transporter-mediated intrinsic 
clearance determined from MDCKII cells with stable expres-
sion of an efflux transporter (e.g., ABCB1 or ABCG2), RAF is 
the in  vivo-in vitro relative activity factor of the transporter, 
BMvPGB is the milligrams of brain microvessels per gram brain/
tumor, BW is the brain/tumor weight. Drug unbound fraction 
(Fu) in human plasma and brain/tumor can be experimentally 
determined from the plasma and brain tumor samples [39–46].

4.2   |   Perform Model Simulations

4.2.1   |   Upload Input File and Select Inputs

To perform model simulations, users need to upload the input 
file from the user's local directory and select the inputs for sam-
pling time (e.g., Time1), plasma concentration (e.g., Plasma1), 
model parameters (e.g., Sim1), IIV (e.g., IIV1), group size (i.e., 
number of subjects), and time range for the calculation of PK 
parameters (i.e., Cmax, Tmax, and AUC), as illustrated in the left 
panel of the app (Figure 1). The input values are read by the app 
from the input file and submitted for model simulation. Once 
the simulation is completed, users can view and download sim-
ulated concentration-time profiles, data tables, and PK param-
eters (calculated based on simulated data), as described below.

Parameters Description

λbbc Unionization fraction in the 
brain blood (pH 7.4)

λbm1c Unionization fraction in the adjacent 
brain parenchyma (pH 7.2)

λbm2c Unionization fraction in the deep 
brain parenchyma (pH 7.2)

λT1c Unionization fraction in tumor rim (pH 6.8)

λT2c Unionization fraction in bulk tumor (pH 6.5)

λT3c Unionization fraction in tumor core (pH 6.2)

λvcsfc Unionization fraction in the 
ventricular CSF (pH 7.3)

λccsf, λscsfc Unionization fraction in the cranial or 
spinal subarachnoid space CSF (pH 7.3)

aPSB =
Papp,A−B × SA

�
 (Equation 1), where Papp,A→B is the apparent permeability 

determined from MDCKII cell monolayer; SA is the human brain 
microvasculature surface area (mean, 20 m [2]); and λ is unionization efficiency.
bCLefflux,BBB = CLefflux,vitro × RAF = CLefflux,vitro ×

Abundance in vivo

Abundance in vitro
× BMvPGB × BW

, where CLefflux,vitro (μL/min/mg) is the in vitro efflux transporter-mediated 
intrinsic clearance; RAF is the relative activity factor; BMvPGB is the milligrams 
of brain microvessels per gram brain; BW is the average human brain weight; 
abundance in vivo or in vitro represents the ABCB1/ABCG2 transporter protein 
expression level in human brain microvessels or in MDCKII-ABCB1 and –
ABCG2 cells, respectively.
cUnionization fraction (λ) is the ratio of unionized form to total drug (the sum of 
unionized and ionized forms), where the unionized-to-ionized ratio is calculated 
based on Henderson-Hasselbalch equation: Log10

base (or unionized)

acid (ionized)
= pH − PK.

TABLE 2    |    (Continued)
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4.2.2   |   View and Download Simulated Mean 
Concentration-Time Profiles, Concentration Data Tables, 
and PK Parameters

Based on the mean model parameter values provided in the 
input “Sim1”, the mean drug concentration-time profiles in 
individual CNS compartments are simulated. As illustrated in 
Figure 2, users can click “Simulated mean concentration-time 

profile” tab to view the simulated data tables and profile plots 
(in either normal scale or normal logarithmic scale) for total 
or unbound drug; in addition, users can download data tables 
as .csv files and plots as .pdf files. Of note, if observed data are 
provided in the input file, observed data will be overlayed with 
the simulated profiles in the plots, thus allowing a direct vi-
sualization of how well the model predicts the observed data. 
As illustrated in Figure 2, observed total drug concentrations 

FIGURE 1    |    A screenshot illustrating the graphical user interface of the SpatialCNS-PBPK application, which consists of two modules: Model sim-
ulation and sensitivity analysis. The app provides real-time updates of outputs in response to input modifications (in the left panel) and allows users 
to view or download the plots and data tables from model simulation and sensitivity analysis (in the right panel).
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FIGURE 2    |     Legend on next page.
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of abemaciclib in the contrast-enhancing and non-enhancing 
tumors of glioblastoma patients are overlayed with the sim-
ulated mean total drug concentration—time profiles (in 
common logarithmic scale) for the deep brain parenchyma 
compartment (Cbm2) and three tumor compartments includ-
ing tumor rim (CT1), bulk tumor (CT2), and tumor core (CT3); 
the observed total drug concentrations in CSF are overlayed 
with the simulated mean total drug concentration—time pro-
files for three CSF compartments including ventricular CSF 
(Cvcsf), cranial subarachnoid CSF (Cccsf), and spinal sub-
acrachnoid CSF (Cscsf).

The PK parameters (i.e., Cmax, Tmax, and AUC) for total or un-
bound drug can be estimated based on the simulated mean 
total/unbound drug concentration—time profiles in individ-
ual CNS compartments. Users have the flexibility to define 
the time interval for PK parameter calculation. By clicking 
“Pharmacokinetic parameters (total/unbound)” tab, users can 
view or download the PK parameter tables for both total and 
unbound drug.

4.2.3   |   View and Download Simulated Individual 
Concentration-Time Profiles and Inter-Individual 
Variability

The SpatialCNS-PBPK app has the capability of generating a pa-
tient population based on the mean values and interindividual 
variabilities (IIVs) of system- and drug-specific parameters that 
are provided in the input file. For example, if users want to gen-
erate a virtual population of n patients, the values of a particular 
system- or drug-specific parameter for these n patients are gen-
erated using Equation 1, where P is the mean parameter value 
provided in the input file, IIV is the interindividual variability 
for parameter P, Pvec is a vector of size n with list of IIV based 
parameter values, and Norm generates random numbers from a 
standard normal distribution.

As an example, Table S3 shows the parameter values of system- 
and drug-specific parameters for five individual patients, gen-
erated by the app based on the mean parameter values (Sim1) 
and respective interindividual variability (IIV1) provided in 
the input file (Table S2). Users have the flexibility of defining 
the group size (i.e., number of patients) for a virtual popula-
tion and perform simulations for individual patients. Users 

can click “View simulated individual concentration-time pro-
file” tab to view the simulated concentration data tables and 
profile plots (in either normal scale or normal logarithmic 
scale) for the total drug; in addition, users can download data 
tables as .csv files and plots as .pdf files. Figure 3 illustrates 
the simulated total drug concentration-time profiles of abe-
maciclib (in normal logarithmic scale) in individual CNS com-
partments for five individual patients. In addition, users can 
click “percentile plots” to view the mean, 5th and 95th per-
centiles of the simulated total drug concentration-time pro-
files (in normal scale or normal logarithmic scale) for a virtual 
population (Figure 4). Of note, if observed data are provided 
in the input file, observed data will be overlayed with the sim-
ulated percentile profiles, thus allowing visualization of the 
distribution of both observed and simulated concentration 
profiles. As illustrated in Figure 4, observed total abemaciclib 
concentrations in the contrast-enhancing and non-enhancing 
tumors of glioblastoma patients are overlayed with the sim-
ulated percentile profiles (50th, 5th, and 95th) of total drug 
concentrations for the deep brain parenchyma compartment 
(Cbm2) and three tumor compartments (i.e., tumor rim CT1, 
bulk tumor CT2, and tumor core CT3); the observed abemac-
iclib concentrations in CSF are overlayed with the simulated 
percentile profiles (50th, 5th, and 95th) of drug concentration 
in the three CSF compartments.

4.3   |   Perform Sensitivity Analysis

SpatialCNS-PBPK app provides sensitivity analysis function to 
examine the impact of a particular system- or drug-specific pa-
rameter on the concentration-time profiles in individual compart-
ments of the 9-CNS model. This function is useful for parameter 
optimization to improve the model's predictivity. For example, 
to enable sensitivity analysis of a drug-specific parameter (e.g., 
PSB2, passive permeability clearance at the BBB between the 
blood and deep brain parenchyma compartments), users need to 
upload the input file (Table S2) and select the inputs for the sam-
pling time (e.g., Time1), plasma concentration (e.g., Plasma1), and 
model parameter (e.g., Sim1); then, select the parameter name 
(e.g., PSB2), value range (e.g., from 2.5 to 250 L/h), and number 
of points (e.g., 5), and submit for sensitivity analysis (Figure 1). 
Of note, users can set the space between parameter points based 
on the uniform or normal logarithm of the parameter values. For 
example, when “uniform” is selected for parameter space, drug 
concentration-time profiles are simulated using the PSB values 
of 2.5, 64.4, 126.2, 188.1, and 250 L/h. When “log” is selected for 
parameter space, drug concentration-time profiles are simulated 
using the PSB values of 2.5, 7.9, 25, 79, and 250 L/h (Figure 5).

(1)
Pvec = e

�

log
�

P
√

1+IIV2

�

+

�

√

log(1+IIV2)

�

(xi)

�

; xi ∼ Norm(0, 1), i = 1, … ,n

FIGURE 2    |    A screenshot showing the simulated mean concentration-time profiles (in common logarithmic scale) of total abemaciclib in individ-
ual compartments of the 9-CNS model. The input file is provided in Table S2. The observed abemaciclib concentrations in the contrast-enhancing 
(shown in red symbols) and non-enhancing tumors (shown in black symbols) of glioblastoma patients are overlayed with the simulated mean total 
drug concentration-time profiles in the deep brain parenchyma compartment (Cbm2) and three tumor compartments including tumor rim (CT1), 
bulk tumor (CT2), and tumor core (CT3); the observed abemaciclib concentrations in CSF (shown in green symbols) are overlayed with the simulated 
mean total drug concentration-time profiles in three CSF compartments including ventricular CSF (Cvcsf), cranial subarachnoid CSF (Cccsf), and 
spinal subacrachnoid CSF (Cscsf, not shown here due to the space limit).
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After sensitivity analysis is submitted, users can click “View pa-
rameter sensitivity simulation results” or “Download parame-
ter sensitivity simulation results” tab to view or download the 
simulated concentration data tables and profile plots (in either 
normal scale or normal logarithmic scale) for total or unbound 
drug, as well as the calculated PK parameters (i.e., Tmax, Cmax, 
and AUC) and AUC scatter plot (i.e., the plot of AUC versus 
tested parameter values). For example, for sensitivity analysis of 

PSB2 ranging from 2.5 to 250 L/h (at 5 parameter points using 
log space), Figure 5 illustrates the total drug concentration-time 
profiles in individual compartments simulated with the PSB2 
values of 2.5, 7.9, 25, 79, and 250 L/h while other parameters re-
main the same as defined in the input “Sim1”. These data suggest 
that PSB2 significantly influences abemaciclib pharmacokinetic 
profile in the deep brain parenchyma compartment, while hav-
ing negligible impacts on the PK profiles in other compartments.

FIGURE 3    |    A screenshot showing the simulated concentration-time profiles (in common logarithmic scale) of total abemaciclib in the nine CNS 
compartments for individuals. The system- and drug-specific parameters for five individuals (shown in Table S3) were generated by the app based on 
the mean parameter values (Sim1) and respective IIVs (IIV1) provided in the input file (Table S2).
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Based on the simulated concentration-time profiles, the 
SpatialCNS-PBPK app is capable of calculating PK parameters 
(i.e., Tmax, Cmax, and AUC) for any user-defined time interval 
(e.g., 72–96 h). Users can view or download PK parameter tables 
for total and unbound drug. In addition, users can view or down-
load the AUC scatter plots, which provide a direct visualization 
of the impact of the tested parameter (e.g., PSB2) on drug expo-
sure (AUC) in individual CNS compartments. As illustrated in 
Figure 6, PSB2 has a significant impact on the total drug expo-
sure (AUC) of abemaciclib in the deep brain parenchyma, but 
not in the other CNS compartments.

5   |   Discussion

In our previous study, we developed and rigorously validated an 
innovative mechanism-based 9-CNS PBPK model for the quanti-
tative prediction of spatial pharmacokinetics of systemically ad-
ministered drugs in the human CNS and brain tumors [7]. In the 
present study, we developed the SpatialCNS-PBPK app, a user-
friendly, web-based platform designed to make the 9-CNS model 
accessible to a broad range of researchers, scientists, and drug 
developers. The app includes key functionalities such as model 
simulation, sensitivity analysis, and pharmacokinetic parameter 
calculation. To ensure reliability, we validated the methodology 
and simulation function of the app by comparing its outputs 
with those from a standard PBPK modeling & simulation soft-
ware (Simcyp Simulator). This tutorial provides a step-by-step 
user guide for practical applications and also explains the phar-
macological and mathematical basis underlying the platform's 
development. This ensures that users gain a comprehensive un-
derstanding of the SpatialCNS-PBPK app's functionality, rather 
than treating it as a “black box”. Important, while the app is built 
on advanced computation modeling, it is designed to be intuitive 
and does not require users to have advanced statistical or pro-
gramming expertise.

One of the challenges in developing and applying the 9-CNS 
PBPK model lies in the uncertainties surrounding some system-
specific parameters, particularly those related to tumor compart-
ments. Critical parameters such as efflux/uptake transporter 
protein abundances at the BBTB, degree of BBTB disruption, 
tumor weight, tumor vasculature surface area, and regional pH 
are not readily available and are difficult—if not impossible—to 
quantify in patients, even with advanced imaging technologies. 
Moreover, these parameters exhibit significant intra- and inter-
individual variability, further complicating model development. 
A major advantage of our approach was access to rich clinical 
plasma and CNS pharmacokinetic data for six drugs [7]. These 
data included total and unbound drug concentrations in the 

plasma, paired contrast-enhancing and non-enhancing tumor 
regions, and CSF, which provided a robust foundation for de-
fining tumor-specific parameters in a stepwise, iterative man-
ner. Specifically, during initial model development, we assigned 
tumor-specific parameters based on prior knowledge and litera-
ture data. In the model optimization phase, we refined these pa-
rameters through a series of simulations, comparing simulated 
drug concentration profiles with observed clinical data. This 
learn-confirm-refine iterative process allowed us to rigorously 
define and validate system-specific parameters using six drugs 
[7]. The final validated system-specific parameters (as presented 
in Tables 1 and 2 and the input file template) serve as default 
starting values for users. However, the SpatialCNS-PBPK app 
offers flexibility, allowing users to modify both system-specific 
and drug-specific parameters to better fit their specific drugs 
and applications.

The 9-CNS PBPK model offers a unique advantage by enabling 
the prediction of spatiotemporal drug penetration and expo-
sure in the human CNS and brain tumors based on plasma 
concentration–time profiles, irrespective of the route of sys-
temic drug administration. Since drug plasma concentrations 
can be readily measured in individual patients or a popula-
tion, this model serves as a powerful computational tool for 
prospectively and reliably predicting spatial pharmacokinet-
ics in the human CNS and brain tumors across various clini-
cal settings and patient populations. The quantitative insights 
gained from this model are invaluable for guiding efficient 
clinical trial designs, selecting optimal drug candidates, and 
refining dosing regimens. Notably, a significant challenge 
in treating brain tumors is the substantial inter-individual 
variability and spatial heterogeneity in drug penetration and 
exposure, making one-size-fits-all treatment strategies often 
ineffective. The 9-CNS PBPK model addresses this challenge 
by enabling individualized dosing regimens. By leveraging 
observed plasma concentration–time profiles and patient-
specific brain or tumor characteristics, the model can predict 
drug exposure in the CNS and tumors in an individual patient. 
If the predicted drug exposure is suboptimal, alternative dos-
ing regimens can be simulated to determine the optimal strat-
egy for achieving therapeutic drug concentrations in the brain 
and tumor tissue.

In summary, the SpatialCNS-PBPK app enhances our ability 
to predict the spatial pharmacokinetics of anticancer drugs in 
the human CNS and brain tumors with greater accuracy and 
efficiency. This invaluable computational tool supports the de-
velopment of more effective therapies and the optimized use of 
existing drugs, ultimately improving treatment outcomes for 
brain cancer patients.

FIGURE 4    |    A screenshot showing the simulated mean, 5th and 95th percentiles of the concentration-time profiles (in common logarithmic 
scale) of total abemaciclib in individual compartments of the 9-CNS model from five individuals. The input file is provided in Table S2. The observed 
abemaciclib concentrations in the contrast-enhancing (shown in red symbols) and non-enhancing tumors (shown in black symbols) of glioblastoma 
patients are overlayed with the simulated percentile concentration-time profiles in the deep brain parenchyma compartment (Cbm2) and three tumor 
compartments including tumor rim (CT1), bulk tumor (CT2), and tumor core (CT3); the observed abemaciclib concentrations in CSF (shown in green 
symbols) are overlayed with the simulated percentile concentration-time profiles in three CSF compartments including ventricular CSF (Cvcsf), cra-
nial subarachnoid CSF (Cccsf), and spinal subacrachnoid CSF (Cscsf, not shown here due to the space limit).



877

FIGURE 5    |    A screenshot showing the sensitivity analysis of the impact of PSB2 (passive permeability clearance at the BBB between the blood 
and deep brain parenchyma compartments) on the total abemaciclib concentration—time profiles in individual CNS compartments. Sensitivity 
analysis was performed with the PSB2 values of 2.5, 7.9, 25, 79, and 250 L/h while other parameters remain the same as provided in the input “Sim1” 
(Table S2).
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FIGURE 6    |    A screenshot showing the sensitivity analysis of the impact of PSB2 (passive permeability clearance at the BBB between the blood and 
deep brain parenchyma compartments) on the total abemaciclib drug exposure (i.e., AUC) in individual CNS compartments. Sensitivity analysis was 
performed with the PSB2 values of 2.5, 7.9, 25, 79, and 250 L/h while other parameters remain the same as provided in the input “Sim1” (Table S2).
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